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Abstract: In this study, we propose an approach to build fault-tolerant distributed real-time embedded systems.
From a given system description and a given fault hypothesis, we generate automatically a fault-tolerant
distributed schedule based on GSFR of the source algorithm ontoe the target architecture which minimizes the
system’s run-time and tolerates buses communication failures. The scheduling algorithm proposed is
dedicated to multi-bus heterogeneous arcliutectures with multiple processors linked by several shared buses.
It 13 based on passive redundancy and variable data fragmentation strategies which allow fast fault
detection/retransmission and efficient use of buses, the size of each fragmented data depends on GSFR and
the bus failure rates, variable fragment size allows reliable communication and maximize the reliability of the
system. As this scheduling problem s NP-hard, we use a heuristic algorithm to obtain an approximate efficiently
solution and we are able to show with simulation results that our approach can generally reduce the run-time

overhead.
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INTRODUCTION

Nowadays, heterogeneous systems are being used in
many sectors of human activity such as transportation,
robotics and telecommunication. These systems are
increasingly small and fast but also more complex and
critical and thus more sensitive to faults. Due to
catastrophic consequences (human, ecological and/or
financial disasters) that could result from a fault, these
systems must be fault-tolerant. This 1s why fault tolerant
techniques are necessary to make sure that the system
continues to deliver a correct service m spite of faults
(Talote, 1994; Kopetz, 2011; Niino, 2012; Hanmer, 2013).

A fault can affect either the hardware or the software
of the system; we chose to concentrate on hardware
faults. More particularly, we consider commumcation
faults (Grunsteidl et al., 2014) and more specifically bus
faults. A bus is a multi-point connection characterized
by a physical medium that comnects all the processors
of the architecture. In the literature, we can identify
several fault-buses tolerance approaches for distributed
embedded real-time systems which we classify into two
categories: proactive or reactive schemes.

In the proactive scheme (Kandasamy ef al., 2005;
Dulman et «l., 2003), multiple redundant copies of a
message are sent along distinct buses. In contrast, in the

reactive scheme only one copy of the message called
primary is sent; if it fails, another copy of the message
called backup will be transmitted. In Dima et af. (2001), an
onginal off-line fault tolerant scheduling algorithm which
uses the active replication of tasks and communications
to tolerate a set of failure patterns is proposed each failure
pattern 1s a set of processor and/or communications media
that can fail simultaneously and each failure pattern
corresponds to a reduced architectire. The proposed
algorithm starts by building a basic schedule for each
reduced architecture plus the nominal architecture and
then merges these basic schedules to obtain a distributed
fault tolerant schedule. Tt has been implemented by
Pinello et al. (2004).

A mnew solution to tolerate transient faults in
distributed heterogeneous architectures with multiple-bus
topology is proposed (Girault et af., 2006). However, the
solution does not take into account hardware reliability.
A method of identifying bus faults based on a support
vector machine 1s proposed (Song and Wu, 2010). Faults
of buses are tolerated using a TDMA (Time Division
Multiple Access) communication protocol and an active
redundancy approach (Kopetz, 2011). Researcher propose
a fine grained transparent recovery where the property of
transparency can be selectively applied to processes and
messages (Izosimov et al., 2012). Researchers survey the

Corresponding Author: Chafik Arar, Department of Computer Science, University of Batna, Batna, Algeria



AsianJ. Inform. Technol., 14 (2): 67-73, 2015

Algorithm Architecture

Execution Scheduling algorithm Real-time
times ] € Constraints
Fault ‘\Distribu-tion

hypothesis constraints

Variable data
fragmentation

Fault-tolerant distributed
static schedule

Fig. 1: The proposed approach

problem of how to schedule tasks in such a way that
deadlines continue to be met despite processor and
communication media (permanent or transient) or software
failure (Krishna, 2014).

As we are targeting embedded systems with limited
resources (for reasons of weight, encumbrance, energy
consumption or price constraints), the approach that we
propose in this study (Fig. 1) is more general since it uses
orly software redundancy solutions, i.e., no exira
hardware is required. Moreover, our approach can tolerate
up to a fixed number of arbitrary bus transient faults and
is scheduling algorithm based on GSFR and data
fragmentation with a variable fragment size to maximize
system reliability.

MATERIALS AND METHODS

System description: Distributed real-time embedded
systems are composed of two principal parts which are

the algorithm (sofiware part) and the distributed
architecture (hardware part). The specification of
these gsystems involve describing the algorithm

(algorithm model), the architecture (architecture model)
and the execution characteristics of the algorithm onto the
architecture (execution model).

The algorithm is modeled as a data-flow graph noted
ALG. Each vertex of ALG is an operation (task) and each
edge is a data-dependence. A data-dependence, noted by
-, corresponds to a data transfer between a producer
operation and a consumer operation. ;~t, means that t; is
a predecessor of t, and t, is a successor of t,. Operations
with no predecessor (resp. no successor) are the input
interfaces (resp. output), handling the events produced
by the sensors (resp. actuators).

The architecture is modeled by a non-directed graph,
noted ARC where each node is a processor and each edge
is a bus. Classically, a processor is made of one
computation unit, one local memory and one or more
communication units each comnected to one
communication link. Communication units execute data
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Fig. 2: ALG and ARC graphs

transfers. We assume that the architecture is
heterogeneous and fully connected. Figure 2 presents an
example of AL G with seven operations t,t; and ARC with
three processors P,-P; and four buses B,-B,.

Our real-time system is based on cyclic executive;
this means that a fixed schedule of the operations of ALG
is executed cyclically on ARC at a fixed rate. This
schedule must satisfy one real-time constraint which is
the length of the schedule. As we target heterogeneous
architecture, we associate to each operation t; a Worst
Case Execution Time (WCET) on each processor P, of
ARC, noted exe (&, P;). Also, we associate to each data
dependency data, a Worst Case Transmission Time
(WCTT) on each bus B; of the architecture, noted exe
(data, B;).

Fault model: We assume only hardware components
(processors and buses) failures and we assume that the
algorithm is correct w.r.t. its specification, i.e., it has been
formally validated for instance with model checking
and/or theorem proving tools. We congider only transient
bus faults. Transient faults which persist for a short
duration are significantly more frequent than other faults
in systems (Pizza et al., 1998). Permanent faults are a
particular case of transient faults. We assume that at most
N bus faults can arise in the system and that the
architecture includes more than N buses.

Fault-tolerant scheduling algorithm based on variable
data fragmentation: In this study, we first discuss the
basic principles used in our solution based on scheduling
algorithms. Then, we describe in details our scheduling
algorithm. The aims of this algorithm are twofold, first,
maximize the reliability of the system, secondly, minimize
the length of the whole generated schedule in both
presence and absence of failures. In our approach, we
achieve high reliability and fault tolerance in three ways:

Passive replication: To tolerate N bus faults, each data
dependency is replicated on N+1 replicas. Each replica is
fragmented on N+1 fragments scheduled on N+1 distinct
buses. We called primary replica the replica with the
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earliest ending time and the other ones are the backup
replicas. Only the primary replica (it’s N+1 fragments) is
executed. If one fragments fails, one of the backup
fragments replicas is selected to become the new primary.

Variable data fragmentation: In order to use efficiently
the bus redundancy of the arclhitecture, we propose to
use a mechanism of communication based on data
fragmentation. Variable data fragmentation allows the fast
recovering from partial/complete buses errors and it may
also reduce the error detection latency (the time it takes to
detect the error). The communication of each data
dependency t-t, is fragmented into N+l fragments
data = data;s...» datay.,, sent by each operation source of
the data-dependency via N+1 distinct buses to each of
operation destination (Fig. 3). The operation (+) is used to
concatenate two data packets; it 1s associative. As our
approach uses variable data fragmentation, the size of
each fragmented data depends on GSFR and the bus
failure rates Ag.

Variable data fragmentation operates in three phases:
first i order to tolerate at most N commumnication bus
errors each data dependency is fragmented into N+1
fragments of equal size. The mitial size of each fragment
is calculated by:

Size(data,) = 781ze(data)
N+1

The main problem with the equal size data
fragmentation comes from the difference between ending
time of different fragments (Fig. 4) because the destination
operation must wait to getting all the fragments of the
data dependency to start execution.

Second, the goal of passing from equal size data
fragmentation to variable data fragmentation (Fig. 4) is to
minimize the difference between ending tume ET of
different fragments (Fig. 5).

ET, <ET, <. <ET,,,

v

1e{l,

Minimize{ET, -ET}

I

With variable data fragmentation based on mimmizing
the difference between ending time, another problem can
occur and grows extremely the execution time. The bus
over which accumulates data may also fail, therefore, the
quantity of data to be retransmitted is more important.

Third, the defimition of a compromise between the
load of each communication bus and the maximum data to
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Fig. 5: Minimize difference between ending time ET

be transmitted on this bus as illustrated in Fig. 6. Varnable
data fragmentation must not exceed this value when
defiming the new fragments size. The improvement in time
of the scheduling is shown in Fig. 7. The algorithm that
enable variable data fragmentation is show as:
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Algorithm (The VDF algorithm):

input: data-dependence (data = t;-t), N

output: the set of N+1 affection (data,(B,)).;

1. Each data dependency (data = t;~t)) is fragmented into N+1 fragments
of equal size:

. . Size{data)
Size{data, ) = ..8ize{dat =—"
ize(data, ) ize(data,,, ) Nl
2. Compute the loading sill of buses:
_ Ehy xLoad(B))

Load P o

W

Schedule the N+1 fragments of data-dependence on N+1 bus
4. Order the data fragments according to thier ending time:

ET, €<ET, <. € ETyy
5. Compute the sum of the shift of ending time:

Slm}:m—hme P= 0’ Slm}sl‘nﬂ-hme = ZE'];H -E-J;

6. While (Sumﬁ,,m <Sumgp g, ) do
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a) Sum g 0= Sumiy o

b) Fragment the datamfragment with the last end time on two
fragment (data(ETy,,) = data,*datag), respecting the following three
conditions:

(i) Size(data,) > Size,.{ data,, )
(ii) Size ( data,, *+Size(datap)<Loadr,
(iii) ET,+Size(datap)Byy <ETiwq

(c) Order the data fragments according to thelr new ending time ET;
(d) Compute the new value of gym™r

Sumiy . =ZET, -ET >
End While
End

GSFR: The Global System Failure Rate (GSFR) per time
unit is the failure rate per time unit of the obtained
multiprocessor  schedule. Using the GSFR 15 very
satisfactory i the area of periodically executed schedules.
This 15 the case i most real-time embedded systems
which are periodically sampled systems. In such cases,
applying brutally the exponential reliability model
yields very low reliabilities due to very long execution
times (the same remark applies also to very long
schedules).

Hence, one has to compute beforehand the
desired reliability of a single iteration from the global
reliability of the system during its full mission but this
computation depends on the total duration of the mission
{(which 1s kmown) and on the duration of one single
iteration (which may not be known because it depends on
the length of the schedule under construction). In
contrast, the GSFR remains constant during the whole
system’s mission: the GSFR during a single iteration is by
construction identical to the GSFR during the whole
IMISS101L,

Our fault tolerance heuristic 153 GSFR-based to
control precisely the scheduling of each fragmented data
from the beginning to the end of the schedule. Girault and
Kalla (2009) has defined the GSFR of scheduling an
operation t, noted A(S,) by equation:

_ -log R(S)
A(S,) UG,)
Where:
3, = The static schedule at step n of the algorithm
U(S,) = The total utilization of the hardware resources,
defined by:

ues,) = iexe(tl, p)+ iexe(datak, b_)
i k

The reliability R(S,) is computed for each operation t;
and each processor P, by equation:

R(Sn) _ He-ka(g,pk) +Zi2jkcexs(data}, b,
i
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Scheduling algorithm: These tree principles
unplemented by a scheduling algorithm called algorithm.
Tt is a greedy list scheduling heuristic, it generates a
distributed static schedule of a given algorithm ALG onto
a given architecture ARC which minimizes the system’s
run-time and tolerates upto N buses faults with respect to
the real-time constraint and the distribution constraints.
Our algorithm 1s based on two cost functions GSFR and
a schedule pressure. GSFR is used to select the reliable
bus for each data dependency and to choose the best size
for each fragment.

At each step of our greedy list scheduling heuristic,
the schedule pressure noted by o(n)(t, P;) is used as a
cost function to select the best operation which minimize
the length of the critical path taking into account variable
data fragmentation, it 1s computed for each operation as
follows:

are

(1) — gy 4 Qln)_pol
c(t, P) =87, + SR

Where:
Rn-l

The critical path length of the partial schedule
composed of the already scheduled operations

S .4 = The earliest time at which the operation t, can
start its execution on the processor P,
5 = The latest start time from the end of t,, defined to

be the length of the longest path from oi to
ALG's output operations

The schedule pressure measures how much the
scheduling of the operation lengthens the critical path of
the algorithm. Therefore, it introduces a priority between
the operations to be scheduled. The RMFS-VDF
scheduling algorithm 1s shown as:

Algorithm (The RMFS-VDF scheduling algorithm):
input: ALG, ARC, N;
output: areliable fault-tolerant schedule;

Tnitialize the lists of candidate and scheduled operations;

n:=0

T, = {teT|pred®=o};
T, =P

While (7 - ¢) do

1) For each candidate operation t..,4, compute o® and GSFR on each
processor Py

2) For each candidate operation t.,,, select the best processor _t..
which minimizes o™ and GSFR bedt

3) Select the most urgent candidate operation t,,.,, between all £,y of
T

4 For each data dependencies whose tu,.. is the producer operation:
fragment the data comminication on Nbf fragment using the variable
data fragmentation algorithm;

5) Scheduel tyy.., and its fragmented data;

6) Update the lists of candidate and scheduled operations:

(n) . _ pln-l) :
T © = Ted Y {bugem )

T = T 1) {1 € sucelt,,,, Ypredty T,
7) n:=ntl;
End while

End
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RESULTS AND DISCUSSION

We have applied the RMFS-VDF heuristic to an
example of the algorithm graph presented in Fig. 8 and an
architecture graph composed of four processors and four
buses. The failure rates of all the processors are all equal
to 107° and the failure rate of the Buses SAMMP2,
SAMMPI, SAMMP3 and SAMMP4 are respectively 107°,
107,107 and 107"

Figure 9 the
produced for our example with a basic scheduling
heuristic (for instance the one of SynDEx). SynDEx is a
tool for optimizing the implementation of real-time
embedded applications on multi-component architecture.
The schedule length generated by this heuristic 15 22.2.
The GSFR of the non-reliable schedule A, = 0.0000246.

We apply our heuristic to the example of Fig. 9. The
user requires the system to tolerate one bus failure, 1.e.,
N = 1. Figure 10a shows the scheduled generated by
owr heuristic. The schedule length generated by our
heuristic is 17.2. The GSFR of the non-reliable schedule
A=y = 0.00000597.

Figure 10b shows the scheduled generated by
owr heuristic for N = 2. The schedule length generated by
our heuristic 1s 15.2. The GSFR of the non-reliable

shows non-reliable  schedule
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Fig. 9: Schedule generated by SynDex
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Fig. 10: Fault tolerant schedule; a) N=1 and b) N =2

schedule A,_, = 0.00000613. The important thing to note
in Fig. 9 and 10 is that data fragmentation reduce the
schedule length and improve significantly the rehability of
the system.

Simulations: To evaluate our heuristic, we have applied
the RMFS-VDF heuristic to a random algorithm graphs
and heterogeneous
architecture graph composed of 4 processors. Figure 11
and 12 have been obtained with a CCR setto 1, 5, 10 and
20. CCR (Communication to Computation Ratio) 1s the
ratio between the average commumication cost (over all
the data dependencies) and the average computation cost
(over all the operations).

a and completely comected

A random algorithm graph is generated as follows:
given the number of operations N, we randomly generate
a set of levels with a random number of operations. Then,
operations at a given level are randomly connected to
operations at a higher level. The execution times of
each operation are randomly selected from a umform
distribution with the mean equal to the chosen average
execution time. Similarly, the communication times of each
data dependency are randomly selected from a umform
distribution with the mean equal to the chosen average
communication time.

The general objective of our simulations is to study
the impact of the data fragmentation and CCR on the
schedule length and reliability mtroduced by RMFS-VDEF.

Figure 11 shows the impact on schedule
length obtained by RMFS-VDF for P = 4 and N = 1
(respectively, N = 2). As we can see, the schedule length
grows almost linearly when CCR increases from 1-20.

Figure 12 shows the impact on the GSFR obtained by
RMFS-VDF for P=4and N =1 (respectively N = 2). As we
can see, the GSFR. decreases when CCR. increases from
1-20.
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CONCUSION

We have proposed in this study, a solution to
tolerate communication media faults in distributed
heterogeneous architectures with multiple-bus topology.
The proposed solution, based on passive redundancy
and variable data fragmentation strategies is a list
scheduling heuristic called RMFS-VDE. It generates
automatically, a distributed static schedule of a given
algorithm onto a given multi-buses architecture which
minimizes the system's run-time and tolerates upto N
communication media faults with respect to real-time and
distribution constraints.

The communication mechanism, based on variable
data fragmentation, allows the fast detection and handling
of errors. Simulations show that our approach can
generally reduce the run-time overhead. Currently, we are
working on a new solution for extending commumnication
mechanism developed to sensor networks.
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