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Abstract: Wireless sensor networks have been the de-facto standard for modemn and intelligent sensing in
Military applications such as moenitoring power systems (viz., solar power) and tactical communications.
Efficient and successful data gathering is mandatory requirement in such mission critical applications. Robust
network architecture and a new communication protocol are required to achieve it. We propose a multisink
WSN with mtrinsic and linear programmable load balanced data-gathering protocol implemented in the statically
distributed special nodes or advanced nodes. The special nodes links to multiple sink by analyzing the existing
route path, its congestion ratio, load factor, least cost route, delivery ratio, energy constraints etc. Simulation
and experimental analysis shows that our approach mcreases the load balancing factor and network lifetime.
It also predicts the better way of gathering the mission critical data by applying a fast computation mechamsm
and lower overheads. The key factors such as communication latency, transmission overhead, packet
replication and delivery rate were analyzed and their results were compared with known protocols and methods.

Key words: Linear programmable, load balanced, multisink, data gathering, wireless sensor network

INTRODUCTION

With sophisticated and competitive military wireless
environment, the control of the energy consumption in a
tactical communication network is very crucial for
connectivity and QoS. One way to meet tactical networks
demands 1s to automate energy harvesting from natural
resource like solar power with low weight accessories for
cost-effective power managed rapid tactical deployment.
Major concern with solar power lies in its consistency of
power output in varied conditions. In this study, we
assume a smart WSN that utilizes automated energy
harvesting system using solar power for tactical
battlefield operations. The proposed system comprises
of Smart WSN mtegrated to solar concentrators for
controlling and positioming for maximum energy
harvesting. Furthermore, the wireless sensor at each solar
concentrator is connected with MEMS based tracking
device and prominent gateway (advanced or special
nodes) implements the Intrinsic and Linear Programmable
Load Balanced Data-gathering Protocol (ILP-LBDP).
Primary objective of TLP-LBDP is to gather data efficiently
from multiple sources and route it to an optimal sk in a
multisink... scenario  keeping BER at 10-3  level.
Researchers who work on multisink mechanisms believe
that by increasing the number of static sink nodes one

can distribute the traffic load all over the network and
consequently balance energy consumption around the
sink. Finding an optimal location for the sink nodes and
looking for low cost paths from each source node to one
or several sinks there by providing guaranteed data
delivery are the main concems in this research area.
Existing MultiSink and Load-Balance Routing Algorithm
(MSLBR) (Wang and Wu, 2009) prolonged network life
time through distribution of loads among sink neighbors.
MSLBR has on average 7.1 and 14.4% longer lifetime
compared to the Primary Based Routing (PBR) and Energy
Level Based Routing (ELBR) algorithms. However, the
time cost for updating routing table and finding the match
deputy for a packet in MSLBR is a bit high. Therefore, the
data transmission delay 15 increased rather more than in
the other approaches. Problems such as causing high
flooding, control message overhead and increased
transmission delay in existing approaches were evaluated
and the proposed work was developed to control these
1ssues and enhance effectiveness in accurate data
gathering (Tang et «l., 2013; Xiong and Tang, 2014,
Kong et al., 2015). The proposed research is an efficient
mechanism to overcome the said problems by
implementing ILP-LBDP m special node.

Tt performs the following activity. Tt collects data from
sensor nodes, aggregates and forwards data to the most
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optimal sink. Tt receives control instructions from sink and
forwards it to Micro Electro Mechamcal Sensor (MEMS)
that controls the tracer application device (Didioui et al.,
2013). This study maimnly focuses on the first activity. The
second is not discussed in this study. Special attention
has been devoted to network load balancing (Yoo et al.,
2010) using multiple constraints in multisink scenario to
enhance network lifetime. The solar power tracking
algorithms were implemented using new CO-simulation
framework based on MATLAB and OMNeT-+HCOSMO)
(Zhang et al., 2010) to rapidly build credible simulations
for indoor wireless networks. Experimental results
show that ILP-LBDP has higher efficiency in accurate
data-gathering w.r.t reduction in packet loss rate, packet
replication and lower latency. Tt obtains efficient load
balancing among multiple sinks thereby mcreasing the
overall network life time and ensures fairness. Our scope
was linited to analyzing the data received and its
accuracy level. In the following sections we discuss how
such a ILP-LBDP model which combines (multisink)
telecommunication technologies and WS3Ns, can be
realized.

