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Abstract: The grid computing 1s a flavor of distributed computing. It collects and coordinates resources across
the administrative domain. The heterogeneous resources turns grid scheduling as challenging one as it has to
deal resources with different resource behavior. So, the scheduler in grid environment has additional
responsibilities than any other distributed environment scheduler. This research aims at mmimizing the total
tardiness of the schedule as it 13 directly proportionate to the cost of computation. A composite dispatching
rule with heuristics to solve the grid scheduling problem is presented here. The first part of the study narrates
about the composite dispatching rule I-ATC which is acombinationof Apparent Tardiness Cost (ATC) and
Weighted Minimum Shortest Processing Time (WMSPT). I-ATC is an attempt to favor the early submitted jobs
with along due date or with relatively low priority. These jobs may incur either early tardiness or lateness by
the traditional dispatching rules. Later part of the study deals with the combination of I-ATC with Tabu search
heuristics.
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INTRODUCTION

Grid computing become a new era in computing
technologies because of its ability to provide huge
computing power and infrastructure less computing
facility. Tt was coined in the middle of 1990’s to enable the
resource sharing. The 1dea of grid computing 1s conceived
and established in by Foster and Kesselman (2003) and
Shah et al. (2011), he defines a grid as” grid computing 1s
coordinated resource sharing and problem solving in
dynamic, multi-mnstitutional  virtual orgamization”. It
enables on-demand resource sharing, a federation of
diverse distributed resources and coupling scientific
instruments with remote nodes. Grid combines and takes
advantages of parallel and distributed computing
technologies. These two existing systems are less
synchronous and less accurate and incur more
communication delay.

Grid computing provides resources with good
synchronization and more accurate with less delay.
The grid computing manages both parallel and distributed
hardware, allows applications to aggregate and use
distributed resources on demand. It has the following
challenges while managing the distributed resources;
they are autonomy, diversity, policy, manageability
and controllability.

Literature review: The grid scheduler plays a vital role in
optimizing the resources usage in grid netresearch along
with the ensuring Quality Of Service (QoS) for the user.
There are many researchers recorded their effort in
minimizing the makespan, we here concentrated in
minimizing the tardiness of the job. The makespan is the
amount of time taken to complete the schedule or the time
in which the last job is completed. The tardiness is
another important aspect in job scheduling where lateness
of each job 18 measured. Maheswaran et al. (1999) eleven
heuristic algorithms used in distributed environments are
compared, these algonthms mnclude Minimum Completion
Time (MCT), Minimum Execution Time (MET), K-Percent
Best (KPB), Opportunistic Load Balancing (OLB), etc.,
concluded that min-mmn gives a relatively better
performance. GA give better performance always for any
heterogeneity applied, Min-min performs 12% of GA.
Matsumura et al. (2007) R3Q algorithm is proposed which
1s an attempt at RR classification which combines the list
scheduling with replica round robin.

The task scheduling algorithm disused in
concentrates in  parameter-sweep  application  in
computational grid (Fujimote and Hagihara, 2004). This
study mtroduced a Total cycle consume Processor Cycle
Consumer (TPCC) represents the total computing power
consumed by a parameter-sweep application. A dynamic
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scheduling algorithm RR with TPCC is used At the
beginning of the dynamic scheduling by RR, every
processor 1s assigned exactly, one task, respectively. If
some task of the assigned tasks 1s completed then RR
receives the result of the task and assigns one of yet
unassigned tasks to the processor.

Tseng et al (2009) i1s an attempt to combine
traditional machine scheduling algorithm Apparent
Tardiness Cost with Setups (ATCS) along with MCT. She
concluded that the new algorithm give better makespan
and tardiness. This 1s a novel attempt to make use of
machine scheduling algorithms in the grid environment.
Pfund ef al. (2008) ATCSR 18 proposed an algorithm
which 15 an improvement on existing ATCS (Pinedo, 2008).
They have incorporated ready time of the jobs, calculated
using the uniform probability function with the range [dj-
r-sxpj, dj], If [dj-r-s xpj] is <0, a range of [0, dj] is used for
ready time generation. Tabu Search (T'S) heuristics with
hybrid neighborhood

Along with dynamic tenure is proposed by Goswami
et al. (2011). Where it is applied for single machine total
welghted tardiness problem. Eventually, such problems
consist of mdependent tasks with priority, completion
time and discrete processing time. The initial solutions
were obtammed from EDD, WSPT, R&M, R&MH+
algorithms.

A local search bases scheduling approach by
Goswari ef al. (2011) i1s an attempt with simulating
annealing which acts as an optimizer for dynamic,
schedule base, space shared scheduling policies. Tt is
proven that SA can possibly converge a best solution. On
each iteration, a machme 1s chosen randomly and a
ravenous job is removed randomly from that machine’s
schedule. If the optimizer finds a suitable gap, annealing
criterion 18 computed. The decision 13 computed which 1s
a function of the difference between the start time,
slowdown and standard deviation. If new decision is
greater than zero then annealing takes place. Etminani and
Naghibzadeh (2007) min-min and max-min meta heuristics
are analyzed and concluded that any of these algorithm
can excel in a environment depending on the total length
of the tasks yet to assign.

