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Removal of Motion Blur Through Markov Random Field Model
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Abstract: This research study focuses on restoring images that are affected by motion blur which corrupts the
image during acquisition. Restoration of images 1s an ill problem i image processing. A model derived from
Markov Random Fields (MRF) is proposed to remove blur iteratively followed by best fit selector. Even then
the blur compenents will be present in low frequencies. To reduce low frequency blur components, Discrete
Wavelet Transform (DWT) 1s used and a second stage of MRF deblurring 1s done before the wavelet synthesis
procedure. Experimental results shows better performance of the projected deblurring algorithm compared to

other techniques in terms of image quality measures.
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INTRODUCTION

Restoration of image is a significant concern in
advanced 1mage processing. Ilmages are frequently
degraded at some stage of data acquisition procedure.
The degradation may possibly involve blurring, detail loss
owing to sampling, quantization property and a variety of
sources of noise. Image deblurring plays an essential role
in several 1mage processing applications. The aspiration
of image deblurring is to get better sharp image from a
blurry surveillance. Blur is an outward appearance of
reduction in bandwidth of the image due to defective
immage development procedure. It may be because of
relative motion between capturing device and the original
image. In general, an image may be corrupted by means of
low-pass filters as they are accustomed to blur or smooth
the image.

Various approaches have been projected to deblur a
noisy image. The overall computation of modified wiener
filter (Xu et al., 2011) was carried out 1 the frequency
domain using Fast Fourier Transform (FFT) and the
circulant matrix approximation for randomly blurred
images. Richardson-TLucy Algorithm with total variation
regularization (Dey ef al, 2006) for 3D confocal
microscope deconvolution suppresses the unstable
oscillations without affecting object edges. Comparison
of two methods (Bojarczak and Lukasik, 2007) namely
Wiener filter, where the noise variance was mvolved 1n
blurring process as a known priori and Truncated Singular
Value Decomposition (TSVD) in which the knowledge of

precise noise varlance 1s not required to renovate the
image, reveals that Wiener filter provides better results.
An Adaptively Accelerated Lucy-Richardson (AALR)
method for image deblurring (Singh et af., 2008) employs
an empirical techmque that calculates the corrective
exponent in all iterations in an adaptive way by first
order derivative of the restored image in the last two
iterations.

A blind motion deblurring techmique using sparse
approximation (Cai et al., 2009) removes the motion blur in
a single image by inventing the blind motion blurring as
a jomnt optimization crisis that concurrently maximizes the
sparsity of the blur kernel and the sparsity of the apparent
image under appropriate redundant tight frame systems.
A regularization based approach requires no prior
information of the blur kernel (Cai et al., 2012) to remove
the motion blur in an 1mage by regularizing the sparsity of
mutually the original image and the motion-blur kernel
under tight wavelet frame systems. A modified description
of the split Bregman technique 1s also mtroduced to
work out the resultant mimmization problem efficiently.
Sparse Representation (SR) based blind image deblurring
(Zhang et al., 2011) develops the sparsity prior of original
images that helps in improves the 1ll-posed problem. The
undesirable ringing artifacts and noise amplifications are
less in the restored image due to the incorporation of
sparsity regularization.

Deblurring of gray scale images using inverse and
Wiener Filter (Sankhe et al., 2011) used the mverse filters
for pre-correcting an input signal in anticipation of the
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degradations caused by the system and Wiener filter to
minimize the mean squared restoration error which is the
existing disparity between the origmnal and restored
images. The power of Markov Random Field (MRF)
models in modeling an image fusion problem (Xu et al.,
2011) was investigated and the association of each source
image and the true image was established. Modified Lucy
Richardson Algorithm (Sharma et al., 2013) utilised DWT
as pre-processing stage of image restoration in the
presence of Gaussian blur and motion blur and then
Lucy-Richardson algorithm was applied.

Overview of de-blurring: The goal of image deblurring is
to recover a sharp image from blurry observation. Blur
portrays the fact that information fit in to a single object
point 1s smeared over a definite region m the unage as an
alternative to be sharply localized. Smear is unsharp image
vicinity sourced by means of camera or incorrect focus.
The smear effects are filters that average the changeovers
and dimimsh the disparity by smoothing the pixels after
the firm boundaries of distinct lines and regions of
significant color evolution.

In accordance with physical conditions blur is
classified into out of focus blur, motion blur and
atmospheric turbulence blur. Divergence of an imaging
plane from the focal point of lens causes out of focus blur.
Motion blur is attributable to relative motion relating
capturing device and its targeted object. When an object
or the image capturing gadget is moved at some stage in
light exposure a motion blured image is formed.
Atmospheric blur is owing to spreading of photonic media
during which light rays travel. Techniques that can
diminish the blur and thus mnproving the version of
blurred images are named as deconvolution or deblurring.
However, deblurring is a highly ill-posed problem
modelled as shown in Fig. 1. The motion blur effect is
created by a filter so as to produce the image appeared to
be stirring by additive blur in an unambiguous direction.
The motion blur can be illicit by a distance or by an angle
in either side and or intensity in pixels. A deblurred or
corrupted image can be estimated described by this
equation:

8(xy) =h(x.y)< F(xy) + (xY) M
Where:
g(xy) = The blurred image
h(x,y) = The degrading operator which is known as
Point Spread Function (PSF)
f(x,y) = The original image and

N(x,y) = Additive noise that may originated during the
image capturing process which damages the
image PSF

h(x,y) = The degree of which an optical system blurs a
point of light
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Fig. 1: Data model for deblurring problem

The Optical Transfer Function (OTF) 1s the impulse
response of a linear, position-invariant system and it 1s
the Fourier transform of PSF. Image deblurring is an
inverse problem that 13 used to mmprove an image
experienced linear degradation. The degradation may be
space invariant or space variant Blurring is the
convolution of the PSF and the original image, in the
spatial invariant system and hence, mmage deblurring 1s
equal to image deconvolution, 1.e., the inverse processing
of convolution. Several methods have been established
for the past several decades. Wiener filter is one of the
frequency domain method of recovering the image in the
presence of blur and noise which uses casual and anti
casual procedure to wipe out the blurring effect 1 an
affected umage (Tekalp et al., 1992; Buades ef al., 2005).
Regulated filter is another effective method of
deblurring an image using deconvergence of the
deconvolution function, which i1s effective when the
partial mformation about additive noise 15 lnown
(Al-Amn and Kalyankar, 2010).

MRF has added advantage to the efforts n
sustaining image’s detail. Tts flexibility enhances its use in
image classification (Tso and Mather, 1999; Niu and Ban,
2012), segmentation (Deng and Clausi, 2004; Yang and
Clausi, 2012; Zheng ef al., 2011; Youet al., 2014), cloud
detection (Addesso et al., 2012) and change detection
(Bruzzone and Prieto, 2000, 2002; Kasetkasem and
Varshney, 2002). Moreover, the use of MRF in reducing
the effect of speckle noise is envisaged in contextual
information modeling (Moser et al., 2007; Moser and
Serpico, 2009).

MATERIALS AND METHODS

Proposed de-blurring algorithm

MRF: MRF (Li, 2009) is undirected graphical
representation, in which the random variable i it follows
Markov property. This MRF have turn out to be quite a
good algorithm m adapting image related processing such
as computer vision and statistical pattern recognition,
image segmentation, image compression, tomography
reconstruction, etc. MRF concentrates on the intensity
sharing of an image in which the texture categorization 1s
done. This texture categorization shows the different
objects present in an image through which their edge was
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found like segmentation. From this segmentation, the
PSF was originated to suppress the low frequency
consequence and also to enhance the boosting of high
frequency/sharpness.

Each pixel in an image can be considered as a random
variable. An mmage can be described as the realization of
an N X M dimensional random variable of Probability
Density Function (PDF). Given the detail that N and M are
the dimensions of the mmage, each component of the
vector represents a pixel in the image. This 18 called a
random field. The sample p(X) to generate a sample image
from a given random field where X is the N X M random
field. Assuming that all the pixels are uncorrelated and can

be model p(X) as:

p(X)=TTp(x.) @

where, x, are the pixels of the image. To commence
correlation in its general form and need to suppose that all
the pixels in the image are correlated and reflect on all the
pixels simultaneously. This is impossible in performing
because of the size of the sampling space (2™ for a binary
image, k"™ for a k grey level image). If assumed that a pixel
depends only on its neighbors, the random field is called
as MRF. To a great extent it 1s easier to consider change
i one pixel in the image only affects its neighbors. A
random field is a MRF if P(X = x) has a Gibbs distribution
and P(X) is articulated as:

Lo

P(X:x):%e T (3)

The Hidden Markov models (FIMM) are the mainly
used prior models for state variables X that are to be
mferred from a related
measurements z = (z,, Z,, ..., Z. ..., Zy ). The measurements
z that are instantaneously considered of a random variable

set of observations or

7., where z represents the spectral content of a part of an
umage signal and X1 represents a state i time domain. It
leads to an implication problem in possible states X, from
the observations z, is calculated using Bayes’s formula as
PX=xZ=2)«P{Z=2X=xP (X=x). Here, P (X =x)is
the prior distribution over states. The skip over constant
of proportionality would be the best to fix thatx
P (x]z) = 1. When multiple models are simultaneously taken
into account, it is denoted as P (x|z, w) « P (z)x, w)P (x|w),
The constant of proportionality mn this relation waill
depends on @ and z The Markov chain i1s used to
represent the prior of a HMM and it can be decomposed
as a product of conditional distributions. P (z]x) is the
likelihood parameter that is observed from the experiment
which 1s used to keep the blurring removal process under
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control in-order to reduce the damage caused to the image
information. SSIM is used for measuring the quality of the
image and how much 1t 13 blur free. The more the
likelihood will be compacted into a single fine peak.

Problem formulation: Let us consider an image X of size
M X N, it can be modeled as:

4

Where:

7 = Normalizing Constant

U(x)= Prior energy and

T = Control parameter called Temperature

Gibbs distribution 1s acceptable by the following
reasons. The Hamersley-Clifford theorem (L1, 2009) states
that any conditional distribution has a joint distribution
which 1s Gibbs distribution if the below mentioned
conditions hold good:

s Positivity: P(X =x)=0

¢ Locality P(X, = x X, = x,, t#s, tes) = P(X, = x[X,= %,
t#s, teG,)

+  Homogeneity: P(X=x/X=x, t#s, teG,) is similar to all
sites s

MRF modeling has some well-built reasons to be
used 1s as follows:

» A systematical problem solving methodology for the
different dataset

« It the
measures in an effective way

« Tt is capable of incorporating many contextual
information of a dataset

¢  This MRF algorithm is adaptable to hardware based
systems

characterizes quantitative performance

The projected method recovers the image in three
phases. The Phase-T is pre processing step in which the
blurred input image 1s resized and blind deconvolution 1s
done based on initial PSF. Then first level of MRF
deblurring 1s done iteratively in Phase-II followed by best
descriptor process to select the optimal image. This image
will have some boundary value mismatch m its low
frequency components. So, the optimal image 1s allowed
to undergo level 1 Wavelet analysis and then second
level of MRF deblurring to remove the remaining blur
effect before the image is recovered by wavelet synthesis
in Phase I1I (Fig. 2).
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Fig. 2: Schematic flow chart of proposed method

©)

Fig. 3: Restored umages obtamned from synthesized images with blur lengths L = 8, 12, 18, 21, respectively by: a) Wiener

filter; b) LR method; ¢) Proposed method
RESULTS AND DISCUSSION
This study evaluates the de-blurring effect in terms of

Peak Signal-to-Noise Ratio (PSNR), Mean Square Error
(MSE) to compare with other methods:

PSNR =10log,,( 255*/MSE ) (%)
1 M-1M-1
MSE = (£7,-5,) (6)
MXN1=U =0 '

The proposed method is tested and compared with
Wiener filtering method and Lucy Richardson (LR)
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method. First, it was synthesized some sample motion
blurred images generated on a range of standard
gray-scale test images with specifically different features
and different sizes. Experiments are carried out on those
images and following measures like Signal to Noise ratio
(SNR), Peak Signal to Noise ratio (PSNR), Image Fidelity
(TF), Average Absolute Difference (AAD), Mean Square
error (MSE), Correlation Co-efficient (CC) and Structural
Similarity (SSIM) are used to assess the quantitative
performance. The test image chosen is camera man image
of size 256x256. Camera man image was synthesized with
various blur lengths and restored by Wiener filtering, LR
method and proposed method Figure 3a-c represent
the output images processed by Wiener filtering, LR
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algorithm and the proposed algorithm for blur lengths Figure 4a-c shows the original Camera man image,
I.=8, 12,18 and 21, respectively. Table 1 summarizes the synthesized input image with blur length T, = 21 and the
performance of the suggested method at several blur  restored images processed by Wiener filtering, LR
lengths for various synthesized images of size 256x256. algorithm and proposed method. Figure 5 and 6 shows

@ (b)

Fig. 4 a) Original image; b) Synthesized image degraded by motion blur with T, = 21; ¢) Restored images obtained by
Wiener Filter, LR method and Proposed method, respectively

EE G o dE

(a) Origina image (b)BlurL =8 () Wiener (d)LR () Proposed

E E s 0 E

(f)BlurL =12 (9) Wiener (h) LR (i) Proposed () BlurL =16

E fE s s S

(k) Wiener (LR (m) Proposed (M) BlurL =21 (0) Wiener

(P LR (q) Proposed

Fig. 5. House image

Table 1: Comparison of performance measures of proposed method with Wiener filter and LR method

Image House Flower Camerarnan

Blur length L=8 L=12 L=16 L=21 L=8 L=12 L=16 L=21 L=8 L=12 L=16 L=21

SNR(dB) Weiner 22.26 21.84 21.59 21.20 21.59 20.66 20.37 19.76 14.56 13.94 134 1291
LR 23.67 23.18 21.59 20.89 24.01 21.67 20.37 19.63 16.36 14.71 13.76  12.80
Proposed 25.31 24.11 23.48 23.35 23.68 22.92 22.36 22.45 18.20 17.39 l6.64  14.74
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Table 1: Continue

Image House Flower Cameraman
Blur length L=8 L=12 L=16 L=21 L=8 L=12 L=16 L=21 L=8 L=12 L=16 L=21
PSNR(dB) Weiner 26.58 26.15 25.90 25.51 2543 24.50 24.21 23.60 20.08 19.46 1896 1842
LR 27.98 27.49 25.90 25.20 27.86 2551 24.21 2347 21.88 2022 1928 1832
Proposed 2836 27.17 26.55 26.43 26.45 2570 25.16 2526 2320 2230 21.69 19.88
IF Weiner -0.006  -0.007 -0.007 -0.008 -0.007 -0.009 -0.009 -0.011  -0.035 -0.040 -0.048  -0.051
LR -0.004  -0.005 -0.007 -0.008 -0.004 -0.007 -0.009 -0.011 -0.023 -0.034 -0.042 0052
Proposed -0.003 -0.005 -0.005 -0.005 -0.005 -0.006 -0.007 -0.007  -0.020 -0.023 -0.080 0.4
MSE Weiner 143 157 167 182 186 230 246 283 637 735 825 933
LR 103 116 167 196 106 182 246 292 420 6l6 766 956
Proposed 95 124 143 148 147 175 198 193 311 382 440 667
AAD Weiner 0.039 0.041 0.042 0.044 0.048 0.053 0.055 0.060 0.078 0.083 0.087 0.093
LR 0.032 0.034 0.042 0.046 0.035 0.047 0.055 0.061 0.039 0.050 0.041 0.041
Proposed 0.082 0.096 0.102 0.108 0.138 0.150 0.159 0.159 0.012 0.014 0.016 0016
cC Weiner 0.974 0.951 0.938 0.920 0.907 0.893 0.873 0.824 0.966 0.944 0.921 0.89
LR 0.965 0.932 0.916 0.904 0.870 0.836 0.807 0.791 0.947 0.902 0.894 0.784
Proposed 0.965 0.960 0.944 0.934 0.909 0.909 0.893 0.890 0.924 0.896 0.865 0.835
SSIM Weiner 0.803 0.701 0.696 0.683 0.401 0.370 0.357 0.321 0.672 0.644 0.583 0.547
LR 0.783 0.641 0.621 0.601 0.374 0.313 0.294 0.284 0.544 0.424 0416  0.389
Proposed 0.792 0.710 0.699 0.692 0.408 0.409 0.381 0.380 0.574 0.456 0.399 0270
(@) Crigina image (b) BlurL=8 (c) Wiener (d) LR (e) Proposed (fBlurL =12
(g) Wiener (h) LR (i) Proposed () BlurL =16 (K) Wiener (LR
(m) Proposed () BlurL =21 (0) Wiener (HLR (q) Proposed

Fig. 6: Flower image
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that the proposed method seems to be visually good and
superior to other methods. The PSNR curves and MSE
curves for various blur lengths of house image were
measured and plotted 1 Fig. 7 and 8, respectively.

CONCLUSION

The proposed research exhibits a new deblurring
algorithm using MRF modeling to deblur an mmage with
varying blur lengths. This method solves the effect of
blurring by analyzing the image from spectral pomt of
view using SSIM. By means of iterative analysis the
continuous correction for the image has been made with
measuring the image quality. Experimental evaluation of
the projected algorithm is done on synthesized motion
blurred images obtained from standard test images and
the results demonstrate better performance of the
proposed algorithm irrespective of nature of input. It
is clear from the results that the suggested method is
superior among all methods and is simple and effective.
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