MATERIALS AND METHODS

Intrinsic and Linear Programmable Load Balanced
Data-gathering Protocol (ILP-LBDP) architecture: An
efficient operation of solar power plant lies in the real time
data gathered at centralized location and continuous
mstruction sent back to Micro Electro Mechamical Sensor
(MEMS) for fault management or preventive measure
handling mechamsm. We keep the data gathering as a
primary problem and solve any pitfalls occurring with the
help of improved and novel methods. Primary objective of
the proposed work 1s to. Automate energy harvesting for
power management m TBA. Perform efficient data
gathering from TBAs for monitoring, tracking and
mitiating remote controlling activity without human
interventions. We assume that each solar panel (approx.,
10 kw) 1s integrated with wireless sensor nodes. Highly
powered special nodes are deployed at specific
geographic locations (mounted on shelter or on vehicles)
is depicted in Fig. 1. Multiple sinks are deployed across
the network m a way that 1s capable of receiving data from
the special nodes. Tn our scenario, we have considered
four sinks deployed within or outside the geographical
area depending on the application requirement. The
proposed ILP-LBDP mcludes the following main
components.

Senor nodes: The sensor nodes senses the environment,
collects sensory information and transmits the data to its
nearest highly powered special node.

© Sensor Node (SN)
o Sensor Node with data
@ Advance Node (AN)

-»Data flow

Fig. 2: Network model of ilp network model of ILP-LBDP

Gateway/special/advanced nodes: Tt is high Power node
with larger transmission computing capability. It 1s
advance in terms of memory storage, computing capability
and transmission. It supports variable buffer management
capable of storing and relaying multiple packets gathered
from various sensors. The main role of advance node
1s to support inter-device communication. The proposed
ILP-LBDP is executed by these special node.

Sink: Tt is the back-end centralized control system.
Additionally, it has the Web clien a graphical user
interface for final visualization and apprehension. The
control system consists of integrated wireless sensors
with Micro Electro Mechanical Sensor (MEMS) for
tracking and preventive maintenance which is not focused
1n this study. The network model of ILP-LBDP for Solar
Power Plant Control Systems 1s depicted in Fig. 2.

Route discovery phase: The sensor node transmits the
data to its nearest highly powered advanced node. The
advance node using LBDP evaluates the following load,
delay and distance optimal sink. Figure 3 shows the route
discovery phase in [LP-LBDP.
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Sensornode follows optimal pathA =% C =% G to send the data to sink

Sensor
node with
data

ata transmitted to
optimal sink

Advanced Node chooses
optimal Sink

Fig. 3: Route discovery phase using ILP _LBDP scheme

Load: Load status mdicates the number of data or control
packets in the queue which is processed at each sink at
any particular mstance of time. The packet arrival,
transferring and leaving relationships of the transmission
nodes and sink nodes are.analyzed. In our model, data
packets are transmitted from multiple advance nodes and
processed by the sink nodes. Load analysis using data
flow balance equations are obtained to optimize the
performance of the network by preventing packet drop
caused due to congestion in the path and at the sink
node. The congestion situation 1s evaluated to get real
effective arrival rates and transmission rates. The optimal
values for packets buffer sizes settings are obtained to
derive the threshold limit (e, for data packets in queue
to be processed by each sink. Assume a scenario where
a sink receives data packets from multiple advance nodes
(node 2-4) as shown as Fig. 4. The advance node has an
optimal packet capacity to collect data from sensors,
stores, aggregates and forwards to sk, For any sink ‘1’
in WSN, packet queue length of sink is QL™ then the
following relationship is obtained.

J—— QL™
P S P pr = T o (1)
Where:
P = The independent external poisson arrival rate of
node 1, indicates the arrival rate of node k
P, = The probability of packet arrival from node k to
node 1, indicates transmission relation of packet
queue for sink node 1
T = The service rate is and gives the service rate is
1
P = Gives the to sk probability

For sink node 1 in WSNs, the data packets arrival rate
is obtained by equation:

7L — Pamval+zimz'ipkamval Pamval +7L (2)
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Fig. 4: Packet transmission by multiple advance nodes to

sink

At this time, the number of packets 15 Y, after the
completion of service:

Xi _ Tlsink 7\1 (4)

Therefore, packets queue length of node i is QL**
which 1s difference between the number of effective arrival
and leaving and minus the number of packets bemng
processed.evaluation is critical to analyze multiple sinks
load condition and select the best suitable sink with load
less than the threshold limit set for efficient data
transmission and processing.