In an assumption if the execution environment has
single large task and fewer small tasks, the max-min
heuristic will execute the large task first and switch over
to the smaller tasks concurrently with large task. On other
hand, min-min executes all small task first and then the
large task. This approach max-min results with better
makespan, resource utilization and load balancing. There
are many nitiatives in using Tabu in the schedule
optimization (Chen et ai., 2008, Beausoleil, 2011).
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The Hybrid Scheduling algorithm (Shah et al., 2011)
titled dynamic multilevel Hybrid Scheduling algorithm
using median (MHM) computes the time slice dynamically
using the process time of all process available in the ready
queue. The Hybrid Scheduling algorithm using square
root (MHR) calculates the time slice dynamically by
caleulating the square root of average proceeding time of
tasks in the ready queue.

Problem definition: An independent task scheduling was
taken up here, adapted to a non preemptive scheduling
property. There are m machine employed each equipped
with n processing elements (cores) where nem. The
execution environment is represented by triplet o|p|y
(Graham et al., 1979):

EVViTi

The first part of triplet denotes heterogeneous
execution environment. In the part, the parameters that are
important for making the decision 1s symbolized. The r,
and d,, the represents arrival time and due date of task i.
The objective function is being denoted in the last part
which to minimize the weighted tardiness of task 1.

MATERIALS AND METHODS

Framework and notation: In this research, we have dealt
with mdependent and non pre-emptive grid task
scheduling. Fach Gridlet (Gi) submitted to the
meta-scheduler has a processing time pi, arrival time ri,
due date di and a weight, wi. The completion time of the
job 1 1s denoted by C1 and tardiness of job 1 i3 denoted by
Ti. The completion time of the job i is denoted by Ci and
tardiness of job T is denoted by Ti. The lateness of the job
1s formulated by:

L; =C; —d; (2)

1 1 1

The value remains negative for early completion and

positive for late completion with respect to their due
dates.

Ti :max(Ci—di,O) (3)

L; =max(L;,0)=T; (4

The make span is time of completion of the very
last task m the job queue. It 15 models as max (C, ...
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C,) where C is completion time of tasks. The minimum
makespan is an evident for good machine utilization.

The proposed algorithm

T-ATC: The composite dispatching rule Improved ATC
(T-ATC) is an attempt to take the advantage of both the
algorithm ATC (Foster et al, 2001) and WMSPT
(Vepsalainen and Morton, 1987). I-ATC algorithm
attempts to use the arrival tume of the job 1 to decide the
ranking index of i. I-ATC makes a profit out of look ahead
parameter to decide the index. We have used the range
factor R and due date tightness factor T to calculate the
value of look ahead parameter . The look ahead
parameter ¢ acts as a due date scaling parameter:

_ dmax—dmin , ¢ p frR <05
Cmax (5)

o =6-2R,forR > 0.5

R

oP,

1(t) _(mﬂx(di ~Pi ri:Pi)} (6)
avg

The I(t) denotes ranking index at time t which i1s
calculated using Eq. 2 and due date tightness 1s selected
using Eq. 1. Tnitially, the jobs are collected in the schedule
queue G. The composite dispatching rule I-ATC
presented in Alogrithm 1 arranges the gridlets in
the non-incrementing mmdex and allows the gnidlets to
execute considering arrival time, process time, due date
tightness. The due date factor 1s not changed with the
previous position of ATC. Though, the weights of the
gridlets are not considered, it does not affect the objective
function much. Each gridlet submitted by a grid user is
collected in the queue of meta-scheduler. The index
values of each grid job are calculated and tasks are
arranged 1n a non-decreasing order with respect to index.
The scheduler searches for as suitable resource to execute
the gridlet i. If the resource 11 is suitable for executing job
i, the scheduler checks whether the amount of processing
power available 1s suitable enough to execute the job. If
50, the job 1s dispatched to the corresponding resource
queue for execution. The local resource management
elements monitor the progress of job and report to the
grid level monitors.

Local search based scheduling model: Tabu search is a
heuristic method which has a propensity to optimize the
problem iteratively to uphold the solution m hand. The
Tabu search is a computational method that optimizes a
problem iteratively trying to improve a candidate solution.
Tabu makes fewer or no assumptions about the problem
on hand and searches very large solution space. It uses
a combinatorial optimization in which the optimal seolution
1s over a discrete space.

