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Abstract: The temperature inside a Continuous Stirred Tank Reactor (CSTR) is difficult to control when
chemical reaction takes place. The coolant circulates on the cuter jacket of the reactor and extracts the heat
energy liberated during the exothermic reaction. The temperature mside the reactor is controlled by
manipulating the flow rate of coolant. This study compares the performances of control methodologies like
Proportional Integral Derivative (PTD) Control, Non Linear Auto Regressive Moving Average (NARMA) model
control, Neural Network Predictive (NNP) control and Model Predictive (MP) control. A novel method of control
15 obtained by incorporating PID method m MP control i.e., the proposed method of control 15 MP-PID. A
significant amount of reduction in time for the control action 1s obtained for the proposed methods. The time
domain specifications on the response for the CSTR Model with the above controllers are tabulated and

analyzed.
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INTRODUCTION

Chemical reactors are often the most difficult units to
control in a chemical plant, particularly if the reactions are
rapid and exothermic. A little increase in temperature may
make rapid increase the reaction rate causing significant
changes m conversion and yield. The heat removal rate 1s
quickly increased to restore the normal temperature. A
continuous stirred reactor with a constant feed rate,
feed concentration and holdup time with ureversible
exothermic reaction is considered. The heat generated by
chemical reaction, the heat removed by the jacket and the
product stream plotted against reactor temperature shows
three different operating states (Harriot, 1989). The
amount of heat released by exothermic reaction is
sigmoidal function of temperature in the reactor. The heat
removed by the coolant is linear function of temperature.
The intersection of the cuves yields three states
(Stephanopoulos, 1984). A CSTR at steady state will have
the heat generated by reaction 1s equal to heat removed
by the coolant. A controller that ensures the stability of
the operation at the middle steady state is desirable.
Figure 1 shows a CSTR in which a wreversible exothermic
reaction A_B takes place. The heat of reaction is removed
by a coolant medium that flows through a jacket around

the reactor. The comparative control strategies are
discussed (Chopra et al., 2014; Zahraa, 2012) for CSTR
process.

MATERIALS AND METHODS

Model description: The assumptions made for developing
the mathematical model is that there is perfect mixing
inside reactor and the jacket. Volume of reactor and jacket
is constant and the parameter values are fixed. The
dynamic model of the reactor 1s obtained by writing
material and energy balance equation. The change in
concentration of the reactant, temperature of the reactor
and the jacket temperature 1s mathematically written as
(Prakash and Srinivasan, 2009):
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Fig. 1: CSTR with cooling jacket
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The transfer fimction model of the CSTR system
(Prakash and Srimvasan, 2009) taken for performance
analysis is given as:

T  1.458+11.65
Gp(s):T—— 5 4)
i ST+3.4345+3.557

Control strategies: The plant transfer function model is
taken and different control strategies such as PID,
NARMA, NNP and MP are applied to obtamn the desired
response for the given reference input. All the fore said
controller performances are evaluated with performance
metrics such as ISE, IAE, ITSE and ITAE.

Proportional Integral Derivative (PTD) controller: The
Proportional Integral Derivative (PID) controller has been
used for the Temperature and Concentration control for
CSTR over past two decades. The tune domain
representation of PID control is:

e(t)+1/4; [ e(t)dt + 14
(de(t))/dt

u(t) =K, &)

The initial K, K,, K, values of the parameter are
obtained as 0.1, 02 and 0.02, respectively using
Zeigler-Nichols Method. The block diagram of the closed
loop system with PID Controller 1s shown in Fig. 2.

The closed loop response of plant model with and
without PID controller is obtained. A set point of 100°F is
given as step input. The difference between set point and

the measured temperature i.e., the error is given as a input
to the PID controller. For the system with PID Controller
the delay time, rise time and settling tine are 1.3186, 2.5925
and 3.5485 sec, respectively. There 1s no over shoot in the
response. The steady state error is negligible for the plant
with PID controller. For a plant without controller
the temperature at a lower stable value
with overshoot. The controller performance for the
plant response over a period of 5 sec is plotted
with the ISE, TAE, ITAE and ITSE as metrics 1s shown in
Fig. 3.

