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Abstract: In this study, introduce ¢™homeomorphisms by using ¢™-continuous functions and ¢™-resolute
functions and introduce the concept of ¢™-connectedness by utilizing «™-open sets in topological spaces and

study the characterizations and their properties.
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INTRODUCTION

In the mathematical study, Njastad (1965) introduced
and defined an c-open/closed set. After the works of
Njastad (1965) on g-open sets, various mathematicians
turned their attention to the generalizations of various
concepts in topology by considering semi-open, c-open
sets. The concept of g-closed (Levine, 1970), s-open
(Levine, 1963) and ¢-open sets has a sigmficant role in the
generalization of continuity in topological spaces. The
modified form of these sets and generalized contimuty
were further developed by many mathematicians
(Balachandran et al., 1991, Maki et al., 1993). In 1970,
Levine generalized the concept of closed sets to
generalized closed sets. After that, there 13 a wvast
progress occurred in the field of generalized open sets
(complement of respective closed sets). In topological
spaces, it is well known that normality is preserved
under closed continuous surjections. Many researchers
tried to weaken the condition “closed” in this theorem. In
Long and Herrington (1978), used almost closedness
due to Singal and Singal (1968). Malghan in 1982,
used g-closedness. Gsesnwooo and Reilly (1986) used a
closedness due to Mashhour et al. (1982).

The notion homeomorphism plays a very important
role in topelogy. By definition, a homeomorphism
between two topological spaces X and Y 1s a bijective
map f: X—Y when both f and £~ are contimious. Tt is well
known that as Jamich m 1980 says correctly:
homeomorphisms play the same role m topology that
linear isomorphisms play in linear algebra or that
biholomorphic maps play in function theory or group
1somorphisms i group theory or isometries in
Riemannian geometry. In the course of generalizations of
the notion of homeomorphism, Maki et al (1991)

introduced g-homeomorphisms and ge-homeomorphisms
1in topological spaces. Recently, Devi et al. (1995) studied
semi-generalized homeomorphisms and generalized semi
homeomorphisms.

PRELIMINARIES

Throughout this study (X, ©) and (Y, 0) represent
topological spaces on which no separation axioms are
assumed unless otherwise mentioned. For a subset A of
a space (X, 1), cl(A), nt{A) and A° denote the closure of
A, the mterior of A and the complement of A in X,
respectively.

Definition 1: A subset A of a topological space (X, 1) 1s
called:

s+ A preopen set if Acint(cl(A)) and pre-closed set if
cl(int{A))c A (Mashhour ef al., 1982)

» A semiopen set if Acel(int(A)) and semi closed set if
mnt(cl(AYc A (Levine, 1963)

¢+ An ¢-open set if Acint(cl(int(A))) and an «-closed
set if cl(int(cl(A)))c A (Njastad, 1965)

* A semi-preopen set (B open set) if Accl(int(cl(A)))
and semi-preclosed set if int(cl(int(A)))c A
(Andryjevic, 1986)

s An closed set if int(cl{A))cU, whenever AcU and U
is aopen (Mathew and Parimelazhagan, 2014)

The complement of a™-closed set 13 called an ¢™-open set.
Definition 2: A function f:(X, 1)~ (Y, 0) 1s called:

s An g™ continuous if £ 77 (V) is a™-closed in (X, T) for
every closed set V of (Y, @)
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¢ An g™ irresolute if f ~' (V) is ¢®closed in (3, T) for
every o"-closed set V of (Y, 0)

e Ana-irresolute if f 7' (V) is aclosed in (X, T) for every
aclosed set V of (Y, 0) (Njastad, 1965)

On o"-HOMEOMORPHISMS

Definition: A function £ (X, 1)~ (Y, 0,) 1s said to be an
a™homeomorphism if both f and £~ are ¢™-irresolute. Tt is
denoted that family of all g™-homeomorphisms of a
topological space (X, Ty) onto itself by a™h(3{1,).

Proposition: Let £:(X, 1)—(Y, 1) and g(Y, 1,)~(Z, ;)
are ¢™-homeomorphisms, then their composition gof:
(X, T)—~(Z, T,) 18 also ¢™-homeomorphism.

Proof: Tet U be an «™open set in (7, T,). Since, g is
e -irresolute, g~ '(U) is a™open in (Y, T,). Since, f is
a™resolute, £(g7(V)) = (geD)7(V) is a™open set in
(*{, 1,). Therefore, gof 1s a™-uresolute.

Also, for an a™-open set G in (X, 1,) and has (gof)
(@) = g(f(3)) = g(W), where, W = {{3). By hypothesis, {{G)
is a®™open in (Y, T,) and so again by hypothesis, g(f{G))
1s an ¢™-open set in (7, T;). That 18 (gof)(G) 1s an a™-open
set in (7, T,) and therefore (gef)™'is @™ irresolute. Also, gof
1s a bijection. Hence, gof 1s ¢™-homeomorphism.

Theorem 1: The set a®™h(X,T,) 15 a group under the
composition of maps.

Proof: Define a binary operation *:o™h(3{, t,)*a"h
(3 t)~a™h(X, 1) by f*g = gef for all f, gee™h(X, 1,) and
o i3 the usual operation of composition of maps
gofea™h(X, 1,).

It 13 known that the composition of maps is
assoclative and the identity map L (X, 1)—(¥, 1))
belonging to a®-h(X, t,) serves as the identity element. Tf
fea™h(X, 1), then £ 'eq™h(X, t,) such that fof ™" = 'ef
=T and so inverse exists for each element of a™-h(3X, 1,).
Therefore, (a™h(X, 1,), ©) 1s a group under the operation
of composition of maps.

Theorem 2: Tet f (X, t)—(Y, 1) be an o”-
homeomorphism. Then f induces an 1somorphism from the
group «®-h(3, 1,) onto the group 1™-h(Y, 1,)

Proof: Using the map f is defined a map Y:
a™h(X, t)~e™h(Y, ©) by Pdh) = fehof ' for every
hea®™h(X, t,). Then, P; is a bijection. Further, for all
h,, hyea™h(X, 1,), T{heh,) = folheh)ef™ = (feh,ef™)e

(fohef™ = Wih)e Yih) Therefore, ¥, is a
homeomorphism and so, it is an isomorphism
induced by f.
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ON a"-CONNECTEDNESS

Definition: A topological space (X, T,) is said to be
a"connected 1f X cannot be expressed as a disjoint umon
of two non-empty o®-open sets. A subset of X is
a"connected 1f 1t 15 ¢™-connected as a subspace.

Theorem: For a topological space (X, 8,), the followng
are equivalent:

s (X, 1,) 18 t"-comnected

(¥ 1)) and ¢ are the only subsets of (¥, t,) which are
both ¢®open and «™-closed

»  Each a”continuous map of (X, 1) into a discrete
space (Y, 1,) with at least two points is constant map

Proof (a)=(b): Suppose (X, T,) is a"-connected. Let S be
a proper subset which 1s both ™ open and ¢™- closed
in (X, 1,). Its complement X/5 is also «™open and
a"-closed. X = Su(X/3), a disjomt union of two non empty
¢"-open sets which is contradicts (a). Therefore, S = ® or
X.

(b)=(a): Suppose that X = AuB where, A and B are
disjoint non empty e®-open subsets of (X, T,). Then, A is
both a™-open and &™-closed. By assumption A = @ or X.
Therefore X is ¢™-connected.

(b)=(c): Let £:(X, 1)—~(Y, 1,) be an ¢"-continuous map.
Then (X, 1) 18 covered by «™open and o”-closed
covering {f ' (y):yeY}. By assumption {(y) = ® or X for
each yeY. If {'(y) = @ for all yeY, then f fails to be a map.
Then, there exists only one point y€Y such that £~'(y) »®
and hence '(y) = X. This shows that { is a constant map.

(c)=(b): Let S be both a¢™open and a™closed in X.
Suppose 3@ Let £:(X, 1,)—(Y, 1,) be an ¢ -continuous
map defined by f{S) = y and f{3°) = {w} for some distinct
points y and win (Y, 1,). By assumption f is a constant
map. Therefore, it has S = X.

Theorem 1: Every ¢™-connected space 1s connected.

Proof: Let (X, 1,) be a™connected. In case X is not
connected. Then there exists a proper non-empty subset
B of (X, 1,) which 1s both open and closed in (X, T,).
Since, every closed set is o™-closed, B is a proper non
empty subset of (X, 1,) which 1s both ¢™open and
a”-closed in (X, 1), (X, 1) is not ¢™-connected. This
proves the theorem.

Theorem 2: If {:(X, t)~(Y, T,) 1s an ¢™-continuous and X
is e"-connected, then (Y, 1,) is connected.
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Proof: In case that (Y, T,) is not connected. L.et Y = AuB
where, A and B are disjoint non-empty open setin (Y, T,).
Sinee, f is ¢™continuous and onto, X = f'(A) uf '(B)
where £ (A) and ' (B) are disjeint non-empty ¢™-open
sets in (X, tT,). This contradicts the fact that (3 t)
is ¢™-connected. Hence, Y 1s connected.

Theorem 3: If £ (3{ t)—(Y, 1,) 18 an ag™-irresolute
and (X, t,) 1s ¢™-connected, then (Y, T,) is ¢ “connected.

Proof: In case that (Y, 1,) 1s not ¢"-comected. Let Y =
AUB where A and B are disjoint non-empty ¢"™-open sets
in (Y, 1,). Since, {is e™iresolute and onto, X = [7'(A)
uf™'(B) where f7(A) and £7'(B) are disjoint non-empty
¢™-open sets mn (X, T;). This contradicts the fact that
(X, 1)) 18 ¢™-connected. Hence (Y, T,) 1s ¢¢™-commected.

Theorem 4: Perhaps that (X, 1,) is T a¢™space then (¥, T,)
1s commected if and only if it 13 ¢™-connected.

Proof: In case that (X, t,) is connected Then (X, t1,)
cannot be expressed as dis-joint union of two non-empty
proper subsets of (X, 7). If (X, 1) 18
comnected space. Let A and B be any two a™-open
subsets of (X, 1,) such that Y = AuB, where AnB = @ and
AcX, BcX. Since, (X, 1,) is Te™space and A, B are
¢™open. A, B are open subsets of (X, 71,), wlich
contradicts that (3{, T,) 1s connected. Therefore (X, 1)) 18
e“-connected. onversely, every open set is o -open.

not a -

Therefore, every a™-connected space is connected.

Theorem 35: If the ¢™-open sets C and D form a separation
of (X, t)) andif (Y, 1) is ¢®connected subspace of (X, 1)),
then (Y, t,) lies entirely within C or D.

Proof: Smce, C and D are both ¢™-open in (X, T,), the sets
CnY and DY are ¢®open in (Y, T,). These two sets are
disjoint and their union is (Y, 1,). If they were both
non-empty, they would constitute a separation of (Y, 1,).
Therefore, one of them is empty. Hence (Y, T,) must lie
entirely in C or in D.

Theorem 6: Let A be an a®-connected subspace of
(X, 1)). If AcBcCa™(A) then B is also a™-connected.

Proof: Let A be ¢™-connected and let AcBcCa™(A).
Perhaps that B = CuD 1s a separation of B by a™-open
sets. A must lie entirely in C or in D. In case that AcC,
then Ca™A)cCa™(C). Since, Ca™(C) and D are disjoint, B
cannot intersect D. This contradictsthe fact that D 1s
non-empty subset of B. So, D = @ which implies B
is a™-connected.
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CONCLUSION

It 1s recently mtroduced that the notion of &™-closed
sets which are strictly weaker than aclosed sets. a™-closed
sets are used to define a new class of homeomorphisms
Also, o
comnectedness m topological spaces. The purpose of

called a®™homeomorphisms. introduce
the present study is to improve characterizations and
properties.
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