Tabu search is applied to the schedule which is
already sequenced with T-ATC. Tabu search based
heuristic is tabulated and presented in Alogrithm 1. The
incoming jobs are placed in the queue of the
meta-scheduler and [-ATC algorithm 15 applied there. This
[-ATC index serves as imtial solution SO to the Tabu
search heuristics. The neighborhood lists are created.
Swap-based moves are employed, the adjacent jobs are
swapped to get the neighborhood structure after
evaluating the moves. The Tabu temure 1s used to
disallow the repeated moves happemng 1n the
neighborhood structure. The mtensification is applied to
explore the search space more thoroughly to get the
optimal solution.

Neighbourhood list: The neighborhoods are generated
using pair wise swap based moves. The swap move
interchanges the location two jobs x and y. On each
iteration, two adjacent jobs are swapped and the moves
are evaluated on the basis of tardiness function. In each
neighborhood N(x) there are n(n-1¥2 swap moves where
x denotes current permutation solution. If the tardness
after the job swap 13 less than the older one and the
moves are not in Tabu list that neighborhood 1s
considered as local optima.

Tabu tenure: The Tabu list consists of move that yields
the good neighborhood structure. Tabu tenure defines
the number of moves to be available in the Tabu list.
However, this Tabu list protects the search from revisiting
the previous space again and again.

Intensification: Intensification allows the search space to
be explored more thoroughly to get an optimal solution.
Here, we define intensification through iteration of the
search. The new variable called sint is initialized, on every
onnen-improved iteration this sint in incremented by one
after a threshold level, the jobs which involved in
non-improvement are again sequenced using I-ATC and
replaced in the queue.

Alogrithm 1; local search based model algorithm:
/Mnitialization
Let S be the schedule
Resource R = {R,R,...R,}
Resource Schedule RS= {RS,, RS,....RS,}
G = global queue of unmapped jobs
Job i={i), i i ..., iy}
80 =Initial schedule
Shest = best solution
ASP = aspiration criteria;
/f New Incoming Jobs (I-ATC Index)
Foreachjobi=0ton
Calculate the due date range factor
Cmax =max {C}, Cy... C)
R = d max-dmin/Cmax
Calculate I-ATC ranking index
Insert job 1 in schedule S such that
ffapply Tabu Search
80 =TInitial schedule

{o=i=j}
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Let SO=§;

for n no of iterations
Asp = Tardiness of s;
for (size of 8)

{
Neighbourhood Nsi = swap [, j) from S0
evaluate NS;
let local best = Tardiness of NS,
if (local best >calculate tardiness of
Ns; and I, j are not in Tabulist)
then
localbest =calculate tardiness of WS;
else (i continuous non-improvernent moves)
sint ++;
If (sint=5)
{
Remove jobs jigmtill 1)

(i be iteration number)

Reapply [-ATC
Tnsert new index in place start from i-sint;
} If (local best <asp)
Asp = local best
Tabu list =1, j;
End
/Machine selection

For each jobi* 8
For each resource R,*RK=1 .. n;
Ifjob i executable n Rj K=1...n;
Put i in the RSj for execution
Break;
else continue

As tabulated the S0 is obtained from the T-ATC
ranking mdex. The tardiness of the current schedule, 1.e.,
S0 18 calculated and assigned to aspiration criteria for
optimization. For the defimte mumber of iteration, the local
optima in calculated.

On each iteration for a total number of jobs in the
schedule, the local optimal solution is found The
neighborhood generated by swapping
adjacent moves 1, j. For every neighborhood solution, the
tardiness is calculated and it is compared against the local
optima. If the moves are not in Tabu list then the local
optima are confirmed. Then, the local optima are compared
with the aspiration criteria which is global optima when
local optima are lesser than a global one then current local
optima are taken as aspiration criteria.

solution 18

RESULTS AND DISCUSSION

The I-ATC with Tabu search rule for gnd
environment has been tested under the simulation
environment created by Alea 3.0. We have used Intel
Pentium core I3 processor, 2.8 Gz and 1 GB RAM
processor. We have taken meta centrum research load
traces with 5000, 10000 gridlets for simulation. These
research load traces were publically available at grid forum
for experimental purpose. The meta centrum research load
traces contains 90000 traces in it, it also supplied with
machine failure scenario which helps to realize a realistic
grid environment.

Figure 1 shows the comparison of various algorithms
on different job loads. The amount of jobs 15 like
5000, 10000. The Tabu base I-FATC out performs i1 all the
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Fig. 1: Comparison of algorithms with different work load
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Fig. 3: Detailed analysis of tardiness performance

aspects of the comparison. The makespan does not differ
much in our algorithm with other bench marks. The
makespan and tardiness are important measures of
schedule. The makespan is the measure of the efficiency
of the schedule whereas tardiness 1s the measure of due
date performance. The makespan may be identical on a
schedule but tardiness will not be so. The tardiness has
an impact in deciding the cost of computation. When
tardiness reduces the computation cost will also be
reduced considerably.

Figure 2 show cases the tardiness analysis. The
tardiness of FCFS algorithm is 3151 sec whereas our I-
ATC with Tabu could produce 1.6 sec tardiness which is
lesser values compared with any other benchmarks.

Figure 3 brings the better visualization of [-ATC with
Tabu algorithm, the tardiness is tremendously reduced
compared to FCFS and EDF closely competing with
conservative backfilling. The chart also shows the
comparison between the base algorithms of I-ATC and
performance withl-ATC with Tabu. The I-ATC with Tabu
algorithm 1mproves tardiness performance by 68%
compared with traditional EDF and 60% compared with
easy conservative algorithm. The best performer
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Fig. 4: Flow time analysis

comservative backfilling performs 10% lower than I-ATC
with Tabu algorithm. It i1s observed that on some
algorithm performance the tardiness produced on 10000
job load 15 <5000 job load. This 15 because of the rapid
changes in the grid environment, machine availability and
requirements of jobs being submitted.

Figure 4 shows the flow time comparison of the
algorithms. The flow time is another important objective
function of scheduling algorithms that represents the
responsiveness of the schedule and algorithms. As the
chart represents the I-ATC with Tabu gives abetter
response when compared with other algorithms. As the
chart represents [-ATC with Tabu 1improves
responsiveness by 12 and 11% when compared with FCFS
and EDF rules. It also improves 11 and 10% when
compared with easy and conservative backfilling
respectively; its performance is improved by 12% when
compared with base ATC and WMSPT algorithms.

Composite rule [-ATC umproves the responsiveness
of the schedule. It concentrates, the due date, process
time and arrival time into account while calculating the
ranking index. The rule gives chooses the early submitted
job with longer due range. The existing rules estimate the
ranking index based on the current time which favours the
short jobs and low due range jobs. The FCFS blindly
favours the early jobs which make the schedule worse in
makespen and tardiness analysis.

The wait time for the jobs in the schedule is compared
in Fig. 5. It is shown that this Tabu search based
algorithm could produce low wait time for jobs compared
with all the other benchmarks. The improvement is 23%
when compared with FCFS and 20% when compared with
EDF and WMSPT, ATC algorithms. The easy and
conservative backfilling produces lugh wait time for jobs,
it 15 measured 17 and 16% higher wait time when
compared with those two algorithms, respectively.

369



Asian J. Inform. Technol., 15 (2): 365-371, 2016

35000 4

% B 5000 jobs = =
31054.42 2 B10000 jobs = 3
30000 - 3 S S
S o N
3
25000 &
(e
3 20000
Y
=]
£ 15000 A
10000
5000 -
0- 177) 29 oz v = @) =
> o0 =
o) 5 .§ 2 <5 & g zz
= = z iz = SR
SRS 2y = B =
£3) =9 <
c = .h
O o
No. of jobs submitted
Fig. 5. Wait tume analysis
- 1 2062 1
350731584 1289 58000001  m5000 jobs (4720626)@ 10000 jobs (5660777)
: 5600000
300 :15888 OJ‘_"’; 5400000
= 2507 S Jobs 35200000
- 1Z)
-§ 150 1 BE tg 5000000
2 100 © i 5 = 4800000
@ I I 4600000
4400000
4200000

% P 2 = &) 5

5 =) g 2 o = =
= o o .£ S = 2] < z 3
PE  EE k|
3 2 E =

SR <

o ° -

No of jobs submited

Fig. 6: Slowdown analysis

Figure & shows slowdown imposed by various
algorithms. The slowdown is a performance degradation
faced by the cluster being shared by other application.
The slowdown factor 1s a normalized frequency which
determines the process speed at therun time. The Tabu
implemented I-ATC has imposed a very low slowdown
when compared with other algorithms.

Figure 7 show cases the algorithms malkespan
performance under 5000 and 10000 job submissions
respectively. Every algorithm performs equally under 5000
job submission scenario and only easy backfilling
produces trivial improvement on submission of 10000
jobs. Tt shows 10% improvement when compared with
other algorithms.

Figure 8 represents the runtime performances of
algonthms. Smce, Tabu takes several rounds to decide
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local optimum then global optima are found among local
optima, 1ts run time 1s always lugh. This fact 1s reflected in
Fig. 8. Tabu associated algorithm takes higher run time
when compared with any other algorithm. Tt is noted that
on varying nhumber of rounds in global optima, selection
does not have any impact on run time of thealgorithm.
The CPU load does not have any impact on the run time
of Tabu associated algorithm. The easy backfilling has
higher run time when compared with other algorithms
except [-ATC with Tabu algorithm. It shows variations in
the run time when the load 1s varied.

CONCLUSION

The computational results are compared with various
benchmark algorithms and excellence of our algorithm is
show cased in the results and discussion study.
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