For a plant with PID controller the IAE and ITAE 1s
found to be the 152.3 and 169.3, respectively at the steady
state operating pomt when the response time 1s 5 sec. The
typical ISE and ITSE values are 9565 and 6742 which is
quiet higher.

settles

Narma controller: The neural controller 1s referred to by
two different names: feedback lmearization control and
NARMA-L2 control. It is referred to as feedback
linearization when the plant model has a compamion form.
It 1s referred to as NARMA-L2 control when the plant
model can be approximated by the same companion form.
The central idea of this type of control 1s to transform
nonlinear system dynamics into linear dynamics by
cancelling the nonlinearities. The NARMA model 1s
represented as:

y(k)y(k-1),...y(k-n+1), .
u(k),u(k-1),..,u(k—n+1) &

]

g y(K).y(k-1)..y(k—n +1)]

yik+d)=f

where, d = 2. Using the NARMA Model, the NARMA
controller model 1s given as:
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Fig. 3: Performance evaluation of PID controller
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This 1s realizable for d>2. The block diagram of the
NARMA controller (Putrus, 2011) is shown in Fig. 4.
During plant identification process the network
architecture with the size of hidden layer and sampling
time is 9 and 0.01 sec, respectively. The number of
delayed plant nputs and outputs are chosen as 1. The
training data consist of 500 samples with maximum and

minimum plant mput are 750 and 30.1, respectively. The
maximum and minimum random plant interval values
are 1 and 0.1sec, respectively. The meaximum and minimum
plant output is 130 and 35, respectively. The simulink
plant model is kept in separate file.

The number of training epochs and training
function are chosen as 300 and trainlm
respectively. A set poit of 100 °F 1s given as step mput.
The closed loop response of plant model with
NARMA controller is obtained. For the system with
NARMA Controller the delay time, rise time and settling
time are 0.1685, 0.3713 and 2.1653 sec, respectively,
With over shoot of 14.452% m the response. The
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controller performance for the plant response over a
period of 5 sec is plotted with the TSE, TAE, ITAE and
ITSE as metrics 1s shown in Fig. 5.

For a plant with NARMA controller the ISE and TTSE
is found to be the 1367 and 366.6, respectively at the
steady state operating point when the response time
is 5 sec. The typical TAE and ITAE values are 38.81 and
31.71. The literature (Akesson and Toivonen, 2006)
shows the NARMA controller performance for the CSTR
model.

Neural network predictive (NNP) controller: A plethora
of Model Predictive Controller for control of temperature,
concentration, Ph without neural strategy for CSTR is
given in (Balaji and Maheswari, 2012; Man and
Shao, 2012; Shyamalagowri and Rajeswari, 2013).The
Neural network Predictive Controller uses a neural
network model to predict future plant responses to
relevant control signals. An optimization algorithm then
computes the control signals that optimize future plant
performance. The neural network plant model 1s trained
offline, m batch form. The controller, however, requires a
significant amount of online computation because an
optimization algorithm is performed at each sample time to

compute the optimal control input. The first stage of
predictive control is to train a neural networls to represent
the forward dynamics of the plant. The prediction error
between the plant output and the neural network output
is used as the neural networl training signal. The process
is represented by the following Fig. 6.

The neural network plant model uses previous inputs
and previous plant outputs to predict future values of the
plant output. This network can be trained offline in batch
mode, using data collected from the operation of the plant.
The model predictive control method is based on the
receding horizon technique. The neural network model
predicts the plant response over a specified time horizon.
The predictions are used by a numerical optimization
program to determine the control signal that minimizes the
following performance criterion over the specified horizon:

o (et D=y (1)) +p
I= Nu (8)

where, N1, N2 and Nu define the horizons over
which the tracking error and the control increments are
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evaluated. The u' variable is the tentative control signal,
v, is the desired response and v, is the network model
response. The i1 value determines the contribution that
the sum of the squares of the control increments has on
the performance index. The following block diagram
illustrates the model predictive control process. The
controller consists of the neural network plant model and
the optimization block. The optimization block determines
the values of u' that mimmize J and then the optimal u is
input to the plant. The control literature (Vasikaninova
and Bakosova, 2009; ZareNezhad and Aminian, 2011;
Prakash and Srnivasan, 2009) have proposed neural
network based model predictive control for non linear
CSTR process. The structure of NNP Controller is shown
in Fig. 7.

The two steps mvolved when using neural networks
for control system are System identification and Control
design. In the system identification stage, the neural
network model of the plant to be controlled is developed.
In the control design stage, the neural network plant
model 1s used to design the controller. The advantage of

using Artificial Neural Networks to simulate the process
is that after they are trained, they represent a quick and
reliable way of predicting their performance. They can
also be continuously updated. The training, testing and
validation of neural network model in done before the
controller design.

