Asian Journal of Information Technology 13 (6): 356-362, 2014

ISSN: 1682-3915
© Medwell Journals, 2014

Deadlock Maps: A Dynamic Deadlock Detection for
Multithreaded Programs

'A. Mohan and °P. Senthil Kumar
'Saveetha Engineering College, Anna University, Chennai, Tamil Nadu, India
*SKR Engineering College, Chennai, Tamil Nadu, India

Abstract: Deadlock freedom 15 the major challenge in developing multithreading programs. To avoid the
potential risk of blocking a program, prior momtoring of threads can be made during the execution process. The
proper monitoring scheme can monitor the threads and can identify whether the threads might enter a deadlock
stage. [t maintains a back up to store the threads. So, after the execution of one thread the injection of the other
thread can be made from backup into the processing stage. By using this process the deadlock can be avoided
i the multithreading environment. In the proposed system, the thread monitoring and thread mapping
techniques are implemented to identify the threads running in the program. A map is present which is used to
store the thread objects, the locks acquired and requested by them. Whenever, a thread tries to acquire a lock
and if the access 18 demed, then it waits for certain period of time. After the time period expires, the thread again
tries to access the lock. If the access 1s still demed then the thread traverses the map to identify the threads that
have requested or held the same locks recquested by it. If it finds any such threads then it detect that deadlock
has occurred. The deadlocked threads wait for each other for infinite time. Now, the thread releases all the locks
acquired by 1it, thereby allowing the deadlocked threads to complete their operations. If more than one thread
detects deadlock then priorities are assigned to them at random manner. According to the priorities of threads,
they wait for a while (i.e., let other threads to complete their operation). According to the priority, thread
execution states are changed. Tt helps the threads to recover from deadlock situation and allows the threads

to complete their execution.

Key words: Multithreaded program, synchronization, deadlock monitor, thread map, priority

INTRODUCTION

Deadlock-freedom 1s a major challenge in developing
multi-threaded programs as a deadlock cannot be resolved
until one restarts the program (mostly by using manual
mtervention). To avoid the potential risk of blocking, a
program may use try-lock operations rather than lock
operations. Tn this case, if a thread fails to acquire a lock,
it can take appropriate action such as releasing existing
locks to avoid a deadlock. In the existing system, the
usage of mapping 18 not implemented. In another
approach circular mutex wait deadlocks and lock graphs
are cleared but this model is not suited for all
environments. The existing Dynamic methods have less
efficiency when compared to the Static Deadlock Analysis
Method. The proposed system provides an efficient
mapping technique for avoiding deadlocks depending
upon priority.

The main aim of the project 1s to avoid the deadlocks
occurred in the threads during execution. Tt is done by
providing a map that stores the thread objects, locks

acquired and requested by the thread. In this case, if a
thread fails to acquire a lock, 1t can take appropriate action
such as releasing existing locks to avoid a deadlock.

In order to avoid deadlocks in threads during the
execution process a monitor 1s introduced in the proposed
research that identifies the threads rumming m the
program, 1.e., the thread objects are identified. After this
process, a map is generated that store the thread objects
and the locks acquired and requested by them. Whenever,
a thread tries to acquire a lock and if the access 18 demed
then it waits for certamn period of time. After the time
period expires, the thread again tries to access the lock.
Due to some reasons, if accessing the locks is still denied
then thread traverses the map to identify the threads that
have requested or held the same locks requested by it. If
it finds any such threads then it recognizes that deadlock
has occurred after which the deadlocked thread will wait
for each other for infimte time. When, it finds that
deadlock condition prevails the thread releases all the
locks acquired by it, so that it might allow the deadlocked
threads to complete their required operation. In another

Corresponding Author: A. Mohan, Saveetha Engineering College, Anna University, Chennai, Tamil Nadu, India

Asian J. Inform. Technol., 13 (6): 356-362, 2014

scenario, if more deadlocks are detected then according to
the priority the execution of the priority based threads are
executed mn random manner. During tlus process the
threads involved in execution are been backed up.
According to the priority, the threads execution states are
changed. This helps the threads to recover from deadlock
situation and let the other threads to complete their
execution.