Delay: Delay is the time taken by the packet to traverse
from sender to receiver. The advance node evaluates
measurements subject to end-to-end delay constramt for
all sinks in the network. Let us consider a scenario
where M sensor nodes collect observations from the
surrounding environment. Sensor events (i.e., data packet
arrival) 13 modeled as an exponential mter-arrival times
with rates where m =1, 2, ...., M. We assume that the
consists  of and data packets
transmitted.

In general, both control packet armivals and data
packet arrivals are assumed to be poisson distributed with
rates Arival,,o pe AMVAl pypn = 2 omes Y TeSpectively. Sink
node has facility of two priority queue, one for processing
the control packets and the other for holding and
processing the data packets. Let us consider high priority
is given to control packet queue compared to data packet
queue. In certain emergency cases, data packets are
scheduled and processed using high priority queue with
probability (1- p,). The proposed work considers both data
and control traffic arrive from source to sink. Since, there
are two different types of traffic and two different prionty
queues, the total rate of high-priority traffic Ty, (and low
priority traffic (T,.,,) given by:

network control
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- 1 Advance Node Sink
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End-to End Delay (0)

Fig. 5: End-to-end delay between sensor node and sink in
ILP LBDP approach
T, = Artival + (1-pty* Amival o, (6)

controlpacket

= prAmVal by, 9

low

To ensure that the Poisson property of traffic is not
severely disturbed, we assume that V<< 1/T,,+T,,. In
other waords, the mean mter arrival time of traffic 1s much
larger than mean vacation time (V,) where i represents the
ith node. In order to maintamn a predefined QoS3, the
expected delay experienced by each data packet since its
transmission till it reaches the sink node must not exceed
a predefined threshold «delay. Therefore, a data packet
with a cumulative delay exceedin adelay upon arrival to
the sk node will be dropped (Fig. 5).

Thus, if D be a random variable that stands
end-to-end delay, then the probability of dropping a data
packet at the sink node is given by:

Packet =Pr {D = May} (8)

blocking

Overall average delay is given by:

Delay, ., = Packet Amvarll Packet,,
Where:
Packet,;,.s = The time when packet ‘i” reaches the sink
Packetg,,, The time when ith packet leaves the

advance node
‘n’ 1s the total number of packets mentioning that the
objective is not to minimize packet dropping probability
but to select an efficient sink which has the least delay to
mnitiate data transmission and block data transmission to
those sink that viola pre-determined end-to-end delay
threshold at a particular mstant of time.

Distance: In our approach, distance between the advance
node and sink node for evaluation.

Implementation of ILP-LBDP using linear programming
model: Implementation using linear programming model
for suitable sinks selection using ILP-LBDP 15 illustrated.

Input: The number of sensor nodes s and advanced nodes Al number
of sinks N (the process.
Initialize first, ., = 0; i = 1; second, ., =; j = 1 for set of Sx nodes
Applying upperbound cut (Bk) to set of s nodes *compare
Upperbound threshold limit to the number sinks*/
if (sink’s bt <Upperbound cut (3,) then
/*Store the 115t Sf sinks separately in a list and increment
the counter®/
Store S below;, data; /* number of sinks selected within
this threshold*/
Set first, o= first, . +1;
1=i+;
f*Check for the number of sinks greater than the
threshold limit*/
else if (sink’s b =Upperbound cut 3, then
Store Sabove, 5ata;
# number of sinks selected above this threshold*/0
Set second,q e = secondsamit1;
end
*Threshold limit re-adjustment until 5026 of sink
is achieved®/
if second, e =1 then
R-adjust the Upper bound cut value (3,47) of the sink
Repeat the process
i=itL
Until j< second;m
MContinue until sinks (i.e., 5096 of sink) is
achieved */
end
end /*end of for loop®/
Repeat the process until 50% of sink selection is
achieved.