During controller configuration the cost (N,) and
control horizon (N,) 18 the number of steps over which the
prediction errors and control ncrements are minimized, 1s
chosen as 30 and 2, respectively. The control weighting
factor (p) and search parameters (¢) are chosen as 0.05
and 0.01 respectively. The csrchbac search mmimization
routine with 2 iterations per sample time 1s used as the
performance optimization algorithm. During plant
identification process the network architecture with the
size of hidden layer and sampling time 1s 2 and 0.2 sec,
respectively. The number of delayed plant inputs and
outputs are chosen as 2 in both the cases. The training
data consist of 500 samples with maximum and minimum
plant input are 150 and 15 respectively. The maximum and
minimum random plant interval values are 1 and 0.2 sec,
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Fig. 8: Performance evaluation of neural network predictive controller

respectively. The maximum and minimum plant output 1s
chosen as 80 and 35. The simulink plant model is kept in
separate file. The number of training epochs and training
function are chosen as 1000 and trainlm respectively. A
set point of 100° F 1s given as step input. The closed loop
response of plant model with NNP controller is obtained.
For the system with NNP Controller the delay time, rise
time and settling time are 0.352, 0.8245 and 1.1048 sec,
respectively. There 1s no over shoot in the response. The
NNP controller performance for the plant response over a
period of 5 sec is plotted with the TSE, TAE, ITAE and
ITSE as 1its metrics 1s shown in Fig. 8.

For a plant with NNP controller the TAE and ITAE is
found to be the 47.98 and 31.59 respectively at the steady
state operating point when the response time is 5 sec. The
typical ISE and ITSE values are 2583 and 551.6.

Model predictive controller: The Model Predictive
Control Toolbox 1s a collection of software that helps you
design, analyze and implement an advanced industrial
automation algorithm. Like other MATLAB® tools, it
provides a convenient Graphical User Interface (GUT) as
well as a flexible command syntax that supports
customization. As its name suggests, MPC automates a
target system (the “plant™) by combining a prediction and
a control strategy. An approximate, linear plant model
provides the prediction. The control strategy compares
predicted plant states to a set of objectives and then
adjusts available actuators to achieve the objectives whle
respecting the plant’s constramts. Such constraints can
include the actuators’ physical limits, boundaries of safe
operation and lower limits for product quality.

An MPC Toolbox design generates a discrete-time
controller one that takes action at regularly-spaced,
discrete time instants. The sampling instants are the times
at which the controller acts. The interval separating
successive sampling instants 1s the sampling period, At

(also called the control interval). Figure 9 shows the state
of a hypothetical SISO MPC system that has been
operating for many sampling instants. Integer k represents
the current instant. The latest measured output, v, and
previous measurements, v, ;, ¥y, Are known and are the
filled circles in Fig. 9a. If there is a measured disturbance,
its current and past values would be known (not shown).
Figure 9b shows the controller’s previous moves, u,y, ...,
u,.;, as filled circles. As 1s usually the case, a zero-order
hold receives each move from the controller and holds it
until the next sampling instant, causing the step-wise
variations shown in Fig. 9b. To calculate its next move, u,
the controller operates in two phases.

Estimation: Tn order to make an intelligent move, the
controller needs to know the current state. This mcludes
the true value of the controlled variable, y*, and any
internal variables that influence the future trend, , ¥y,
¥ e To accomplish this, the controller uses all past and
current measurements and the models , u -y, d-y’, w-y’
and z-y’ .
Optimization: Values of set points, measured
disturbances and constramts are specified over a fiute
horizon of futwe sampling mstants, k+1, k+2, ..., k+P
where P (a finite integer = 1) is the prediction
horizon Fig. 7a). The controller computes M moves u,
Upps - Uy, Where M (=1, =DP) 1s the control horizon
Fig. 7(b). In the hypothetical example shown in the
Fig. P = 9 and M = 4. The moves are the solution of a
constrained optimization problem.

For a step reference input of 100°F the control interval
15 chosen as 0.1 tume units the prediction and control
horizon are chosen as 5 and 1 time mtervals. The closed
loop response of plant model with MP controller is
obtained. For the system with MP Controller the delay
time, rise time and settling time are 0.2508, 0.5604,
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Fig. 10: Performance evaluation of model predictive control

and 0.7209 sec, respectively. There 13 a over shoot of
0.98% in the response. The MP controller performance for
the plant response over a period of 5 sec is plotted with
the ISE, IAE, ITAE and ITSE as its metrics 1s shown
mFig. 10.

For a plant with MP controller the ISE and ITSE is
found to be the 1748 and 251 respectively at the steady
state operating pomnt when the response tume 1s 5 sec. The
typical IAE and ITAE values are 29.99 and 7.442.

Proposed MP-PID controller: The advantage of PID
controller i1s mcorporated separately in the MP controllers.
This results in the formation of new MP-PID Controller.

The proposed controller has good controller performance
metrics and time domain specification in the response. For
a step reference input of 100°F the control interval is
chosen as 0.1 tune units the prediction and control
horizon are chosen as 5 and 1 time mtervals. The closed
loop response of plant model with MP-PID controller is
obtained. For the system with MP-PID Controller the
delay time, rise time and settling time are 0.0013743,
0.00475961 and 0.0057849 sec, respectively. There 1s a
over shoot of 0.966% in the response. The MP controller
performance for the plant response over a period of 5 sec
1s plotted with the ISE, IAE, ITAE and ITSE as its metrics
1s shown n Fig. 11.
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Fig. 11: Performance Evaluation of MP-PID Controller

Fig. 12: MATLAB/Simulink Implementation with Various Controllers

The initial K, K;, K, values of the parameter are
chosen as 0.1, 0.2 and 0.02, respectively using Zeigler
Nichols Method. For a plant with MP-PID controller the
ISE, TAE, ITAE and ITSE is found to be the 9.875, (.3586,
0.1144 and 0.01332, respectively at the steady state
operating point when the response time 1s 5 sec.

RESULTS AND DISCUSSION

The MATLAB/simulink block diagram implementation
of the PID, NARMA, NNP, MP and MP-PID Controllers
for the given plant model is given in Fig. 12. The
combined closed loop response of the plant with PID,
NARMA, NNPC, MPC, MP-PID for a reference step input
of 100°F 1s shown n Fig. 13.

The time domain specification such as delay time, rise
time, settling time and peak owvershoot for various
controllers are provided in Table 1.

From Table 1, it 1s inferred that MP-PID has the least
delay time, rise time, settling time and peak overshoot
values of all other controllers. From the extensive
simulation study using MATLAB/Simulink software, 1t 15
found that for Non liner systems such as CSTR process
the MP-PID Controller’s performance is bett. The
controller performance are measured using the below
indices (Mishra et al., 2014):

s TIntegral Square Error (ISE)
ISE=/é’(t) dt

» Integral of the Absolute Error (IAE)
TAE=/| e(t) |dt

» Integral Tune Square Error (ITSE)
ITSE=/t.e’(t) dt

» Integral Tune Absolute Emror (ITAE)
ITAE=/t| e(t) |dt
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Fig. 13: MATLAB/Simulink ITmplementation with Various Controllers

Table 1: Comparison of controllers response parameters

Types of controller Delay time (t,) in sec

Rise time (t,) in sec

Settling time (t.) in sec Peak overshoot (Mp) in (96)

PID 1.3186 2.5925 3.5485 0

NARMA 0.1685 0.3713 2.1653 14.452

NNP 0.352 0.8245 1.1048 0

MP 0.2508 0.5604 0.7209 0.98

MP-PID (proposed) 0.0013743 0.00475961 0.0057849 0.9666

Table 2: Comparison of controller performance metrics

Types of controller ISE IAE ITSE ITAE
PID 9565 152.3 6742 169.3
NARMA 1367 3881 366.6 31.71
NNP 2583 47.98 551.6 31.59
MP 1748 29.99 251 T.442
MP-PID 9875 0.3586 0.01332 0.1144

Here, e(t) 1s the error response of a system. Generally
limit of integration 1s from 0-8 but mtegration up to mfimty
1s not practical and hence limit 8 is replaced by T which 1s
chosen sufficiently large so that e(t) for t=T is negligible.
In this study, T = 5 sec has been taken The above indices
for the controllers are given in Table 2. From Table 2, it 1s
inferred that MP-PID has the least ISE, IAE, ITSE, ITAE
values of all other controllers.

CONCLUSION

The controller performance indices criteria like Tntegral
Square Error (ISE), Integral Absolute Error (IAE), Integral
Time Square Error (ITSE) and Integral Tune Absolute Error
(ITAE) are obtained.
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