LITERATURE REVIEW

When developing a dynamic deadlock detection
technique for multithreaded programs, a multi disciplinary
approach is essential. The static and dynamic techniques
are used for exposing deadlock potential (Agarwal et al.,
2010). Tt has three extensions to the basic algorithm (logic
graph) to eliminate and to label as low severity or false
warning of possible deadlocks. The extension of Lock
Graph algorithm 13 to detect the deadlock m static and
dynamic techniques.

A new technique in practical static race detection is
proposed for parallel loops n java (Rado1 and Dig, 2013).
The utilization of these constructs and libraries improves
accuracy and scalability. The new tool called IteRace has
been introduced which includes a set of methods that are
specialized to employ the intrinsic thread, safety and
dataflow structure of collections. The [teRace 1s fast and
perfect enough to be realistic. Tt scales well for programs
of lakhs of lines of code and it reports little race warmngs,
thus shuning a common consequence of static analyses.
The tool implementing this method is fast does not delay
the programmer with many warnings and it finds latest
bugs that were conformed and fixed by the developers.

Detecting atomicity vielations using dynamic
analysis technique is presented (Flanagana and Freund,
2008). A more fundamental non-mterference property 1is
atomicity. When, a method execution is not affected by
concuirently-executing threads, then that method is called
as Atomic Method. It contains both formal and informal
correctness arguments. Detecting atomicity violations
combine 1deas of both Lipton’s theory of reduction and
early dynamic race detectors. Tt is effective error detection
for unintended interactions between threads. It will be
more effective than standard race detectors.

Flanagana and Freund (2006) proposes the Type
Inference algorithm for reejava. The performance of the
algorithm is applied on programs up to 30,000 lines of
code. The resulting annotations and race-free guarantee
our type inference system. Type Inference algorithm is
applied to the concurrent program to manipulate the

357

shared variable without synchronization. This algorithm
has some lock wvariables. Extending this Inference
algorithm to larger benchmark has some 1ssue. It produces
reliable error reporting.

Hasanzade and Babamir (2012) describe an approach
for online deadlock detection for multithreaded programs
using the prediction of future behavior of threads. The
74% of deadlocks were predicted using the proposed
method. Some specific behaviors of threads are extracted
at run time and converted mto predictable format using
Time Series Method. The proposed method has several
advantages compared to the existing static methods.
Powerful techmique 1s used for predicting complex
deadlocks.

Bodden and Havelund (2010) implemented an
efficient algorithm to sense concurrent programming
errors online. System programmers monitor the program
events where locks are approved or handed back and in
places where values are accessed that may be shared
among multiple Java threads. The proposed RACER
algorithm uses ERACER for Memory Model of java and
AspectBench compiler for implementation. In this study,
they projected a language extension towards the
aspect-oriented programming language Aspect]. The
proposed Aspect] have implemented the following three
points. They are Lock(),Unlock() and Maybeshared().

Chen et al. (2011) examines the performance scaling
of various processor cores and application threads. Tt
analyzes the performance and scalability by correlating
low-level hardware data to JVM threads and system
components. It uses the ITVM tuning techniques to solve
the problems regarding lock conditions and memory
access latencies. The study of performance and scalability
of multi threaded java application on multi core systems
is done. The proposed method reduces the bottlenecks
using JVM tuning techmiques. Inappropriate use of
synchronization leads to large number of stall cycles.

Joshi ez al. (2009) present a Novel Dynamic Analysis
Method to find real dead-locks i multi-threaded
programs. DEADLOCK-FUZZER is the new technique
used to find the deadlocks in two phases. In the first
phase, a potential deadlock in a multi-threaded program is
found using dynamic analysis technique by execution of
the program. In the second phase, deadlock creation 1s
controlled using threads scheduler. DEADLOCK-FUZZER
1s implemented to find the all previously known deadlocks
large benchmarks but
previously unknown deadlocks m an efficient manner.
This technique both static and dynamic
techniques.

in it does not discover

needs

Asian J. Inform. Technol., 13 (6): 356-362, 2014

Wen et al (2011) describe a new Java thread
deadlock detection approach called as JdeadlockDetector.
This system requires source code and built on non-official
IVMs for Java thread deadlock detection solutions. Many
Tava programs cannot be evaluated with these solutions.
JdeadlockDetector 1s fabricated on the official Java Virtual
Machine, viz., Open]DK’s HotSpot. TdeadlockDetector
have three unmique advantages compared to the existing
system. They are application transparency, detection
accuracy and mimmized performance overhead.
TdeadlockDetector attains no false negative and
diminished false positive. JdeadlockDetector detects Java
thread deadlock based on the capability of monitoring the
thread states and synchronization states on runtime. In
this way, the technique achieves their advantages. To
track the control flow and data flow of a Java program,
Hotspot introspection architecture has to be extended.
Thus will afford a capability to analyze the vulnerability of
Tava programs.

A new two phase deadlock detection scheme was
introduced which provides efficient memory utilization
and time constraints (Luo ef al., 2011). The performance
of the proposed system is much higher than the
traditional approach in finding the potential deadlock in
application. First phase reduces lock by filtering out
certain locks that cannot participate. Second phase
creates smaller lock graph for potential deadlock
detection. The proposed research can minimize the overall
deadlock detection time and increases the performance.

Researchers focus on developing dynamic deadlock
detection technique which reduces the deadlock
OCCUITEIICES.

SYSTEM ARCHITECTURE

The system architecture for the proposed system
includes deadlock monitor, analyzing thread states, thread
maps and locks. It explains the efficient way for detecting
deadlock in multithread program using thread map and
priority assignmment. The java thread i1s created based on
the set of condition that causes deadlock situation. Each
thread 1s built based on certain lock to access the
resources. The deadlock monitor identifies the threads
running in the program, ie. the thread objects 1s
identified. After this process a map is generated that store
thread objects and the locks acquired and requested by
them (Fig. 1).

When 1t finds that deadlock condition prevails, the
thread releases all the locks acquired by it, so that it might
allow the deadlocked threads to complete their required
operation. In another scenario, if more deadlocks are
detected then according to the priority, the execution of
the priority based threads are executed in random manner.

358

Java
thread

Java
thread
»
Ll

v
]

Traversing
thread map

|

[Thread priority |

Thread backsup

Solve deadlock

Fig. 1: System architecture
MODULE DESCRIPTION

Module 1 (Thread creation): A multithreaded program is
designed such that it contains one or more Synchronized
Methods. All the Synchromzed Methods of an object
are locked whenever a thread acquires any of its
Synchronized Methods. Thus, the program is designed to
have deadlock problems. The
multithreaded program includes 1-10 threads (userl to
userl0). Each threads acquires different lock in nested
way. The program has potential deadlock when each
thread send a particular text file to other threads.

The program is constructed based on following set of
conditions. Userl thread consists of two operation. First,
it sends a file file6.txt to user user2 and receives a file
file2.txt from user user7. After receiving file2 txt, 1t will
display the file information. User2 thread does not send
any file to other users. It only receives a file file2 txt from
user user® and reads file file2.txt. User3 thread follows the
same process like userl. First, it sends a file filed.txt to
user user5 and receives a file file7.txt from user user4.
After receiving the file it reads file file7.txt. Userd, User5
threads are sending some file to other user but it doesn °t
receive any files.

User7 send a file file2.txt to user user] and receives a
file file3.txt from user user® After receiving, it will
display the file nformation. User8 has more than two
operations. First, it sends a file file7.txt to user user9
then send a file file6.txt to user user?. Second, it receives
a file file3.txt from user user5 and display that file. User9

thread creation of

Asian J. Inform. Technol., 13 (6): 356-362, 2014

threads sends a file filed.txt to user userl 0 and receives
file file9.txt and reads the file informatoin. User1 0 sends a
file file3.txt to user user? and user10 receives a file file9.txt
from user user9 and reads file file9.txt mnformation. The
sample coding for the thread creation and operation is
glven as:

Thread userl TH = new Thread()

{
public void run()
{
try
{

Thread.sleep (300);

File[] files =new

File ("Files™). listFiles();

user 1.sendFileTo (user 2 files[new
Random (.nextIntiles. length)]);

}
catch (Exception ex)
{

ex.printStackTrace();

