Asian Journal of Information Technology 15 (21): 4276-4290, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

An Optimized Approach for Automated Test Case Generation and
Validation for Uml Diagrams

Roaa Elghondakly, Sherin Moussa and Nagwa Badr
Department of Information Systems, Faculty of Computer and Information Sciences,
Ain Shams Umiversity, Cairo, Egypt

Abstract: Software testing 1s accounted to be an mmportant phases in software development life cycle mn terms
of cost and manpower. Consequently, many studies have been conducted to mimmize the associated cost and
human effort to fix bugs and errors and to improve the testing process's quality by generating test cases at early
stages. However, most of them considered only one type of behavioural diagrams with a lot of human
mtervention. In this study, an optimized automated approach for generic test case generation was proposed.
It 15 considered as generic mn terms of it can be applied on different types of behavioural diagrams (i.e. activity
diagram, state diagram, uses case diagram, etc.) for multi-disciplinary domains. While the automation process
is used to generate test case with minimum human intervention which will consequently help to minimize total
cost. Testing process 1s considered the key to success of any software. An optimized test case generation
approach therefore will be very useful. As a result an optimization techmque has been applied to optimize the
generated test cases to ensure the quality of results. Accordingly, the proposed approach merges model-based
testing with search-based testing to automatically generate test cases from different behavioural diagrams, i.e.
use case, activity, etc. Moreover, the proposed approach uses text mining and symbolic execution methodology
for test data generation and validation where a knowledge base 1s developed for multi-disciplinary domains.

Key words: Test case generation, model-based testing, search-based testing, test case optimization, test case

validation, UML diagrams

INTRODUCTION

Software testing is an essential part in software
development life cycle. The development life cycle total
cost i1s considerable to be high. For this reason, it is
umportant to mimmize this cost and the human effort to fix
bugs and errors, as well as to improve the quality of the
testing process by automating it. Test automation is the
process of using separate software to manage and
evaluate the fulfillment of test cases and compare the
expected outcomes with the generated ones. Tt can be
performed with less human intervention saving total cost.
Moreover, it can add further testing which would be
complicated to perform manually. Testing may be
performed in the last phase of the software development
life cycle or at an early stage. If the testing process is
carried out at early phase of the development life cycle,
(i.e., requirements and design phases), as in the case of
model-based testing, it will guarantee higher test quality,
early specification and review of system behavior
(Hartmamm et al., 2004; Prasanna et al., 2011, Prasanna
and Chandran, 2011; Schieferdecker, 2012). However, if it

15 carried out in the last phase as i the case of
code-based testing, it will not be effective as in early
stages (Ye et al., 2009). In this case, this will generate
enormous errors as soon as the code 1s completed
where it demanded a lot of code comrection and
modification. For this reason, model-based testing was
preferable rather than code-based testing to generate test
cases from UML diagrams (behavioral diagrams) during
the design phase.

The Unified Modeling Language (UML) is divided
into two main parts; structural diagrams, (i.e., class
diagram) and behavioral diagrams, (1.e., activity, use-case
and state diagrams). Structural diagrams are used to show
the structure, style or design of the software while
behavioral ones are used to clarify the steps in which the
software will pass through until it reaches the desiwred
output. In other words, it shows the flow of events.
However, the optimization process has different
techniques as reducing the number of test cases, test
cases prioritization, as well as minimizing time, mncreasing
performance, maximizing the quality of outcomes, ete. A
search-based testing technique is used in this approach.

Corresponding Author: Roaa Elghondakly, Department of Information Systems, Faculty of Computer and Information Sciences,

Ain Shams University, Cairo, Egypt

4276

Asian J. Inform. Technol., 15 (21): 4276-4290, 2016

Search Based Software Testing (SBST) (McMinn, 2011,
Igbal et al, 2012) is of Search Based
Software Engineering (SBSE), m which optimization
algorithms are used to allow dynamic search for test data
to maximize the achievement of test goals and minimize
testing costs. As
generated and executed, the total testing time will be
mimimized as well as the total cost. However, the
testing process counters some problems as high
cost and time.

In thus study, a new generic, optimized and automated
model with mimmum human mtervention is proposed for
automatic test case generation where model-based testing
and Search-based testing are combined to generate the
optimum test case. In order to ensure the correctness of
these generated test cases, a test data generation
technicue (Korel, 1990; Veanes et al., 2008; Harman et al.,
2011; Tahbildar and Kalita, 2011; Shahbaz et al., 201 5) will
be applied to validate the test cases and to ensure that the
previously generated test case when being executed will
meet the expected output. The study is organized as
follows.

a branch

a reduced set of test cases 1s

Literature review: As model-based software development
becomes more important, the relevance of model-based
test cases generation increases as well. The ability to
cover multiple UML models is appealing. In the last
decade, test case generation became an unportant
research topic. Many researchers use behavioural
diagrams (Use Case, Activity and State) in order to
generate test cases. However, most of the previous
studies used different techmques but they encounter
some limitations, as not being generic (Kim et al., 2007,
Chen et al., 2008; Chimisliu and Wotawa 2012, 2013) in
which they are limited to only one type of diagrams in
each single method. In addition, some are presenting
manual approaches (Heumann, 2001, Gutierrez et al.,
2006; Kundu and Samanta, 2009; Nayak and Samanta,
2011; Pechtanum and Kansombkeat, 2012; Surnalatha and
Raju, 2012) which are not time saving. It 1s possible to
build automatic tools following their approaches which
are expected to reduce cost of software development and
mnprove software quality. Whereas the altemating
variable method used in (Samuel et of., 2008) in generating
test data does not provide globally optimal solution as
well as Swain et al. (2012) since it does not provide
optimization. Moreover, developing complicated methods
to generate test cases 1s considered a limitation as in
Gnesi et al. (2004) and Santiago et al. (2008).

The studies in Swain and Mohapatra (2010),
Boghdady et al. (2011a, b) and Pechtanun and
Kansomkeat (2012) used the activity diagram to generate

test cases. A dependency table for the diagram was
generated as well as a corresponding graph. The graph
was then parsed to find all possible paths between the
start and end nodes. Researchers of Kundu and Samanta
(2009) and Chen and Li (2010) stored the activity diagram
as XML Metadata Interchange (XMI) files and then
retrieved the required mformation from the XMI file.
Mapping rules were then applied to generate a
corresponding graph from which test paths and test cases
were generated respectively. 1i et «l. (2013) built an
algorithm to generate test sequences by applying Euler
circuit algorithm to decrease the number of generated test
cases. Ray ef al. (2009) on the other hand reduced the
number of generated test cases by applying conditioned
slicing on a predicate node of the graph generated from
the activity diagram. Sumalatha and Raju (2012) mtegrated
the activity diagram with the sequence diagram. They
used the corresponding graphs generated from both
diagrams to generate test cases. As for the state diagrams,
the one n Kansomkeat and Rivepiboon (2013) was
transformed to flow graph to help in the test cases
generation process. Genetic algorithms were used in the
test case generation process as in Doungsa et al. (2007)
and Shirole et al. (2011). Concermng use-case diagrams,
the use-case diagram was transformed to activity
diagram in Gutierrez et al., 2007a, b) where test cases were
generated by the different methods as stated earlier.

In search-based software engmeering, several
researches (McMinn, 2004) have studied some algorithms
as Hill Climming, Simulated Annealing and Genetic
algorithms. The first two algorithms were used with the
early researches but they were used with reference to only
one elected solution at one time. For this reason, using
Genetic Algorithms (GAs) (Doungsa ef al., 2007) became
more efficient as they are global searches and can sample
more than one point at the same time 1n the search space.
Tt is easy to understand and solves problems with multiple
solutions. Although, GAs have many advantages, they
counter some disadvantages, 1.e., specific optimization
problems cannot be solved. This happens because fitness
functions are not known. Besides, there is no assurance
that they will find a global optimum. In addition, genetic
algorithm real time applications are limited due to random
solutions and convergence. Researchers have proved that
Ant Colony Optimization (ACO) (Dorigo et al., 2006; Li
and Li et al., 2007) is better than GAs, as it overcomes
some of the disadvantages found by GAs. GAs use global
search techmque which can sample more than one point
at the same time in the search space. ACO is considered
better than other global optimization techniques for TSP
as genetic algorithms, neural network techmiques and
simulated annealing. In addition, it reserves an entire

4277

Asian J. Inform. Technol., 15 (21): 4276-4290, 2016

colony memory instead of the previous generation only.
Moreover, the combination of colony memory and the
random path selection makes it less affected by poor
mitial solutions. ACO can be used in dynamic
applications where it can be adjusted to real time
application’s changes as it runs continuously.

Looking mto a software requirement, either functional
or non-functional, it identifies a system quality, capability,
characteristics and necessary attributes, as well as it
describes a utility to an internal user, a customer
organization or other stakeholder. Requirements are
mostly written using use cases model, (i.e, a textual
description for every use case flow of events). This
textual description can be adopted easily. However, it 1s
too complicated to perform further processes on them,
such as generating test cases. Many researchers use
either manual or automatically textual requirements to
build state-charts diagrams (Frohlich and Link, 2000).
Some approaches translate natural language requirements
automatically to a logical or systematic format to generate
test cases automatically from those textual requirements.
Others neglect textual requirements and replace them with
a use case diagram which is later transformed to an
activity diagram. Whereas some approaches, convert
natural language requirements to a flow graph (diagram),
then extract test paths from it by applying path coverage
methods. Other approaches that perform coverage criteria
combine Boolean propositions on natural language
requirements. To summarize, most of the researches on
this field performs natural language processing
techmques on textual requirements to facilitate the
process of test cases generation.

Finally, despite of the importance of all UML
diagrams and the enrichment they provide to better
describe systems, most of the researches generate test
cases only either from activity diagrams, sequence
diagrams or both (Li ez al., 2007; Shircle and Kumar, 2010;
Boghdady et al, 2011a, b; Shanthi and Kumar, 2012).
The approaches m Swain and Mohapatra (2010),
Sumalatha and Raju (2012) combine activity and sequence
diagrams together to generate test cases.

Although, many approaches have been proposed to
automate test cases generation, 1t was found that most of
related work studies use only one type of UMIL diagrams
in their approaches. Only few ones combine two diagrams.
Some are manual and others are automated. However, the
main contribution of our study is that we present a novel
comprehensive approach that can automatically
generate test cases from different UMIL diagrams
(activity, state and use-case, etc.) for multi-disciplinary

deomains. In addition, 1t combines model-based

testing with search-based testing techniques in
order to generate the optinwmn test case.
MATERIALS AND METHODS

The proposed system architecture: In this study, an
optimized, generic and automated model with mimmum
human intervention is proposed. The model is considered
to be generic since it is capable of generating test cases
from any behavioural diagram regardless its type
(use-case, activity, state, etc.) for multi-disciplinary
domains, ie., ATM systems, registration systems, etc.
Search-based testing techmques are applied to find the
optimum test cases from the generated ones. An enhanced
Ant Colony Optimization (EACO) technique 1s proposed
as a search-based testing techmique. The Ant Colony
Optimization (ACO) algorithm 1s an optimization alg orithm
that 13 used to find the optimum path in a graph. As in
(Dorigo et al., 2006, Kundu and Samanta, 2009) 1t takes an
ingpiration from the foraging behaviow of some ant
species. These ants deposit pheromone on the ground in
order to mark some favourable path that should be
followed by other members of the colony.This research
proposes an FEnhanced Ant Colony Optimization
algorithm (EACQ) that is used to find the optimum test
case to reduce the execution time.
Although, behavioural diagrams
weighted edges, this algorithm requires weighted edges.
In which, edges’ weights are used to calculate the
probability of which node should be selected next by each
ant. For example, now ant 1 stands at the first node which
is connected with >1 node. In order to help this ant to
know which node to go next, therefore the distance
between nodes are used as edges’ weights to enable the
ant select its next node in the path. Tn most cases, UMIL
diagrams generate graphs having un-weighted edges.
Generated weighted graph used to show that node X is

do not have

connected to node Y only. Accordingly, the generated
graph 1s enhanced by adding weights to edges. Weights
are given to edges according to the maximum mumber of
nodes connected to node X and node Y. The maximum
number of nodes 1s used to ensure that the edge’s weight
will be =1. Therefore, each node has at least cne child to
guarantee the continuous connection between nodes
(continuous paths from source to destination). A reduced
set of test cases is then generated having the test paths
with the least weights. This set is then used to find the
optimum test case according to the number of decision
nodes it passes through. As the number of decision
nodes m a path decreases, the probability to be the
optimum test path increases.

4278

Asian J. Inform. Technol, 15 (21): 4276-4290, 2016

I'est Cases CGeneration

Driagrams Parser

.| Equivalent Graphs
Crenerator

Test Paths Generator

k4

9

UML Dnagrams

.

Reduced Test Paths

Test Data Generation and Validation

Set Generator

¥

Text Miner (@ Test Paths Optimizer
Using ACO
: ¢ ¢
an o p i
ok 3 Symbaolic Executor
‘v_ahdﬂ!Ed — = é for Test Data Optimum Test Paths
Optimum Test 2 Generation Generator
Cases '

l h 4

Test Cases
Yalidation

Optimum Test Cases
Ueneralor

Fig. 1: The Proposed system architecture

The proposed model automatically generates test
cases diagrams by combining
model-based with search-based testing. As the modelling
process itself requires a lot of human intervention, the
automatic generation of test cases takes place after
having the behavioural diagram as an input. The
proposed model consists of four main modules as shown
i Fig. 1. diagrams parser, equivalent graphs generator,
test case generation and test data generation and
validation. The proposed model 1s a generic model that
takes different behavioural diagrams as an input. The
following sub-sections present a brief description for the
functionality of each module in the proposed approach.

from behavioural

Module 1; Diagrams parser: This module 1s responsible
for parsing any type of behavioural diagrams to generate
a corresponding excel file. The resultant file containg all
the diagram’s data, including state, activity or use-case
names, 1Ds, relations between them, etc. which 1s then
stored mto the database as records. A sample of three
different behavioural diagrams and their equivalent Excel
sheets are shown in Fig. 2-7.

Module 2; Equivalent graphs generator: Once the
equivalent Excel sheet 1s generated, a graph 1s
constructed to represent the associated behavioural
diagram. The constructed graph represents the states (or
activities) as nodes and the relations between them as

edges/arcs. Consequently, this graph is used to find all
paths between any two nodes using Depth First Search
(DFS) as DFS uses lower memory i1 comparison with that
used by Breadth First Search.

Module 3; test cases generation: Module represents
the core of the proposed model. It mncludes several
sub-modules; test paths generator, reduced test paths
sets generator, reduced test paths optimizer using Ant
Colony Optimization (ACO) (Dorigo et al., 2006), as it
overcomes some of the disadvantages found by GAs as
mentioned before m section II, optimum test paths
generator and finally, optimum test cases generator. The
previously constructed graph is used to generate test
paths. Many algorithms have been studied to parse
graphs to find all paths between start and end nodes,
such as Depth First Search and Breadth First Search. In
the proposed approach, Depth First Search is applied
since 1t consumes less memory in comparison with that
used by Breadth First Search where it 1s not necessary for
each level to store all child pointers (Korf, 1985). The
generated paths are sequences of nodes IDs in which
each sequence represents a single path from the start
node to the end node.

A reduced set of test paths is then generated and
optimized to generate the optimum test paths. The
generated test paths are filtered by selecting the test
paths with the smallest path weight regardless the number

4279

Asian J. Inform. Technol, 15 (21): 4276-4290, 2016

Start

Insert Card_Get 3 pecifications

Get
Specification
s

Get Specifications_Valid Pin Get Specifications_INvalid Pin

= ~
ValidPin T~ T Invalid Pin
Approved
.
Valid_Choose

(Select Choose_Select (Choose Invalid_Cancel
\ Wihdraw \Transactlon Invalid_Lock
Select_Ask Ask user To

Ask user to) Ask_Validate Validate Take Card

enter amount Amount And insert It Cancel

Again Process
Validate_perform

Parform
Transaction

Display
Thank

Eject Card

Cancel_Eject

Message

Display_Eject Eject_Final
Final
Fig 2: State diagram example
5 E [(]
[[n] Mame Source Target

1 StateDiagram

4 Dizplay Thank MMessage

a2 Ferform Transaction

Eject Card

12 | Select wWithdraw

12 | Ask user to enter_amount

17 |Final

(00| = | Cf | [P|—=
o0

20| Skart

10 21 |Inzert Sard

N | 26 | Get Specifications

12 28 [Choose Transaction

12 30 [Ask user To Take Card And in=sert it Again

14 33 [Walid Fin

15 35 |Lock Account

16 | 37 | Cancel Process

17 40 | Inwalid Fin

12 E¥ | walidate Amount

113 2 Ferform_Display 3 4
20 |7 Dizplay_Ej=ct 4 a2
21 1 Select_Ask 12 13
22 19 | Start_Insert Card 20 21
23 25 |Insert Card_Get Specifications 21 ZE
24 | 32 | Get Specifications_Walid Pin 26 33
25 | 39 | Get Specification=s_IMNwalid Pin 26 40
Z2E |44 | Approwved 40 33
27 48 | Invalid_ask 40 30
28 51 | Iralid Lock 40 i)
28 52 |Inwalid_Cancel 40 a7
20 55 |walid_Choose 33 28
21 &7 | Choose Select 28 12
32 53 | Ask_Eject 30 g
33 Bl |Lock Eject 35 g
34 | B3 | Cancel Eject 37]
35 E5 | Eject_Final) 17
36 B3 | Ask_Walidate 13 E7
37 | ¥ [Walidate_perform &7 3

Fig.3: Equivalent excel sheet for the state diagram example

4280

Asian J. Inform. Technol, 15 (21): 4276-4290, 2016

Accept Card

[Check PIN]
[Receive amount]

Print Reclept

Display
msg"Cancel
operation™

Check amount
balance

<~

Update balance

Dispense cash

Hi

Display
msg insufficlent
balance , no
permission
granted™

Eject Card

Fig. 4: Activity diagram examp 1

10 Mame Source Targek
1 Type : ActivityOiagram

z Start

4 | Accept Card

E | Check FIM

=) Heceive amount

10 | Dizplay m=g " Cancel operation™
12 | Print Feciept

14 | Dispense cash

16 | Display m=g" insufficient balance , no permission granted™
12 | Eject Card

26 |Final

37 |Fork Mode

29 | Decision Mode 4

47 | Decizion Mode 1

55 | Check amount balanoce
59 | Decision Mode 2

E1 | Update balance

71 | Decision kMode 3

20 2 4

22 4 E

27 15 20
) 29 12
33 E i0
jels) 10 29
39 12 3T
41 14 37
43 37 29
45 16 29
43 E 17
a1 47 =]

=] 17 2

57 =] 55
[%] E1
EG 1] =]
E7 E1 12
EQ E1l 14
T3 53 71
Kl 71 E1
T 71 16

Fig. 5: Equivalent excel sheet for the activity diagram example

4281

Asian J. Inform. Technol, 15 (21): 4276-4290, 2016

D
To

Actor

Fig. 6 Use Case Diagram Example

A B C

1D Name From

1 |UseCaseDiagram
2 |Withdraw Cash UseCase
4 |Check Balance UseCase

7 [Customer Actor

6 7 4
13 7 2

Fig. 7: Equivalent excel sheet for the use case diagram
example

of nodes. Accordingly, test cases are generated
automatically from the generated test paths where the
sequences of nodes IDs become sequences of meaningful
test cases as each node in the sequence represents the
name of a use case, state or activity from the original
diagram. Test cases presentation makes the test paths
more useful for the user (tester), as it converts idiot IDs to
meaningful states or processes names. Finally, the
optimum test case is selected from the created test cases.
As for test cases optumnization, An Enhanced Ant colony
optimization EACO techmque 1s applied based on the
advantages discussed earlier in section I1. The optimum
test case 1s selected according to the path with the
highest pheromone value (Dorigo et al., 2006) and the
shortest distance where the pheromone value and the
distance are inversely proportional.

Module 4; test data generation and validation: This
module 18 concerned with validating the optunum test
case. One of the test data generation techmques 13 the
Symbolic Evaluation (also referred to as Symbolic
Execution). It involves executing a program using
symbolic values of variables mstead of actual values
(Korel, 1990; Veanes et al., 2007, Harman et al., 2011,
Tahbildar and Kalita, 2011; Shahbaz et al, 2015).
Symbolic evaluation technique is used to simulate
symbols to act as an input to the system under test to find
the expected output according to those mputs where it
can be performed either in a forward traversal (forward
substitution) or (bacloward
substitution) for the path In the proposed approach,

a backward traversal

forward substitution is applied, storing what a
programmer does while tracing an execution path to
aggregate the symbolic values of variables. Thus, it has
to be carried out on every statement, while saving all the
intermediate symbolic values of variables. During the test
data generation process, values are assigned to the input
variables as a first step. Once the values of variables are
known, a symbolic value is then given by the most recent
instance of the array for each array element that has just
been assigned a value. The success of this technique
depends on 1its ability to assign values to simple variables
and array variables separately.

Most of the previous works studied test data
generation techniques as a code -based source code
rather than model-based. This is due to the easiness
encountered in the case of code, as it has equations and
conditions that help the process of test data generation
(Clarke, 1976; Xing et al., 2015). The previously generated
optimum test case is passed to the proposed Text Miner
sub-module to parse it and generate its corresponding
grammatical tree. The Text Miner module uses the Part-of-
Speech (POS) tagging and parsing approach for the
natural language processing required at this stage. POS
tagging assigns a POS tag to each word in the sentences
in order to indicate whether it is a noun, verb, adverb,
adjective, etc. (Kulkarmi and Joglekar, 2014). The part-
of-speech POS category names can be identified by
applying a Part-of-Speech (PoS) POS tagger and thereby
then ignoring any non-verb tokens (Shahbaz et af.,
2015). All detected verbs are saved into a knowledge
base. Forward substitution symbolic execution is then
applied on each stored wverb to be valhdated.
Consequently, validated optimum test cases are
generated. The proposed model 15 not restricted to a
specific domain for validation

Finally, the proposed architecture shows that
model-based testing, presented by generating test cases
from UML diagrams, 18 combined with search-based
testing, in which optimization algorithm (ACQO) is used to
generate optimum test case. In addition, text mining using
POS tagging approach 1s used to detect the verbs from
the optimum test case. Moreover, the forward substitution
method is applied in owr proposed architecture for
symbolic execution to simulate inputs (validation
sentences) to verbs in order to validate the optimum
test case.

RESULTS AND DISCUSSION

In order to test and evaluate the proposed approach,
it is applied on the commonly used ATM scenario (Chen
and Li, 2010). Several behavioural diagrams such as

4282

Asian J. Inform. Technol., 15 (21): 4276-4290, 2016

activity, state, use-case diagrams are used representing
the system’s behaviour to describe the sequence of
events for the given scenario. The proposed approach
takes place after having the behavioural diagrams been
modelled, which ensures saving time as the modelling
process itself consumes a lot of time.The processing of
our proposed approach 1s presented as follows:

¢ TInput different behavioural diagrams (state, activity,
use-case)

* QGenerate the comresponding Excel file for each
diagram

* Construct the corresponding graph for each diagram

» Parse the previously generated graph using Depth
First Search algorithm (DFS) to generate all possible
paths

¢ (enerate a set of reduced paths

+ Apply Enhanced Ant Colony Algorithm (EACO)

* Optimize the generated test case

* Perform symbolic execution for test data generation

+ Validate the optimum test case

Figure 2-7 represent three behavioural diagrams and
their equivalent Excel sheets used in the performed
experiments. The state diagram shown in Fig. 2a and b are
for the PIN verification. The automation process takes
place after having the behavioural diagrams been
modelled which will ensure saving time as the modelling
process itself consume a lot of time. The activity diagram
shown in Fig. 3a and b are for the withdraw process where
the use case diagram shown in Fig. 4a and b are for the
ATM scenario. In case of the use-case diagram 1s
converted to several activity diagrams derived from the
flow of events for each use case according to the number
of use cases. Each activity diagram then passes through
the proposed system where the outputs of all the activity
diagrams are combined together as a result of the use case
diagram.

States (activities) are represented by nodes, while
transitions between nodes are represented by directed
arcs where states, activities and use cases names must be
unique within the scope of a diagram. The proposed
system parses the UML behavioural diagrams to generate
their corresponding Excel sheets as explained mn this
study. The generated Excel file contains 4 attributes: TD
(unique 1D for each node or relation), Name (contains the
name of a node or a relation) where this attribute may
have null values in case of relations (edges) as not all
relations have names. Source and Target attributes
represent the relation (edge) between any two nodes.
Source and target have the ID as a value to show that
there 1s a relation between certain nodes according to

their IDs. These two attributes may have null values as
well if there is no relation as in case of nodes names. For
activity diagrams, fork nodes are handled in wiuch all
nodes connected to a fork node must be combmed and
represented together before exiting such fork node and
moving to the next node. A graph is constructed using
the data retrieved from the Excel file and then parsed to
find all paths using Depth First Search (DFS) algorithm.
An enhanced Ant Colony Optimization (EACO) algorithm
is proposed to find the optimum test case. EACO is
proposed to select the next node moedified using the
enhanced graph.

The optimum test case is then parsed where its
grammatical tree is generated to find all verbs in this test
case. Text mining using the POS tagging approach is
applied on the verbs of the optimum test case for test data
generation. Forward substitution symbolic execution
technique is used to validate the optimum test case. After
developing the proposed architecture, the generated
output for the previously presented UML diagrams is
shown in Fig. 8-10.

The first section “All Paths™ represents all possible
test paths between the start and end nodes (states,
activities). The second section “All test cases” shows the
test cases with its names. The “Weights” section displays
the total weight for each path. “Set of Reduced Paths”
section displays the list of reduced test paths. “Set of
Test Cases for Reduced Paths” section presents the
textual representation for each test path from the Set of
Reduced Paths. The “Optimum Reduced Test Path”
section shows the optimum test path as illustrated
previously, while “Optimum Reduced Test Case” section
shows the textual representation of the test case having
the optimum test path. The last two sections represent the
“Optimum Test Case Symbolic Execution data” which
displays the list of detected verbs from the optimum test
case with their associated test data after applying forward
substitution symbolic execution. Whereas “Optimum Test
Case Validation™ section displays the list of test cases to
validate the optimum test case.

Different metrics can be applied to evaluate the
quantity and quality of the test case generation process
from UML diagrams, including the complexity of the
generation algorithm, tune, coverage criteria and the
number of generated test cases. We have used time and
cyclomatic complexity metrics in order to evaluate our
proposed approach. In the followmng sub-sections, we
present the results encountered while assessing our
proposed approach in terms of these metrics.

Cyclomatic complexity: Some software testing concepts
are used, like statement coverage, branch coverage and

4283

Asian J. Inform. Technol, 15 (21): 4276-4290, 2016

i State
Al Paths : Weights Al Test Cases : Optimum Test Case Symboiic Execution data :
NAXNITET L1 a Start-> DeertCard > GetSpecficatins > Invad P> Askuser ToToke Card AndeerttAgan » et Oetchoose seectentervaidateperfomdisplay
NABNB[IT 19 -» Bject Card - Final) L
DABHNLY 9 TestCaed Eseéf- E
NABOBB 2136734817 i Start > Ingert Cand -> Get Specifications -> Invalid Fin -> Vaid Pn -» Choose Transaction -> Select che Ek‘”P“t fpe
DABHBRBIIEY it Wihdran -> Askuser to enter zmount - Validate Ehe Ek‘”P“‘“E
fimount ->Perform Transaction -3 Display Thank Message -» Eject Card-» Find ek fne out
Test Case 5 o compare nputval with the expected one
Start -» Ingert Card - Get Spedfications -» Valid Pin - Choose Transaction - 1 d:tck bt leqi o
Select Withdraw-> Ask user to enter amount -Validate Amount-» Perform che ; at el reqiements ae avaable
Transaction - Display Thank Message -» Eject Card ->Final oose: i
Setof Reduced Paths | Set of Test cases for Reduced Paths (ptimum Test Case Validation:
WUBNITELT i Test Case 1: & Insert Card-»check input type(1f Fal)-»Eror »
N2UKNBIT Start -» Ingert Card -» Get Spedfications -> Invalid Pin ->» Cancel Process -» Eject Card -» Find Tnsert Card-»check input size(If Fail)->Eror
PRI EIERY Test Case 2: £ Insert Card-check time outlfFal)-»Emor
NUKBBLIETI4ET Start -» Ingert Card -» Get Spedfications -> Invalid Pin - Lock Account - Eject Card - Final Tnsert Card-»campare input vall with the expected one(If
Test Case 3 Fail)->Ermor
Start -> Ingert Card -» Get Spedifications -> Invalid Pin ->» Ask user To Take Card And ingert it Again Get Specifications-»¢heck that al requiemients are
-» Eject Card -» Finl . avalsble (FFal)->Error
v Choose Transaction-=select at least one item(If Fail)-
Optinum Reduced TestPath Optimum Reduced Test Case ¢ Emor))
Start - Insert Card -> Get Specifications - Valid Pin -> Choose Transaction -» Select Withdran-> » g’;onisai\]&?;s:‘lghggr;ﬂm el s tonter vl
NABBBHI67346817 i ésk ﬁ:ﬂ TdJJ eg;er Tmount -#Vialidate Amount-» Perform Transaction -3 Display Thank Message - Select Hitteran->selct et ane e Fll->Eror
RLLLAG “2ne Ask user to enter amount-»check input type(If Fai)-»Error
Ask user to enter amount-»check input size({1f Fai-»Error
Ask user to enter amount->check tine out(If Fal)-»Errar |+
.

Fig. 8: GUI of the proposed system m case of a state diagram

i Adity o
Generate Test Cases Validate
Allpaths : Vieights Al Test Cases : Optimum Test Case Symbolic Execution data :
AETBHRNED B LB . TetCasel n geiuﬂdﬂ‘f prntaccept .
2464785559 7161 1214372913 25 5 Start Accept Card Check PIN Decision Node1 Receive amount Check amount balance Decisian Node heck
2464785559611214372918 25 3 2 Dedision Node 3 Display msg'insufficent balance , no permission granted” Dedsion Node 4 Eject . j tehme out
246081825 # Card Find g v
prewioy save updates H
TestCage 2 validate updates type
Start Accept Card Check PIN Decision Node 1 Receive amount Check amount balance Decision EQ”;I hattoh "
Node?2 Decision Node 3 Update balance Print Reciept Dispense cash Dedision Node 4 Eject Card e ?tm e prine
Frdl ensure print order is in process
— accept
Set of Reduced Paths : Set of Test cases for Reduced Paths Optimum Test Case Valdation :
246478555961 121437 94825 » Test Case 3: & Start-» Accept Card -»validate all information-=(If Fall)- ~ »
Start Accept Card Check PIN Decision Node 1 Receive amount Check amount balance Dedision Nod2 Error
Update balance Print Rediept Dispense cash Decision Node 4 Eject Card Final Check PIN ->Check time out-»(If Fail)-»Emor
b Check amount balance -Check time out-» (If Fai)- >Emor
Update balance -»save updates -»(f Fai)-»Error
Update balance - validate updates type -»({If Fal)->Error
i Print Rediept - check what to be printed-{If Fal}-Error
¥ Print Reciept -» ensure print order is in process-»{If
Optinum Reduced TestPath : Optimum Reduced Test Case : Fail)-»Ermor
Test Case 3t n
246478595961 12143729 13 25 4 Start Accept Card Check PIN Decision Node 1 Receive amount Check amount balance Dedision Nod2
Update balance Print Redept Dispense cash Dedision Node 4 Eject Card Final

Fig. 9 GUI of the proposed system in case of an activity diagram

path coverage (McQuillan and Power, 2005; McCabe, a way that every statement (node) of the diagram is
1976). In statement coverage, the test case is executed n~ executed at least once. In branch/decision coverage,

4284

Asian J. Inform. Technol, 15 (21): 4276-4290, 2016

.
14 UseCaze

Generate TestPaths

Set of Reduced Paths ¢

AANATBBULRTBAAT -
4503743314451 4171821427
45101316 192528313440 46 49 525558
M4BT
4513161825831 4046 49525558
BN TR T

45101316 1925283134370 4649 5255

n

Opfimum Reduced Test Path :

450HTBBHEHT7BUNRYT »

45101316 13252831 4370 H B 525558
B164T0 737678

oo
4510131925 2831 M40 4649525386470 n [
ELCRE 0
4SNP BBBIHNEHRNBHEH B
nBER 5
HNLBBBAATNEHRNEA B
DERCE] T s

Generate Test Cases

Start 1. System Displzy welcome screen 2, Customer Inserts card 3, Customer inserts invald card?
YESMNO 4. System prompts for PIN 5, Customer enters PIN &, System vaidate PIN- 7, Invalid PIN?
YESNO 8. Customer Choose Display Account Balance 9. System Display balance 10, Customer
chooses End Operation 11, System eject card Final ******Start 1, System Display welcome screen
2, Customer Tnserts card 3, Customer inserts invalid card? YESNO 4, System prompts for PIN 5,
Customer enters PIN 6, System validate PIN 7, Invalid PIN? 7. 1. System display please enter vald
PIN YESMNO 8. Customer Choose Display Account Balznce 9, System Display balance 10, Customer
chooses End Operation 11, System eject card Final ******3tart 1, System Display welcome screen
2. Customer Inserts card 3. Customer inserts invalid card? 3.1, System displays card error YESNO
4, System prompts for PIN 5, Customer enters PIN 6, System validate PIN 7, Tnvalid PIN? YESMNO

AlPaths : Vieights Al Test Cases :
450THBHEMIT8N8T 4 B
ASNNTABUBNKRTBARYT 5
ASHRTBILURH/ITBARY B
451031 MBI UBSIHTBAMTE B

Set of Test cases for Reduced Paths

Start 1, System Display welcome sreen 2 Customer Inserts card 3, Customer inserts invalid card?
YESNO 4. System prompts for PIN 5, Customer enters PIN 6, System vaidate PIN_ 7, Invalid PIN?
YESNO 8. Customer Choose Display Account Balance 9. System Display balance 10, Customer
chooses End Operation 11, System eject card Final ******Start 1, System Display welcome screen
2. Customer Inserts card 3. Customer inserts invald card? YESNO 4. System prompts for PIN 5.
Customer enters PIN &, System validate PIN 7, Invalid PIN? 7.1, System display pleage enter vald
FIN YESMO 8. Customer Choose Display Account Balance 9. System Display balance 10, Customer

Optimum Reduced Test Case :

Customer enters the amount -11, system verifies hat there is enough maney in the account to
suppart the withdranal -12, system determines there isinsuffident funds in the account to support
the withdranal? -12. 1, system displays insufficient funds message to the Customer - 13, system
verifies there s enough cash in the machine to suppart the withdranal --14, system reduces the
account by the amount requested and dispenses maney to the Customer 15, System Eject Card -

A

-

-

Validate

Optimum Test Case Symbolic Execution data :

display insert enter validate choose
display:

chedk tme out

validate display massege or page

insert;

checkinput type

checkinputsize

chedk tme out

compare input valu with the expected one
enter:

Optimum Test Case Validation :

1, System Display welcome screen -check tme out(IF
Fail)-»Errar

1, System Display welcome screen -»validate display
masseqe or page(If Fai)-»Errar

2. Customer Inserts card ->check input type([f Fa)-=Error
2, Customer Inserts card -»check input size If Fai)-»Error
2. Customer Inserts card ->chedk tme out{[f Fal)-»Emor
2. Customer Inserts card ->compare input valu with the
expected one(If Fail-sError

3, Customer inserts invald card? YES/NO ->check input
type(If Fail}-»Error

3, Customer inserts invald card? YESND -»checkinput
gie([f Fall}- sError

3, Customer inserts invald card? YESINO ->check time:

m

o

Finl

out(rf Fai)-Error v

Fig.10: GUI of the proposed system in case of a use case diagram

the test coverage criteria requires enough test cases, such
that each condition in a decision takes on all possible
outcomes at least once and each pomnt of entry to a
program or subroutine is invoked at least once. Whereas
Path Coverage executes each test case in such a way that
every path is executed at least once. The test cases are
prepared based on the logical complexity measure of a
procedural design. In path coverage of testing,
every statement in the program is guaranteed to be
executed at least once.

Cyclomatic Complexity 1s used to arrive at a basis
path (path coverage) (McQuillan and Power, 2005,
McCabe, 1976). It 1s a measure used to mdicate how much
a program is complex quantitatively. Cyclomatic
complexity 1s a size indicator that measures the number of
logical paths in a module. Tt also indicates the minimum
number of tests needed to forecast high reliability. It
helps in computing the minimum number of test paths
that has to be covered from the UML diagrams, especially
activity diagrams (Boghdady et al., 201 1a, b). Cyclomatic
complexity 1s applicable for diagrams with different sizes.
Tt is independent on the number of nodes. In addition, it
15 applied mamly on the diagrams with graph data
structre as in the case of the activity diagrams.
Cyclomatic complexity can be measured as shown in
Eq. 1 and 2:

V(G) = E-N+2 (1)
Where:

& 1
J
(g
F 10
£ 8
S 6
2 4
8
5 2
20 o
¢ @ ® £ 9 ® 0®
%, ®_, T2 8 & ® ©-
g > 5 (% =] - ’g -4 99
8 B8] & S = gg %
= - O S & © EQ =
B £ ° ko) - 5
g g B = g :
m o S — %
x X
References related work
Fig. 11: Cyclomatic Complexity Comparison
E = Graph edges number
N = Graph nodes number
V(G)=P+1 (2)

where, p is the number of predicate (decision) nodes
contained m the flow graph G.

Branch coverage < Cyclomatic complexity < Number of paths

(3

The cyclomatic complexity was computed for different
examples from related work studies. Fig. 11.

4285

Asian J. Inform. Technol, 15 (21): 4276-4290, 2016

4000
3500

3000

2500
2000
1500
1000

500

0

Activity diagram
2(Boghdadly..

Activity

diagram1(Boghdady .. (Boghdady

Activity diagran3 Activity alagram Activity diagram Activity diagraml Activity diagram

4(Boghdady 5(Boghdady (Kansomkeat 2(Shirole

References of related work

Fig. 12: Tiume comparison

3500
3000
2500
2000
1500
1000
500
0

Boghdady et al., 2011 Boghdadly et al., 2011

kundu and Samanta, 2009

Kansomkest et al., 2003

References related work

Fig. 13: Time comparison with other approaches

shows the number of generated test paths against the
cyclomatic complexity technique. The blue bar represents
the proposed system output, the red bar represents
expected output while the green bar shows the related
work output. The X-axis represents different examples
from the different related work studies with variant sizes
are used, while y-axis represents the Cyclomatic
complexity wvalues. In which comparison between
cyclomatic complexity measurements between the
proposed system the related work meets coverage criteria
(statement, branch and path). For example: In (Boghdady
et al., 2011) the expected output 1s V(3) = 16-13+2=5, The
proposed system output 15 V(G) =16-13=5, The related
work output 15 V(G) =16-13 = 5. In Boghdady ef al. (2011)
the expected output is V(G) = 6, The proposed system
output is V(G) = 6. The related work output is V(G) = 6. In
Kundu and Samanta (2009) the expected output is
V(G) = 7, the proposed system output 18 V(G) = 7 The
related work output 18 V(G) = 5.

The previous examples show that the proposed system
output is equal to the expected values, which guarantees
that the proposed approach achieves the minimum
number of tests needed to forecast high reliability.

Time: The time encountered to automatically generate the
test cases 13 used to evaluate our proposed approach.
Figure 12 illustrates the time elapsed in milliseconds when
applying the proposed approach to some examples from
related work studies, in comparison with the time taken by
these studies when applying Depth First Search (DFS)
and Breadth First Search (BFS). Y-axis represents the time
in milliseconds while x-axis represents different types of
behavioural diagrams.

The proposed model is applied to different behavioural
diagrams as in Kansomkeat and Rivepiboon (2013),
Kundu and Samanta (2009), Chen et ai (2010),
Boghdady et al. (201la, b), Shirole et @l (2011) and
Lietal (2013). It is found that BFS consumes a lot of time
as 1t uses huge memory to store all of the cluld pomters
for each level while DFS uses less memory. Consequently,
time is reduced. As for the proposed approach, an
optimization algorithm is enhanced to reduce time
effectively. Accordingly, optimized test cases are
generated which helps in minimizing the total
execution time as well as the total cost. Figure 13
llustrates the i the milhseconds

time used

4286

Asian J. Inform. Technol., 15 (21): 4276-4290, 2016

Table 1: Comparison between the proposed system and the related work

Generate Generate Generate Generate Apply test Generate
reduced reduced optimum optimum data optimum
Generate Generate set of set of test test generation test case
References UML type Automated test paths test cases testpaths testpaths path case technigue wvalidation
Proposed system Activity, state v v v v v v v v v
Use-case
Swain and Mohapatra Activity with v - v - - - - - -
(2010) Sequence
Hettab et ad.(2013) Activity v v - - - - - - -
Boghdady etdl. (2011) Activity v v v - - - - - v
Boghdady etdl. (2011) Activity v v v v v - - - v
Nayak and Samanta (2009) Activity v v v - - - - - -
Chen et al. (2010) Activity v v v - - - - - -
Kundu and Samanta (2009) Activity v v v - - - - R -
Chen et . (2008) Activity v v v - - - - - -
Lietal. (2013) Activity v v v v v - - - -
Pechtanum et af. (2012) Activity - v - - - - - - -
Ray et al. (2009) Activity v v v - - - - - -
Sumalatha and Raju (2013) Activity v v v v v - - - -
Kim et a. (2007) Activity - v - - - - - - -
Sumalatha and Raju (2012) Activity v v v - - - - - -
Kansomkeat and State v v v - - - - - -
Rivepiboon (2013)
Sarnuel et al. (2008) State v v v v v - - v -
Shirole et al. 2011) State v v v - - - - - -
Santiago et ai. (2008) State chart, finite v v v - - - - - -
state behavioural

Gnesi ef al. (2004) State v v v - - - - - -
Swain ef al. (2012) State v v v - - - - - -
Chimisliu and Wutawa State v v v v v - - - -
(2013)
Chimisliu and Wutawa State v v v - - - - - -
(2012)
Liet al. (2007) State v - - - - v - - -
Doungsa et al. (2007) State v v v - - - - v -
Chen et al. (2010) Use-Case v v v - - - - - -
Nebu Use-Case v v v - - - - - -
Gutiérrez et al. (2006) Use-Case v v v - - - - - -
Gutierrez ef ai. 2007) Use-Case v v v - - - - - -
Heumann (2001) Use-Case - v v - - - - v -
Sarma and Mall 2007) Use-Case, v - v - - - - - -
Gutiérrez ef al. (2007) Use-Case v v v - - - . R -

when comparing the test execution time of the proposed
approach with other approaches as DFS and BFS. As for
the other approaches, it is notable that BFS consumes a
lot of time, since it uses huge memory to store all of the
child pointers for each level, while DFS uses less memory.
Consequently, time is reduced As for the proposed
approach, an optimization algorithm is enhanced to reduce
time effectively. Accordingly, optimized test cases are
generated which helps in minimizing the total execution
time, as well as the total cost. In Fig. 13 the Y-axis
represents a time comparison in milliseconds while
represents different types of behavioural
diagrams. The blue line represents our proposed approach
whereas the red one is for the related work studies. The
proposed model is applied to different behavioural
diagrams as i Kundu and Samanta (2009),
Boghdady et al. (2011a, b). Boghdady et al. (2011a, b)
and Shirole et al. (2011). Table 1 demonstrates the
comparison between the proposed model and the related
worlk according to different criteria.

X-ax1s

The previous result proves that the proposed
approach meets hybrid coverage criteria (statement,
branch and path). Tt validates the number of generated
test cases by meeting cyclomatic complexity coverage. Tt
generates the optimum test path which when being
executed, it saves time cost. In addition, when being
compared to other approaches in measuring the total time
elapsed to generate test cases, it proves time saving,
especially after using the optimization technique.
Moreover, Table 1 states that the proposed approach is
generic, automated, optimized, comprehensive approach
in comparison with the related work studied in the field of
research.

CONCLUSION

Software testing is an essential phase in software life
cycle where it consumes a lot of money and effort in fixing
bugs. As the automation of test case generation process
helps in minimizing human intervention. Therefore, it is

4287

Asian J. Inform. Technol., 15 (21): 4276-4290, 2016

mandatory to automate this process in order to minimize
time and cost. In this study, a generic, optimized and
automated model with mimimum human mtervention is
proposed. Generic as it generates test cases from any
UMI, diagram regardless its type (use-case, activity, state,
etc.) for multi-disciplinary domains. Then it parses them to
generate the test paths then the test cases automatically.
For each diagram, an enhanced weighted graph 1s
constructed where an EACO (Enhanced Ant Colony
Optimization) technique is proposed that selects the next
modified using the enhanced graph. This
enhancement 1s because of the graphs generated from

node

UML behavioural diagrams are un-weight. The proposed
model requires weighted graph, accordingly, weights are
added to edges. These weights are calculated to be the
maximmum number of children between any two nodes
forming an edge. The maximum number is used to ensure
that each node has at least one child, which guarantees
the continuous commection between nodes. Therefore,
DFS 1s used to parse the enhanced graph and find all test
paths between initial and final nodes. DFS is used as it
uses less memory in comparison to that used by BFS, as
1t 1s not necessary for each level to store all the chuld
pointers. EACO (Enhanced Ant Colony Optimization)
algorithm is applied on the generated set of test cases to
find the optimum one (the test case with the shortest path
and highest pheromone value). Test data generation
technique 1s used to validate the optimum test case.
Finally, the proposed model is a combination
between testing
techniques. It can be used to generate test cases

model-based and search-based
automatically from different behavioural diagrams, as it
can be used for state, activity, use-case diagrams. In
addition, it meets coverage criteria (statement coverage,
branches coverage and paths coverage) Not only
optimized test cases are generated but also a test data
validation technique is applied to ensure the correctness
of the optimum generated test cases. In conclusion, the
proposed model proved to be an optimized model where
1t reduces the execution time in comparison to that used
by Depth First Search and Breadth First Search. It meets
the cyclomatic complexity values when applied to some of
the related work examples. It 13 also proved to be time
saving. We have evaluated our proposed approach
according to the time required to generate the test cases
and the cyclomatic complexity criteria where it proved its
efficiency compared to the previous works. In Future, this
approach can be enhanced by adding structural diagrams
to behavioural ones. Moreover, Test cases can be
generated from requirements of different models (waterfall
and agile models).

REFERENCES

Boghdady, P.N., N.L. Badr, M. Hashem and M.F. Tolba,
2011a. A proposed test case generation technique
based on activity diagrams. Int. I. Eng. Technol., 11:
37-57.

Boghdady, PN., N.L. Badr, M.A. Hashim and M.F. Tolba,
2011b. An enhanced test case generation technique
based on activity diagrams. Proceedings of the 2011
International Conference on Computer Engineering
and Systems (ICCES), November 29-December 1,
2011,TEEE, Cairo, Egypt, ISBN: 978-1-4577-0127-6,pp:
289-294,

Chen, L. and Q. L1, 2010. Automated test case generation
from use case: A model based approach. Prpceedings
of the 2010 3rd IEEE Intemational Conference on
Computer Science and Information Technology
(ICCSIT), July ©-11, 2010, IEEE, Heifei, China, ISBN:
978-1-4244-5537-9, pp: 372-377.

Chen, M., P. Mishra and D. Kalita, 2008. Coverage-driven
automatic test generation for UML activity diagrams.
Proceedings of the 18th ACM Symposium on Great
Lakes on VLSI, May 4-6, 2008, ACM, Orlando,
Florida, USA, ISBN: 978-1-59593-999-9, pp: 139-142.

Chen, M., P. Mishra and D. Kalita, 2010. Efficient test case
generation for validation of TUML activity diagrams.
Des. Autom. Embedded Syst., 14: 105-130.

Chimisliu, V. and F. Wotawa, 2012. Model based test case
generation for distributed embedded systems.
Proceedings of the 2012 IEEE Intemational
Conference on Industrial Technology (ICIT), March
19-21, 2012, IEEE, Graz, Austria, ISBN:
978-1-4673-0340-8, pp: 656-661.

Chimisliu, V. and F. Wotawa, 2013. Improving test case
generation from uml statecharts by using control,
data and communication dependencies. Proceedings
of the 2013 13th International Conference on Quality
Software, July 29-30, 2013, [EEE, Graz, Austria, [ISBN:
978-0-7695-5039-8, pp: 125-134.

Clarke, L.A., 1976, A system to generate test data and
symbolically execute programs. IEEE. Trans. Software
Eng., 2: 215-222.

Dorigo, M., M. Birattari and T. Stutzle, 2006. Ant colony
optimization. TEEE Comput. Intell. Magaz., 1: 28-39.

Doungsa, A.C., KUP. Dahal, MA. Hossain and
T. Suwannasart, 2007. An automatic test data
generation from UML state diagram using genetic
algorithm. Proceedings of the Second International
Conference on Software Engineering Advances
(ICSEA 2007), August 25-31, 2007, IEEE, Cap Esterel,
France, pp: 47-52.

4288

Asian J. Inform. Technol., 15 (21): 4276-4290, 2016

Frohlich, P. and J. Link, 2000. Automated Test Case
Generation from Dynamic Models. I
Object-Oriented Programming. Elisa, B. (Ed.).
Springer, Berlin, Germany, ISBN: 978-3-540-67660-7,
pp: 472-491.

Gnesi, S., D. Latella and M. Massink, 2004. Formal
test-case generation for TUML statecharts.
Proceedings of the 9th IEEE International Conference
on Engineering Complex Computer Systems, April,
14-16, Florence, Italy, pp: 75-84.

Gutierrez, J.J., M.T. Escalona, M. Mejias and T. Torres,
2006. An approach to generate test cases from use

Proceedings of the 6th international
Conference on Web Engineering, July 11-14, Palo
Alto, California, TJSA, pp: 113-114.

Gutierrez, J.J., M. Escalona, M. