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Abstract: The objective of the proposed work 1s topredict the heat absorption pattern of boiler elements
through multiple linear regression analysis. This regression analysis determines the correlation exist between
the operational parameters such as coal flow and burner tilt with related to heat absorption. The different
regression co efficient were derived and used for prediction. Through regression model, the heat absorption
for all thermal components 1s predicted. The prediction was performed for three different grades of coal with
varying loads. The predicted values are evaluated by comparing it with optimal values for determimng its
accuracy. The regression results that representing the predicted value, targeted value and error rate are
visualized independently for all coal fired boiler components.
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INTRODUCTION

Thermal power sectors are demanded to perform
boiler combustion optimization to improve power plant
efficiency and fuel consumption. Infinite numbers of
optimizing methods are emerging but the analytical
models are proven as a powerful methodology. An
analytical model provides meamngful mformation that
guides to support in decision making process. An
analytical model helps to define performance metric of a
complex systems.

Boiler combustion process needs to be optimized
with appropriate technique frequently with suitable
operational parameters (Wu et al, 2014). Data
drivenmethods are stated as the process of extracting
hidden patterns as well as predicting trends from large
volume of data by generating repeated queries.
Visualization techniques makes visual understanding of
data, patterns and trends from the emission of leading
thermal power plant (MdFazullulas and Ready, 2014).

The various factors result in producing disturbances,
that affects the performance improvement of power
generation sector are listed as technical change, technical
efficiency change in-stability m manpower, political
intervention, unplanned operation, scale change and the
process result in major errors (Fatima and Barik, 2012). All
the evolutionary computing techmques are having
capability to optimize complex systems with selected
variables and exhibit similarities and difference with
other based application  domain

each on the

(Kachitvichyamlaul, 2012). The general objective of
evolutionary methods is defined in terms of common
characteristics and its differences are summarized based
on computational procedures with respect to ndependent
algorithms (Malhotra e al., 2011).

Data extracting algorithms are employed to construct
predictive models suitable to perform fault diagnosis
prediction, specific fault prediction and identification on
unseen faults. Robustness of the model is validated for
faults that have occurred on turbines with hidden data
(Kusiak and Verma, 2012). The relationship between
energy consumption and power plant process procedures
are measured with some crucial operational parameters.
Standard control settings derived from optimization of the
model that mimmizes the consumption at an accepted
level. Optimizaton approach provides feasible
solutions with different preferences (Kusiak and
Verma, 2011, 2012).

The applications of datamining techniques for
identification and prediction of status patterns in wind
turbines are confidently presented. A prediction model
was built using operational and status data collected at
working environment and different analyzing technique
were applied to derive required pattems (Kusaik and
Varma, 2011). Power optimization objective is
accomplished by computing optimal control settings of
wind turbines using data mining and evolutionary
algorithm strategies. Computational study included major
operational parameter needed to perform optimization
(Kusialk et al., 2010a, b). Power system state monitoring
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and fault diagnosis application with high volume of
operational data through data mining analysis and
reasoming algorithms proved with method fitness to help
and mmprove decision support process in all power plant
aspects (YueShun and Qiulin, 2009).

Hybrid combination of evolutionary computation,
data mining and model predictive control forms a new
framework to provide more exact dynamic information
about operational process. Research suggested focusing
on multi objective optimization where more performance
related variables to be considered. Data mining approach
is highly suitable for predicting best patterns applied to
execute optimization of boiler process. Analysis reported
that the importance of a particular operational variable is
not stable. The value of each variable depends on number
of factors in different period of times (Kusiak and Song,
2008; Song and Kusiak, 2007; Kusiak and Zhe, 2006).

Data mining clustering algorithm were applied to
generate control signatures from the sample instances to
improve combustion efficiency. Neural network model
were used to validate the boiler efficiency by using
control signatures. Virtual testing procedure overcomes
the complexities such as cost and time exist in real time
testing (Kusiak and Song, 2008; Kusiak et a/., 2010a, b,
2011). The role of evolutionary computing technologies in
parameter  selection provides guidelines to take
well-formed decisions according to the target specified
(Trelea, 2003).

The boiler operational variables are categorized mto
three groups such as controllable, non-controllable and
response variable. Always the response variables are
correlated with controllable or non-controllable variables.
The plant efficiency 1s defined through response
variables. It 1s essential to identify the relationship exist
between operational variables. Only through the ratio of
correlated relationship between boiler operational
parameters of all thermal components, an attempt can
made to enhance plant efficiency. Efficiency are defined
through boiler elements.

MATERIALS AND METHODS

Multiple regressions: Regression analysis is a powerful
method to perform prediction of unknown value of the
variable from the known value of one or more variables.
Regression method is classified inte various types to
solve the difficulties exist n complex systems. The
effectiveness of each regression categories are based on
the decision made by the user in selecting dependent and
independent variables. Multiple regressions is also stated
as multiple linear regressions and defned as a
mechanism to exhibit the relationships existed between
the domain variables.

Let, Y be the dependent variable that need to be
predicted from two or more correlated variables, 1.e., X,
X oy X Here , X, X,,..., X, are used as predictors and
each of its mdividual impact over the operations are
observed by means of regression analysis. In general, the
multiple regression model was framed based on the below
specified equation structure:

Y =po+plxl+p2Zx2+ - pnxn

Whre:

Y = Predicted vriable
X.X5...X, = Predictors

PO = Intercept (Constant)

PisPa-- pnn = Regression cefficients

The general inference derived from the behavior or
value of regression coefficients are stated as when there
1s an increase 1n the independent variable X that cause to
have increases in the value of target variable Y also.

Multiple regression method follows certain
assumptions, first, it never bothers or examines to
determine whether the sampled data is linear or not. Tt
always assumes that relationship exists between Y and X
15 linear. Second, that Y can predict from multiple
independent variables and 1t 18 not required that
independent variable must relate with each other. This can
be evaluated by determining correlation coefficients
between each possible pair of independent variables. The
basicrepresentation of Y and X is:

Y ={yLy2... ......,yn}
X =(x11x12,.xli)(x21,x22,..x2i)

Though the multiple regressionsis a powerful
methodology, the complexity arises to select the
dependent variable among huge collection of variables in
a dataset. The decision is purely based on certain
conditional assumptions needed to derive a model and
select other mfluenced variables as predictors.The
non-optimal combmations of predictors will not result n
accurate prediction. If the chosen predictors are really
optimal to the operation, then the prediction of actual
target variable using multiple regression method is
accurate. The prediction outcome of multiple regression
analysis supports to design effective model that nvolves
the process of complex systems. The model computes the
error rate € by measuring the difference between predicted
variable a (k) and target variable t (k).

e = t(k)-a(k)

Application background: The thermal power plant mamnly
focuses on the boiler combustion process in defining the
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Fig. 1: NHI-correlated relationship

expected outcome of the plant. The overall plant
efficiency depends on the efficient contribution of boiler
elements. Effective momitoring and enrichment in sub
units helps to attain performance improvement. The boiler
process unit is comprised intovarious elements based on
its functionality. They are integrated with each other
through logical process strategies. The boiler components
are Water Wall (WW). platen, panel and divisional
Super-Heaters (SH), Re-Heater (RH), Primary Air Heater
(PAH), Secondary Air Heater (SAH) and Economizer
(ECO).

The combustion process is the chemical reaction
between coal and oxygen which results in producing heat
n the form of steam. Carbon (C) and Hydrogen (H,) in the
coal are burnt with Oxygen (O,) from the air 1s expressed
in the following equations:

Carbon+Oxygen =CarbonDioxide + Heat
Hydrogen + Oxygen = Water vapour+ Heat

Basically, it 1s not possible to distribute fixed ratio of
fuel and air. This difficulty leads to have an analysis of
correlation exist between operational parameters. The
boiler elements are fumctionally depends on each other in
the form of nput and output flow. The output of one
element can become an input to another element. The
deviation occurs in the process or outcome of one
element will affect the outcome of overall plant.

The combustion process can be graded as perfect,
complete and incomplete combustion. The most important
reason for incomplete combustion is inadequate coal flow,
umproper coal sizing madequate fuel velocity, lack of air
leakage control and mnproper temperature control.

In this proposed worlk, three different grades of coal
(Grade 1-3) with five different levels of load (250, 300, 400,
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500 and 550 mW) were used for performing regression
analysis and results are visualized. The two most
important operational parameters coal flow and burner tilt
were considered as independent variables and used to
predict the heat absorption pattern of all the boiler
elements:

¥, = Coal flow
¥, = Burner tilt
Y = Heat absorption
The Y dependent variable is predicted by using
two independent variables by deriving appropriate

regression coefficients:

Y=p0+ (plxxl)+{p2xx2)+pd

Where:

x, and x, = Predictors

Po = Intercept

P« = The negligible error

The Net Heat Input (NHI) is the ratio of total energy
input to the umt of the net electrical generation. The umt
thermal efficiency is termed as the ratio of the net
generator output to the total heat input of the boiler. The
optimal values derived for all the boiler units based on the
NHI. The derived regression coefficients for all grades of
coal for each boiler elements were estimated. Estimated
coefficients are used to predict the heat absorption of all
boiler elements.

Figure 1 shows the correlated relationship of NHI with
coal flow and bumer tilt. Table 1 shows the derived
regression co-efficient needed to predict heat absorption
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Table 1: Regression co-efficient Table 3: Error rate of heat absorption-300 mw

C Py Py P P C Tk) Ak Er
NHI 1.4154 -0.0045 0.0169 -0.0001 NHI 2.1728 2.3742 -0.2014
WwW 5.0503 -0.0175 0.0332 -0.0003 WW 6.2083 6.8384 -0.6301
ECO 1.06 -0.0012 0.0247 -0.0002 ECO 2.2488 2.5204 -0.2715
SH1 1.8053 -0.0127 0.0107 -0.0002 SHI1 2.0985 23038 -0.2053
SH23 2.7236 -0.0059 0.0296 0.0000 SH23 4.7788 4.4248 -0.196
RH 1.4604 -0.0133 0.026 0.0001 RH 27158 2 8455 01497
PAH -1.3153 0.0462 0.1275 -0.0006 PAH 63523 6.7908 -0.4475
SAH 6.5279 -0.0722 0.1028 -0.0006 SAH 99907 11.8668 18762

Table 2: Error rate of heat absorption -250 mw

Table 4: Error rate of heat absorption-400 mw

C, Tik) AK) Err
NHI 1.8616 2.2435 -0.381¢ & Ttk) Alk) Err
WwW 5.4245 6.5003 .l1se  NHI 28193 27395 0.0798
BCO 1 8799 23240 044D WW 7.9784 7.7062 0.2722
SHI1 17112 2.2309 -0.5197 ECO 3.0416 2.9611 0.0805
SH23 3.7859 41939 -0.4080 SH1 2.8325 2.7059 0.1266
RH 2.2574 2 6708 04135 SH23 5.063 5.0303 0.0327
PAH 5.3117 5.7336 04219 RH 3.513 3.5381 -0.0251
SAH 7.3563 11.1166 -3.7603 PAH 85313 8.1665 0.3648
SAH 15.3343 14.8559 0.4684

—t=2a(k) =li=t(k) err(k)

Table 5: Error rate of heat absorption -500 mw

c C T(k) AK) Err
'ﬁ 2 NHI 3.4532 3.059 0.3942
5o 52 Ww 9.7051 84176 1.2875
ERE ECO 3.9371 3.3761 0.5610
: E 2 SH12 3.538 3.0034 0.5346
g = : SH3 57279 5.5708 0.1571
= n O RIT 4.3009 4.0913 0.2096
= 2 O 4 0 6 0 PAH 11.0063 9.8024 1.2039

(r (t' SAH 20.8887 19.2429 0.6158
Load in MW Table. 6: Error rate of heat absorption-300mw
G Tk) Ak) Err
. . NHI 3.8413 3.29006 0.546
Fig. 2: NHI regression-grade Ww 10.6523 9.0057 1.6467
ECO 4.4873 30181 0.8392
SH12 4.2168 3.2018 0.9251
\
=+=ak) =l=t(k) err(k] ssSH3 61627 5.9503 0.2034
c 5 RH 4.5207 4.5462 -0.0255
-g ” PAH 12.3447 10.4731 1.8716
g o T SAH 23.6997 22316 1.3837
[} g
O n
-
520 e == |
2
r £ ——a(k) =—l—t(k) err(k)
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Fig. 3: NHI regression-grade: 2 v~ 7
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for all thermal compenents. Table 2-6 shows the error rate = 5 200 4d|0 600

exist between actual and target wvalues of heat Loadin MW

absorption. The error rate is negligible based on its impact

over normal operations. Fig. 4: NHI regression-grade: 3

Regression analysis on net heat input: The regression Regression analysis on re-heater heat absorption: The

analysis on net heat inputare given in Fig 2-5. regression analysis on re-heater heat absorption are given
n Fig. 6-9.
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Regression analysis on economizer heat absorption: The
regression analysis on economizer heat absorption are

givenin Fig. 10-13.
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Regression analysis on water wall heat absorption: The
regression analysis on water wall heat absorptionare
given in Fig. 14-17.
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Fig. 12: ECO regression-grade: 3
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Regression analysis on superheaterl heat absorption:
The regression analysis on superheater 1 heat
absorptionare given in Fig. 18-21.

Regression analysis on superheater23 heat
absorption: The regression analysis on superheater23
heat absorption are given in Fig. 22-25.

Regression analysis on primary air heater-heat
absorption: The regression analysis on primary air
heater-heat absorption are given in Fig. 26-29.
Regression analysis onsecondary air heater-heat
absorption: The regression analysis onsecondary air
heater-heat absorption are given in Fig. 30-33.
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CONCLUSION

The proposed work clearly indicates that the known
vales of coal flow and burner tilt contribution to the
variance of energy outcome of each boiler components.
Individual mfluence of those parameters over the plant
performance is visualized. Expected results are derived
from small datasets. These estimated values under usual
assumptions can be used to design system model The
practical  investigation makes to have clear
understandability of the correlated relationship existed
between the operational parameters of the thermal
power plant.
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