}
P

This code is used to send the file from one user to another user. The
above code explains the file tranformation between the userl and user2.
public synchronized void writeFile(User userY, File file)
{
try {
File InputStream fis = new
FileInputStream (file);
byte[] data =new
byte [fis.available()];
fis.read(data);
fis.close();
FileOutputStream fos = new
FileOutputStream (this.getName()+
File. separator+file. getName());
fos.write(data);

fos.close();

jta.append("n "name+" received a
file ["+file.geName()+"] from
User
"tuserY.get Name()+"");
sendAckTo(this,file);

catch (Exception ex)

ex.printStack Trace();

}
}

Module 2 (Mapping the thread): A deadlock monitor is
designed to observe the details of threads running in the
program. The details of locks acquired and requested by
the threads are entered into thread map. Thread map
contains list of threads and its corresponding resources.
The states of threads are continuously updated. During
the program execution the threads states (user] to userl ()
will be entered into the thread map. The thread map
contains the information about deadlocked threads.
Sample example:

"User®" Id = 35 BLOCKED on com.thread. ThreadProgram
$User(@1203875 owned by "User2" Id=29 at com. thread. Thread
Program$User.sendFileTo(ThreadProgram.java:364)-blocked on
com.thread ThreadProgram$User(@1203875 at com.thread. Thread
Program$8.run (ThreadProgram java:200)

When the program executes thread 8 enters the
deadlock state. The information related to the particular
deadlock will be entered mto the ThreadMap. It contains
the information that explams which threads block the
current running thread and object 1d of the particular
threads (Fig. 2).

- ==

Deadlock Detection

L;ﬁ et T o
L

foert a3 L0 on com. Frec hvsaFog e b2 omned 3y oty ont o e reacbragmitio o |

v I‘:r?'g-r Tt et |

|] I‘xu' Lo T e N g,

= a2 AT R L T |

;ew . ."-wm' ek

il .'.nmr AT o

i e [D et TG LB

st [t et

Fig. 2: Deadlock detection window with threadmap

359

Asian J. Inform. Technol., 13 (6): 356-362, 2014

[EIEE

s EiEEal]

Tsars

User?

]

[E—T—)

71| Lttt EEE

Userld

[e——

5

Fig. 3: Threads program execution with deadlock

Module 3 (Program execution with deadlock): The
program will be executed after constructing more number
of threads with the above set of conditions. The deadlock
monitor window helps to run the program. The snapshot
of program execution in Fig. 3.

Figure 3 represents the output of the multithreaded
program with deadlocks. In this case, userl, user2, userd
and user6 have executed successfully without deadlock.
User3, users, user?, user8, user? and userl O enter into the
deadlock situation. Deadlock has occurred when threads
access same resource (e.g., public synchronized void
writeFile (User userY, File file)) at same time. Thus, all
processes will be waiting to complete its operation.

Mdoule 4 (Random pririoty assignment): The threads
runming in the program are periodically examined by the
monitor to detect deadlock situation. The deadlock
situation is identified if one or more threads wait for each
other for infinite time. The monitor identifies this situation
by analyzing the states of threads. Deadlock monitor
periodically executes traverse map operation. During
traversal, monitor examines the states of threads running
in the program. If the state of thread is identified as
deadlock then it has to wait for resourcesfor infinite time.
The thread cannot continue its operation any more. After
deadlock 1s detected, threads are randomly assigned to
some priority levels at run time. The priority will be
assigned based on the map traversing with the help of
deadlock monitor. The monitor should observe the details

| |

S alC e

15001014

when each thread is running. The random priority will be
assigned based on the following process. The process 1s:

private void
checkForDeadLockedThreads (ThreadInfo[]
threadInfo)
{
try

for(int i=0; i<threadInfo.length; i++)

{
if’ (thread Tnfo[i].getThreadState(). equals
(Thread. State. RLOCKED?Y)

{
Thread Deadl.ockedThread =
(Thread)Thread TDMap.get(threadTn
fo[i]. get ThreadId());
Thread LockOwnerThread =
(Thread)ThreadIDMap.get (threadln
foli].getLockOwnerTd();
if (!is Dead Lock Detected)
{
is Dead Lock Detected = true;
Dead Count++;
Systermn.out.printin ("Deadlocked
Threads found...
["+Dead LockedThread.get Name()+
" "+ ockOwnerThread. getName()+

7

}
LockOwnerThread.yield();