Output: The set of g nodes selected after applying
Upperbound cut () ¥
Input: The set of Sm‘ nodes identified after applying
upperbound cut ([3) 1 if'given as an input to the Sub Problem
(SP).
Gets the count (sink, ) of sinks
Tnitialize (test,,,) =1=1;
if sink, e 1 then
Repeat for each sink node g/ Compare the
mumber of sinks with Lower boufid limit */
it (sink’s bl <Lowerbound o,
&& (sink’s d H <Lowerbound o)
Store Sink; g data
Set (testoyn) = (testonm) +1;
end
I=1it1;
Until 1 sink,ome< 5 /* continue for all
gink i.e., all Sinks are processed */
end
Get the count ((test,.,,)) in order to select best sink
node among (test; p) /* Efficient Sink selection */
Tnitialize select .y 0 j =1;
it test g =1 then Adjust the Lowerbound cut value
(ct.pr) of the delay parameter according to their value

elseif ¢ (nodes distance
5 ¢ (Sms<u’ad_|DL)
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i P
(5; nodes delayf, < a%gsink (Oyg: /*Store the sink

satisfying adjusted lowerbound limit*/
Select, . = Select 1
End /* Re-adjustment of lowerbound limit in order
to choose most optimal sink*/
if Select; s> 1then Re-adjust the Lowerbound
cut value (ot,qp ) of the parameter according to their value
Repeat the process
J=itL
Until j<8elect,,, /*Continue until
optimal sink is selected®/
end
Repeat from step 1 using step 2 until an optimal sink
is chosen by the advanced node.
Output: An optimal sink (O, is selected after the iteration
process

At first step, the problem identification is initiated.
Consider the Problem (P) where indicates selecting most
optimal sink among multiple sinks for successful data
transmission Using ‘P°, construct Master Problem (MP)
with initial set of constraint (load). Set Upper bound
Threshold Limit (Up ) for the buffer size of t queue at each
sink. The Upper bound Threshold Limit (U, ) gives the
mumber of data packets in the queue buffer which is
processed at each sink at that instance of time. Sink with
current load status less than upper bound is filtered for
further processing. Subset of sinks derived 1s at first step,
the problem identification is Problem (P), where ‘P’
electing most optimal sink among nks for successful data
transmission. Master Problem (MP) with mitial set of
constraint (load). Set upper bound) for the buffer size of
the queue at each sink. The upper bound threshold) gives
the number of data packets in the queue buffer which is
processed at each Sink with current load status less than
upper bound is filtered for ssing. Subset of sinks derived
15 further processed using sub-additional constraints
(delay and distance) using lowerbound limit (lowerbound
limit (o) to set of “g. nodes, the algorithmic steps
mvolved for selecting the most optimal sink 1s illustrated.

Mathematical evaluation for deriving the most
optimal sink among multiple sinks is done considering the
current state of the constraints at a particular instant of
time. Generate a m>n matrix, where ‘m’ indicates the
constraints (load, delay and distance) and ‘n’ mndicates
the number of sinks (S,-S,). Assume the following
scenario, where one or more sk satisfies the criteria
(condition for selecting the most optimal sink), then
priority for selecting the best sink for data transmission is
given to the sink that has the least delay, load and LBDP
computes the column Fig. 6, using the algoritmic process
to predominantly verify if there exists a column that
satisfies the preset condition, ie. (sink’s §b, <@,,) and
(sink’s I <C,,) and sink’s & min). where gpi is the ith

S, S, S, 8, S, S, S 8,
‘ v, |jaes | A | dr

Delay dlzk-:":__ dr, Delay

Load |: b, | Qb [ QbL{ Qb', | Load| Qb, [ Qb { Qb [Qb',

Disrance | } Distance| py!
! .

Fig. 6: Column matrix for sink selection using ILP_T.PDP
scheme

sink node’s queung buffer value for considering
overloading factor and 1 sink node’s delay and sink with
minimum distance (& min). Column that satisfies the
criteria will be sink selected for data transmission

Thus, the advance node selects the most optimal sink
1n the network using the ILP-LBDP. Thereby, the route 1s
established from the source to the sink.

Data transmission phase: Data from senor nodes are
collected by their nearest advance node. The advance
node acts as a local repository to temporarily store data
collected from multiple sensors. After data collection
(Kui et al., 2013) from sensor nodes, advance node
performs additional services such as data fusion, data
aggregation (Ii et al, 2013; Li and Wang, 2013;
Zhao et al., 2014; Xu et al., 2015) and interpretation
techniques and disseminates it to the optimal sink. Sink
upon receiving the data updates it to the centralized
DB. Sink being the back-end centralized control system,
consistently synchronizes data received from advance
nodes over time to its central repository. This centralized
control system 1s crucial and 13 therefore also an essential
part of preventive maintenance. Maintenance measures
are proactively invoked at an early stage based on the
data collected. The collected information represents a
vital source of big data for the statistical and research
(e.g., detecting faults) activity.

RESULTS AND DISCUSSION

This research proposes a co-simulation framework,
COSMO which combines the strengths of two different
tools, namely MATLAB and OMNET-+ to produce more
realistic simulation results. The MATLAB environment 1s
used for modeling the power management system and for
data visualization while OMNET++, a precise wireless
sensor network simulator i3 wsed to implement the
commurncation protocol layers and simulate the network
behavior. Both MATLAB and OMNET++ are run
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Table 1: Simulation parameters

Parameters Values
Deployment type Random
Area size Topology
Number of nodes 10x10 km
Radio range 15m
Transmission range 250 kbps
Buffer size 25 packets
MAC layer IEEES02.15.4
Simulation rounds 1000-3000
1010
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Fig. 7: Network scenario of TP implemented in OMNET+H+

mteractively and exchange data using sockets. Using the
new co-simulation platform, it 18 possible to simulate the
network behavior for several weeks, months or years
using the environmental data of a specific location in the
world, hence easing the design of a wide-range of novel
58deployment scenarios. Performance analysis was
conducted taking into consideration the existing MSLBR
scheme. Simulation parameters considered during
experimental process is shown in Table 1. Simulation
setup considers a Wireless Sensor Network 10x10 kim area
were sensor nodes (varying from 100-500) are randomly
deployed. Multiple sink nodes deployed at most
appropriate location (within or outside the sensor node
deployment area). Gateways or Special nodes were
randomlydeployved within the network area covering most
of the sensor nodes. The simulation iteration was varied
from 1000- 3000 based on the density of node deployed in
a given area. Figure 7 depicts the network scenario of
ILP-LBDP implemented in OMNET+simulator where
Sink2 and Sink4 are overloaded.

Delivery rate: For analyzing the packet delivery rate in
diversified set up, the link loss rates were randomly set to
be between 0 and 20%. Simulation was triggered
considering randomly chosen sensor node to act as
source that tends to generate message and let it send
message to the highly powered advance node on varied
time slot. Each advance node used buffer to cache

1007 . MSLBR scheme
-+~ ILP-LBDP scheme
90 -+
< 80
8
s
5
2
< 70 4
a
60 -
50 T T T T 1
200 250 300 350 400 450

No. of nodes
Fig. 8 Average delivery rate

packets sent from its nearby sensor nodes. Advance node
then imtiates the ILP-LBDP to find the most optimal sink.
Analysis was done tlrough dynamically filling sinks
node’s queue with data (varying from 10-80%) occupation
that accounts for load factor.

The simulation results shown in Fig. & shows that
ILP-LBDP can guarantee the desired delivery rate after the
network den reaches a certain level. This is because with
the increase of networlk density frequency of the advance
node executing the proposed algorithm also increases
which in-turn reflects in the selection of appropriate sinl,
indicating higher chances for a message to get delivered
to the sink successfully. Additionally, TLP reach the
desired delivery rate earlier than existing MSLBR scheme.
After the network becomes dense enough, for example,
with >>250 nodes in the 99% desired delivery rate setting,
existing MSLBR delivery rate will continue mncreasing but
for TLP rates will keep at the 99% desired delivery rate
level.

This is because ILP-LBDP satisfy the desired
delivery rate through optimal sink selection proces
such as load and delay during the route discovery
phase.

Control message and packet replication overhead: The
major improvement of TLP LBDP over existing MSLBR
lies in the control message overhead and the packet
replication overhead as shown in Fig. 9. The major
improvement of ILP- LBDP over existing MSLBR lies in
the control message overhead and the paclket replication
shown in Fig. 9a, b). Figure 9a the packet replication
overhead of TLP is substantially less than that of existing
MSLBR and the reduction in control message 8a average
control message overhead. eplication overhead. The
packet replication overhead of ILP-LBDP is substantially
less than that of existing MSLBR and the reduction in
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Fig. 9:a) average control message overhead and b)
average packet replication overhead

Table 2: Performance comparison with proposed TLP-LBDP and MSLBR

scheme
Transmission
Latency Latency overhead
Scheme commnode comm gw sink (bytes)
Existing MSL.BR 8.009 sec ~7 sec 1724
Proposed ILP-LBDP 5.001 sec ~7 sec 1178
Proposed ILP-LBDP 21 0 29

improvements

control message overhead in ILP-LBDP is also large even
with their initial overhead This indicates ILP-LBDP
processed by special node can save a lot of overhead
during selection of sink node by identifying the sink node
proactively at an earlier stage compared to the existing
MSLBR technique.

Transmission overhead: As discussed before, once
optimal sink selection through linear programming model
using ILP-LBDP is completed by the gateway node, the
sensor Node initiate data communication to the sink via
the gateway. Data transmission over size constrained
IEEE 802.15.4 radio links, the messages must be
additionally split into several packet fragments due to
their extensive message size of 16. Transmission overhead
comparison was done between the proposed ILP-LBDP
scheme and MSLBR scheme. As referred m Table 2 the
measure transmission overhead of the MSLBR scheme
was 1724 bytes which cause m total of 28 packet
fragments for the complete transmission of all messages
from sensor node to the sink. In contrast, for the
proposed TLP-LBDP scheme the measure transmission
overhead was 1178 bytes and it cause 17 fragments
totally. As the result, from the analysis it is found that the
transmission overhead in the proposed ILP-LBDP scheme
reduces by 29% compared to the existing MSLBR scheme.

Communication latency: Latency is defined as the time
required from sending a request (from sensor node) to

confirming the response (advance or gateway node)
between two peers. This metric 13 vital for time-critical
applications such as tactical battlefield domains. To
estimate commumication latency, the time which is
spent from sensor node to the sink (Letency™",.)
(1s calculated).

This processing time deduced from the summation of
communication latency from sensor node to gateway
(Letency™™ and from gateway to the smk

nDdE_gW)
{Letency™™,, 5.) which can be written as:

commn corm corum

Letency, ..~ = Leteney, . + Letency "o

In this work, to compute the communication latency
from the sensor Node to gateway and from gateway to
sink, MATLAB script was employed to track the time
taken between each requests and respomnses. According
to our analysis, the proposed ILP-LBDP scheme achieves
an almost better latency, it takes up to ~12 sec for
complete commumnication. However, the existing MSLBR
approach required communication time upto ~15 sec for
complete communication. As shown in Table 2, the
latency required for communicating between the sensor
node and gateway was about 4.008 sec for the proposed
ILP-LBDP approach whereas this time increases to about
8.009 sec in existing MSLBR scheme while the latency
time taken for communicating between the gateway and
sink was about approximately, 7 sec mn existing scheme
and approximately, around 6 sec in proposed scheme.
Thus, regarding the latency from the sensor node to the
gateway, the proposed scheme obtains about 21%
improvement compared to the existing approach.

CONCLUSION

Multisink WSN with [LP-LBDP 1s implemented in the
statically distributed special nodes for effective load
balanced data gathering in military applications. Using
constraints such as the load, delay and distance, the
advanced node links to multiple sink by analyzing the
existing route path, its congestion ratio, load factor, least
cost route, delivery ratio, energy constraints etc.
Simulation and experimental analysis shows that the
proposed protocol can be deployed 1n a large scale sensor
networks to maintain a higher network lifetime and
distributed  load  balancing.  Innovative  linear
programmable network communication method and
dynamic link or topology formation with special nodes are
the novel factors of improving the data-gathering, a
mission critical factor in Military DAQ (Data Acquisition
System) systems. A similar scheme shall also work well for
“mobile” sink scenarios with parallel reconfigurable
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methods to yield fruitful results. Moreover dependability
and reliability of “micro-mobile” sink in WSN is a vital
challenge that we are looking ahead.

NOMENCLATURE
St = ith sensor node among “k” nodes
Qb = ith sink node’s queue or buffer value
dE, = ith sink node’s lower bound delay used i sub problem
Baar = Re-adjustment of upper bound value
By = Upper bound cut value
e = Lowerbound cut value
SEy = ‘p’”sink node’s delay
aaDL = Lower bound value adjustment for delay factor
Oy = Optimal sink node
Sink;p = Number of sinks satisfying lower bound lirnit
Sink,,.; = Sink node counter
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