Asian Journal of Tnformation Technology 13 (4): 235-241, 2014

ISSN: 1682-3915
© Medwell Journals, 2014

A Technique to Parallelize Network Intrusion
Detection using Multicore Network Processors

'™ Ravichandran and °C.8. Ravichandran
'Department of ECE, Saveetha School of Engineering, Saveetha University, Chennai, India
23ri Ramakrishna Engineering College, Coimbatore, India

Abstract: As network speed mcreases tremendously than CPU and memory speed, it widens the gap between
network and the end system. This poses a major challenge m the field of mntrusion detection as the data has to
be scanned at link speeds to detect the malicious packets. The prominent solution for this problem is addressed
by the invent of multicore processors which cope up with increasing link speeds by offering parallelism and
the required instruction sets to provide the necessary throughput. By making use of the multicore Network
Processors it 1s possible to parallelize the intrusion detection activity at the data rate. In this scenario where
processor is subject to computationally intensive task, performing stateful signature based analysis together
with dynamic load balancing, without efficient parallelization is thorniest. Hence, an enhanced way of
parallelization technique 1s proposed m this study to dynamically distribute the load among the core without
jeopardizing the analysis reliability.

Key words: Intrusion Detection System, multicore processors, parallelization, dynamic load balancing, open

MP, Network Processors

INTRODUCTION

An Intrusion Detection System (IDS) is broadly
classified as Network Intrusion Detection System (NIDS)
and Host Intrusion Detection System (HIDS). NIDS are
located at strategic locations within the network to
monitor to and fro traffic from all devices on the network.
On the other hand, HIDS are run on mndividual host or
devices on the network.

NIDS are a major security component mn many
network environments. They monitor network traftic for
suspicious activity, providing alerts when they detect
attacks. In real time deployments, merits of NIDS are
questioned frequently as they raise frequent false alarms.
NIDS face fundamental tradeoft between the detection
rate on one hand and resource demand on the other.
Choosmg the tradecoff 1s an environment-specific
decision. In particular, large high-performance
environments (Gbps traffic networks) pose a major
challenge for a NIDS. Due to the volume and
heterogeneity of their traffic, short term characteristics are
easily unpredictable. Hence, a NIDS needs to deal
robustly with situations which are vastly different from
any kind of average. Moreover, existing NIDS are not
exploiting their full potential to mitigate the effect of the
tradeoff they face. Even if a NIDS supports the
installation of multiple detectors inside a network, these

components work independently, only exchanging high
level results such as alerts. At the same time, each
detector maintains a great deal of internal state which
remams hidden from the others. Yet combining all
available knowledge promises to improve the detection
rate without impacting either resource demands or false
positive rate. The need to parallelize the intrusion
detection with the help of multicore processors 1s due to
the severity of the attacks. By keeping in mind the
flexability and inexpensive system costs its suitable to use
multicore/multithreaded architectures rather than using
extensive custom designed ASIC and execution models
like FPGA which also provides multiple, concurrent
processing.

The need for a dedicated Network Processor lies in
the 1ssue of scanning the network traffic at a line speed.
This 18 accomplished by parallelizing the tasks of
Intrusion detection in the Network Processor. The
proposed system is framed in such a way that it takes full
advantage of multicore/multithreaded architectures along
with dynamic load balancing for network mtrusion
detection.

LITERATURE REVIEW

Sommer et al (2009) framed an architecture

customized for parallel execution of network attack

Corresponding Author: M. Ravichandran, Department of ECE, Saveetha School of Engineering, Saveetha University, Chennai, India

Asian J. Inform. Technol., 13 (4): 235-241, 2014

analysis. At its lowest layer, the architecture relies on an
‘active networlk interface’ that provides an in-line interface
to the network, reading m packets and forwarding them
only after they are fully mspected and deemed safe.
The device dispatches packets to a set of threads that
structure the processing as an event-based analysis
model well suited to exploit many of the opporturities for
concurrent execution (Sommer ef al., 2009).

Dimopoulous et al. (2007) designed a memory
efficient reconfigurable Aho-Corasick FSM algorithm. Tt
has a desirable property that the processing time does not
depend on the size or number of patterns in the network
packets. It constructs a Deterministic Finite Automata
(DFA) which is used to match all the patterns at once one
byte at a time (Dimopoulos ef af., 2007).

Hu (2006) suggested the idea of usmng Network
Processors (NP) for intrusion detection by dividing the
task into small pieces with each Micro Engine (ME) in NPs
dealing with only one subset of detection operation.
Packets received by the NPs are processed by the MEs by
fixed pattern matching technicque (Hu, 2006). Colajanni and
Marchetti (2006) proposed a parallel NIDS architecture
that 15 able to provide us with fully reliable analysis,
high performance and scalability. The load balancing
mechanism proposed in this study aims at distributing the
traffic among a configurable number of parallel sensors,
s0 that each sensor 13 approached by manageable amount
of network traffic (Colajanni and Marchetti, 2006).

Pangrazio (2008) has suggested that the rules could
be partitioned into blocks for the cores and pushed out to
the device. Here, one core 1s used to control the interface
and the rule set 15 broken up mto fifteen blocks. The
packets would then be passed from cores to cores
sequentially. Since, packets only trigger an alert once, the
first rule set should contain the most common or simplest
rules.

This would push the more difficult rules to the latter
cores where they would see less traffic and allow the
string or pattern matching to have more time. This would
reduce overall load to the IXP and increase the
throughput. Breaking the rules into subsets allow parallel
processing similar to that of the superscalar processors
that have been proposed for lugh throughput applications
(Pangrazio, 2008).

Bos and Huang (2004) aimed at detecting worms at
high speeds by matching the paylead of networle paclkets
against worm signatures at the lowest possible levels of
the processing hierarchy (microengines of an IXP1200
network processor). The solution employs the
Aho-Corasick algorithm in a parallel fashion where each
microengine processes a subset of network traffic. To
allow for large patterns as well as a large number of rules,

236

the signatures are stored in off-chip memory. Using an old
version of the IXP Network Processors (the IXP1200), the
system 1s capable of handling close to 200 Mbps with full
content scan for realistic threats (Bos and Huang, 2004).

EXISTING SYSTEM

The existing architecture for parallel network
intrusion detection is customized for parallel execution of
network attack analysis. The objective is to build a highly
parallel, inline network intrusion prevention systems
that can fully exploit the power of modern and future
commodity hardware.

The architecture encompasses a front end Active
Network (ANI) and backend analysis
component. ANI 1s implemented at the lowest layer of
architecture and it reads the packet from the mterface. It
makes the routing decision based on the mformation
available 1n the comnection and host table, if no such
information is available corresponding to the flow
identified then packet is passed to analysis component
which works as a back end.

Interface

Structure of the existing architecture: The ANT drives
its despatch decisions based on a large connection table
indexed by packet header five-tuple. The table yields a
routing decision for each packet either thread which wall
analyse the packet, ANI should drop the packet directly
without further processing or ANI should forward the
packet directly (to enable some forms of off-loading).
There 1s an analogous table mdexed by IP addresses to
provide per-host blocking and also default routing for
packets not found in either table (Sommer et af., 2009)

(Fig. 1).

Active network interfaces: The ANI is a stateful device
whose functionality can be dynamically refined by the
backend analysis engine show in Fig. 1. The ANI 1s
responsible for: routing copies of packets to the
appropriate analysis threads, retaimng packets until
signalled by the analysis engine to either forward or drop
them and supporting alteration of packet content.

Thread-aware routing: The first task of the parallel
analysis pipeline is flow demultiplexing; routing packets
to analysis threads. This task is assigned to the ANT. For
each packet, it first decides which thread (s) is in-charge
of the corresponding flow. The ANI then appends a copy
of the packet to the packet queue of the core running that
thread. The ANI determines to which thread the packet
has to be routed.

Asian J. Inform. Technol., 13 (4): 235-241, 2014

CPU core 1 CPU core 2
L1 D-Cache|
=HEEN ==EH
2|2 |2 |2 | Cached[€T cle|c|e Cached
alca]|a el n = Y
<3 queues fe queues

T T o]

! 1 b

T i 1

1
}
}
H 1
:| [1-2 Cache and main memory Core 1 MSG-Event-Q 1
|4 Core 1 Pkt-Q | Core2 Pki-Q | [Core I MSG-Event-Qle -:
13 Core 1 - 2 Event- oo |
» Core 1 event-Q | | | Core 2 Event-Q | e MSGEven |-
—
[Conn table] 1 Packet
dispatch . Active network
A T-af Pending | interface
| Pkts

Fig. 1. Existing architecture for parallel execution of
network attack analysis (Sommer et al., 2009)

Selective packet forwarding: The ANI is an in-line
element that for a given packet it either forwards it or
drops it. The ANT itself does not decide to forward or
drop the packet until it 13 decided by the backend. To
avold requiring the backend to transmit entire packets
back to the ANT for forwarding when the ANT routes a
packet to a thread, it includes a packet descriptor that the
backend can subsequently use to refer to the particular
packet.

Analysis component: The analysis proceeds in stages
as depicted in study. The mitial stages concern low-level
tasks such as TCP stream reassembly and normalization,
suitable to a single thread of execution. This stage
requires very little inter-thread communication. It outputs
events parameterized with parsed packet headers
(since, normalization already requires header analysis) and
payload byte streams (for TCP).

The next stage performs application-layer protocol
parsing. This stage can significantly benefit from
parallelizable execution. The outputs from this stage are
events reflecting application level control information
(requests and responses) with associated protocol data
units. Finally, these events are consumed by multiple
high-level analyzers that detect attacks both within
application dialogs and across multiple connections and
hosts.

A crucial pomt 1s that to extract parallelism at each
stage of the pipeline to gain the maximal performence gam.
In Fig. 1, vertical boxes reflect different types of analyses,
progressing in semantic level and breadth from left
to right The progression of arrows indicates how
information flows from one level to the next with the

237

thickness of an arrow indicating the relative volume of
data within the flow. Thinner arrows indicate fewer
threads of analysis that need to execute at the next stage
relative to the previous stage hence if the latter stage
offers less opportunities for parallel execution but also will
be presented with fewer flows to analyze then researchers
can still keep the pipeline full as they analyze flows at
increasingly high levels. Of particular note 1s the large
degree of task-level parallelism which can easily be
leveraged by multi-core and multi-threaded processors.

Limitations of existing system: The limitations of the
existing system are listed:

Generic processor cannot provide satisfactory
performance due to overheads on handling system
interrupts, moving packets through PCT bus and TSA
not optimized for networking applications

Scalability of components m active network mterface
like connection table and host table 1s limited hence
it can not cope up with the increased traffic from
multiple hosts

Operational deployment of generic processor 1s not
extended to data communication line rate due to its
load sharing by other applications

This architecture does not provide dynamic load
balancing, 1.e., once he packets are scheduled to one
thread they are not reassigned

Solutions to the problems in the existing system are
addressed in the proposed research.

PROPOSED SYSTEM

Network Intrusion Detection System (NIDS) are
becomimmg a worthful element in a modem network
infrastructure for guaranteeing the security of complex
information systems. A NIDS is used to inspect the
network traffic with the aim of looking for evidences of
illicit activities and malicious network packets. To control
all the traffic flowing through a network, a NIDS has
to perform a stateful analysis on each packet. This
necessitates a NIDS to track and reassemble each distinct
connection.

The proposed system is designed in such a way that
it can operate at line speed of the network to identify the
wntrusion with the help of Network Processors. An
imovative parallel NID architecture that achieves high
performance by combining cores parallel with no
necessity for hardware components is proposed. The
proposed NIDS can effectively scale and deal with
increasing traffic and an imovative load balancing

Asian J. Inform. Technol., 13 (4): 235-241, 2014

technique that dynamically dispatches incoming traffic to
the analysis engines. The architecture allows the NIDS to
mspect high speed links with no packet loss and no
negative impact on the accuracy of the traffic analysis
that remain reliable and stateful (Colajanni and Marchetti,
2006).

Solutions to the limitations of the existing system: To
compensate the performance degradation experienced
through generic processor a device is specifically
designed called Network Processor (NP) which 1s used for
packet processing at high speeds by sharing the workload
between a number of independent RISC processors.

Cores present in the Network Processors allow the
flexibility to program according to the need. Hence, the
scalability 1ssues faced m the existing system due to the
use of hardware component can be overcome with the
help of these programmable cores.

In order to make the Network Processor to operate at
link speed 1t is directly linked with the rmumber of
packets processed per second As the number of packets
processing per second increases then more number of
packets can be dispatched thereby achieving the packet
reception at link speed.

A dynamic load balancing mechanism is introduced
which dynamically reassign the packets to corresponding
cores for analysis according to the rules specified. These
rules were altered according to the arrival pattern of
packets.

Network application categorization: Network applications
normally entail mnto three major tasks: data path, control
path and management path tasks which are so categorized
according to thewr functionality. Network applications
are executed in the data path, the control path and the
management path of a Network Processor. Data path tasks
which must run at line rates and require high performance,
execute core functionalities such as receiving/transmitting
from/to MAC devices, packet forwarding classification
and queuing and scheduling. For example, forwarding
packets from the input to output ports must be executed
at line rates to avoid dropping of packets. If there are no
packet dependencies among the packets being processed,
multiple packets can be processed in parallel to achieve
line rates.

Control path tasks which are less time-critical execute
such control functionalities such as table maintenance,
routing, signalling and policy management. ATM virtual
circuit set up and tear down is the example of control path
task. Control path tasks present little data parallelism and
help Network Processor to execute data path tasks.

System 1mtalization/configuration and management

238

protocols belong to the management path tasks. Tt should
also be noted that the management path tasks present
very little data parallelism.

Features of network applications: Network applications
have many special features compared to general
applications. These features such as the presence of
network protocol layers, their data mtensive and branch
intensive character, the existence of significant packet
parallelism and the need to detect packet dependencies
are presented.

Network protocol layers: Most networks are organized as
a series of layers to reduce their design complexity. The
layered model of network protocols is proposed by the
International Standards Organization (ISO) and the model
is called the TSO OS5I (Open Systems Interconnection)
Reference Model. The layered struchure produces
parallelism to deal with packet concurrently.

Packet parallelism: The packet is the base unit of work
for networlk applications. Packets may be independent and
may be processed concurrently. There are several types
of parallelism that could be exploited in Network
Processors in addition to the more commonly encountered
Instruction Level Parallelism (ILP) and Thread Level
Parallelism (TLP), they are packet level parallelism and
intra-packet parallelism.

Packet level parallelism: If each incoming packet is
independent of the other packets being processed, the
incoming packets can be concurrently processed in the
several independent processing units of a Network
Processor. This kind of parallelism is called packet level
parallelism.

Intra-packet parallelism: During the processing of each
packet if the tasks to process a packet are independent,
then those tasks can be executed in parallel. For example
source MAC address manipulation and destination MAC
address manipulation can be executed at the same time in
layer 2. This kind of parallelism is called intra-packet
parallelism.

Packet dependency: When many packets are being
processed simultaneously in a multiprocessor or in a
multithreaded enviromment, packet dependencies between
two packets may or may not exist. If there exist packet
dependence then it requires synchronization to obtain
correct processing results. When packets are processed
with static rules such as in the case of stateless firewall
and forwarding engimes there are no packet dependencies

Asian J. Inform. Technol., 13 (4): 235-241, 2014

because the code working in each packet does not need
to modify the rules. Therefore, synchronization 1s not
required since packets are processed independently.

If packets are from the same TCP connection and it 1s
necessary to update the state m memory for the purpose
of encryption or TCP state maintenance between the
processing of two packets, a packet dependency exists.
Packet dependency also occurs when updating traffic
management counters and routing or address translation
tables. If a packet dependency exists, some sort of
synchronization is required.

Parallized network processor architecture
Multithreaded architectures: Multithreaded architectures
have been developed to tolerate memory access latencies.
When an instruction from one thread stalls due to a
long-latency operation, the thread is made mactive and no
more instruction of the thread are fetched from the
mstruction cache while mstruction from other threads are
placed into the execute pipelines. As a result a
multithreaded architecture allows for multiple threads to
share the functional units of a single processor. Tt
addresses the drawbacks of superscalar machines which
offer more performance with added functional units but
suffer from a low utilization of those functional units.

Fine-grained multithreading: Fine gramed multithreading
which switches threads and issues nstructions from
only one thread at each clock cycle. The advantage of
fine-gramed multithreading 1s in the liding of latency
caused by both short and long stalls.

The disadvantage of fine-grained multithreading is
that it slows down the execution of instructions which are
ready to be executed, since instructions which are ready
to be executed are delayed by instructions from other
threads. Since, only one thread can issue instructions at
each clock cycle in fine-grained multithreading there are
no fully empty 1ssue slots but a significant number of idle
1ssue slots within individual clock cycles still exist.

Simultaneous multithreading: Simultaneous
Multithreading (SMT) can 1ssue multiple mstructions from
multiple threads in a single cycle and schedule them
dynamically so as to concurrently exploit Thread-Level
Parallelism (TLP) and Tnstruction Level Parallelism (TLP).
With register renaming and dynamic scheduling, multiple
instructions from independent threads can be issued
without any dependencies among them. SMT enhances
performance across a wide range of applications without
cost or architectural

significant hardware major

changes.

239

Chip multi processor: Chip Multi Processors (CMP) is
actually multiprocessors which have a full set of
architectural resources on the same die. A CMP exploits
TLP by executing different threads i parallel on different
processors while SMT exploits TLP by issuing
instructions from different threads with large issue widths
within a single processor. A CMP consists of a single
thread processor cores which are relatively simpler than
general purpose processors where multiple threads are
executed in parallel across multiple single-thread
processor cores. If an application cannot be effectively
decomposed mto threads, the single-thread processor
cores are not fully utilized. In worst case, when an
application can not be decomposed into threads, only one
single-thread processor core can be assigned to the task.

PROPOSED ARCHITECTURE

Network Processors play a crucial role in packet
processing such as packet forwarding m the network
equipment. In the Network Processors of the first
generation, general purpose processors were used.
Network applications were mostly software based and
new features can be easily added. However, scalability
was severely limited and some these processors even
failed to meet the speed requirements. As a result,
ASIC-based Network Processors were mtroduced as
second generation processors. ASIC-based Network
Processors are typically used to forward traffic at very
high rates. Their disadvantages include high development
costs, long time to market and little flexability. As internet
traffic continues increasing rapidly and the protocols are
becoming more dynamic and sophisticated, Network
Processors are required to be very flexible as well as fast.
Thus, Network Processors that have an instruction set
specialized for network applications, flexibility and
support speed of line rates have emerged as the third
generation Network Processors. In this study, a parallel
NIDS architecture 1s proposed. It 13 a complex
infrastructure which needs proper configuration.
Depending on the size of incoming traffic, the packets are
sliced as per the rules set. A well designed set of slicing
rules has to satisfy the following mam properties:

Packets belonging to the same connection have to be
routed towards the same cores. This is necessary to
trace and reassemble all connections as required by
the stateful traffic analysis characterizing the
proposed architecture

Networlk traffic should be equally distributed among
the available cores. This allows the architecture to
achieve good load balancing properties

Asian J. Inform. Technol., 13 (4): 235-241, 2014

Fig. 2: Parallelized Network Processor architecture for
intrusion detection

ME, @7 ME,
Scheduling
Packet R
reception >
Aggregation

Packets from bad cluster

Fig. 3: Packet flow between the Micro Engmes (ME) ina
Network Processor

Both the above requirements can be satisfied
through a well designed set of slicing rules. While it
that

preserve transport level connections, achieving a

1s rather simple to write slicing rules

reasonable load balancing among cores 15 a

non-trivial task

Load balancing: Another mmovation of the proposed
architecture is represented by its ability of dynamically
migrating the states of analyzed connections between
different cores.

This feature can be used to achieve load balancing
among Micro Engines (ME) thus mcreasing the scalability
and the overall effectiveness
architecture (Fig. 2 and 3).

of the parallelized

Packet processing: The traffic source feeds a core
(reception) that it captures every Ethemnet frame and
sends the frame to one of the directly connected cores
(dispatcher). The core (reception) 1s the only centralized
element and has to manage traffic at the same throughput
of the network link. Architecture scalability 1s limited by
the number of cores (dispatcher) that the core (reception)
is able to handle. In order to keep the computational cost

240

MEiq

Fig. 4: Parallelization of Anomaly Detection Algorithm
(ADA) for detecting intrusion

reasonably low, scattering operations must be as simple
as possible. The cores of Network Processor capture
every frame from the input interface and have to determine
the destination cores of each of them. That operation can
executed by the in the

implementation the destination cores are selected on the

not be cores because
basis of a frame analysis that is quite complex operation.

Indeed, each core mnplements a set of slicing rules
that are used to classify every received Ethernet frame. In
particular, the implementation of the cores (dispatcher)
makes 1t possible to select the destination sensor on the
basis of various features such as protocols, TP addresses
and port numbers. Slicing rules need to be carefully
designed, so as to route every frame towards the Cores
(analyzer) that may need it to detect an attack. This 1s one
of the most important tasks since we need to perform a
stateful traffic
guarantee that every frame belonging to the same

analysis. Hence, researchers must
transport level connection is routed to the same Cores
(analyzer).

Network Processors

(NP) affordable

processing power to support the real time requirements of

provide

network security applications. The real challenge lies in
programming the NP which tender continued growth in
CPU performance. To achieve greater usability of NPs in
IDS, a new technique called parallel vector processing
which utilizes micro engmes of Network Processors
for anomaly detection 1s proposed. This techmque
makes use of data mining approaches which brings
software parallelization in NP based on Asymmetric
Multi-Processing (AMP). The objective of optimal
utilization of NPs 1s targeted by keeping relevance
between time and data thereby achieving overall speedup

(Fig. 4).

Asian J. Inform. Technol., 13 (4): 235-241, 2014

CONCLUSION

In this study, a parallelization techmque for anomaly
based Intrusion Detection algorithm 1s proposed. The
parallelized algorithm can be executed by different
cores of the Network Processor simultaneously thereby
mcreasing the overall throughput.

REFERENCES

Bos, H. and K. Huang, 2004. A network intrusion
detection system on IXP1200 Network Processors
with support for large rule sets. Technical Report
2004-02. http:/Awvww.cs.vunl/~herbertb/papers/
trixpid.pdf.

Colajanmi, M. and M. Marchetti, 2006. A parallel
architecture for stateful intrusion detection in high
traffic networks. Proceedings of the TEEE/IST
Workshop on Monitoring, Attack Detection and
Mitigation, September 28-29, 2006, Tuebingen,
Germany, pp: 1-7.

241

Dimopoulos, V., I. Papaefstathiou and D. Pnevmatikatos,
2007. A memory-efficient reconfigurable Aho-
Corasick FSM mmplementation for mtrusion detection
systemns. Proceedings of the International Conference
on Embedded Computer Systems: Architectures,

Modeling and Simulation, Tuly 16-19, 2007, Samos,

pp: 186-193.

Y., 2006. Embedded Network Processor based
Parallel Intrusion Detection. In: Embedded Systems:
Modeling, Technology and Applications, Hommel,
G. and S. Huanye (Eds.). Springer, The Netherlands,
ISBN-13: 9781402049330, pp: 93-100.

Pangrazio, G., 2008. Intel IXP Network Processor based
intrusion detection. October 16, 2008, SANS
Institute, USA. http://www sans.org/reading-room/
white papers/detection/mtel-ixp-network-processor-
based-intrusion-detection-32919.

Sommer, R., V. Paxson and N. Weaver, 2009. An
architecture for exploiting multi-core processors to
parallelize network intrusion prevention. Concurrency
Computat.: Pract. Exp., 219: 1255-1279.

	235-241_Page_1
	235-241_Page_2
	235-241_Page_3
	235-241_Page_4
	235-241_Page_5
	235-241_Page_6
	235-241_Page_7