Dread Locked Thread. set Priority (secure rand

om.nextint{Thread. MAX PRIORITY));

nullify All(thread Tntoi],DeadlLockedThread,

LockOwnerThread),
LockList.add(DeadLockedThread. gefName());
LockList.add(LockOwnerThread. getName());

I

Asian J. Inform. Technol., 13 (6): 356-362, 2014

& T een
Pem

e
=

Fig. 4: Threads program execution without deadlock

DeadLockMonitor

Count

O AU CD— MW LU0

Total threads DeadlockedThreads

Threads

5: Perfomance measurement of deadlock detection
technique

Fig.

checkForDeadl.ockedThreads() Method checks
the current states of each thread in thread map. If
the map contains any information related to block then
the deadlock monitor will assign the random priority
number to deadlocked threads using the
process.

above

Module 5 (Solve the deadlock): Deadlock monitor assigns
the prionty based on the thread map information. The
program will be executed after assigning the random
priority number. The program execution after priority
assigmment 1s shown in Fig. 4.

Mdouel 6 (Perfomance mesurement): The perfomance
dynamic deadlock detection
techmque 1s given. Figure 5 shows how many threads are
runming in the thread map and how many deadlocks are

measurement of the

361

solved based on priority level of deadlocked threads.
Based on the program, nearly 10 deadlocked threads are
solved (Fig. 5).

RESULTS

The proposed system maintains a deadlock map that
holds the information about all the threads running n a
program. This will reduces the deadlock occurrences
based on the random priority assignment. The deadlock
momtor 1s control the overall process of program
execution.

CONCLUSION

This study provides an efficient way for accessing
shared memory by the multiple threads using deadlock
monitor. Deadlock monitor can be used to monitor the
thread process regularly. Monitor will reduce the deadlock
occurrences. Thread map will be used for Dynamic
Deadlock Detection Method. Also, it reduces the cost
of accessing memory and improves the efficiency of
multithreaded applications.

REFERENCES

Agarwal, R., S. Bensalem, H. Farchi, K. Havelund and
Y. Nir-Buchbinder et af., 2010. Detection of deadlock
potentials in multithreaded programs. J. Res. Dev.,
Vol 54.10.1147/ITRD.2010.2060276.

Bodden, E. and K. Havelund, 2010. Aspect-oriented
race detection in Java. IEEE Trans. Software Eng.,
36: 509-527.

Asian J. Inform. Technol., 13 (6): 356-362, 2014

Chen, K.Y., JM. Chang and T.W. Hou, 2011.
Multithreading in Java: Performance and
scalability on multicore systems. TEEE Trans.
Comput., 60: 1521-1534.

Flanagana, C. and S.N. Freund, 2006. Type mference
against races. Sci. Comput. Program., 64: 140-165.

Flanagana, C. and S.N. Freund, 2008. Atomizer: A dynamic
atomicity checker for multithreaded programs. Sci.
Comput. Program., 71: 89-109.

Hasanzade, E. and SM. Babamir, 2012. An artificial
neural network based model for online prediction
of potential deadlock in multithread programs.
Proceedings of the 16th CSI International Symposium
on Artificial Intelligence and Signal Processing, May
2-3, 2012, Shiraz, Tran, pp: 417-422.

Joshiy, P., C.S. Park, K. Sen and M. Naik, 2009. A
randomized dynamic program analysis technique for
detecting real deadlocks. Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Tmplementation, June 15-21, 2009, Dublin,
Ireland.

362

Luo, ZD., R. Das and Y. Qi, 2011. Multicore SDK: A
practical and efficient deadlock detector for
real-world applications. Proceedings of the IEEE 4th
International Conference on Software Testing,
Verification and Validation, March 21-25, 2011, Berlin,
Germany, pp: 309-318.

Rador, C. and D. Dig, 2013. Practical static race detection

for java parallel loops. Proceedings of the
International Symposium on Software Testing
and Analysis, July 15-20, 2013, Lugano,
Switzerland.

Wen, Y., I. Zhao, M.H. Huang and H. Chen, 2011.
Towards detecting thread deadlock in Java
programs with JVM introspection. Proceedings of
the IEEE 10th International Conference on Trust,
Security and Privacy in Computing and

Communications, November 16-18, 2011, Changsha,

China, pp: 1600-1607.

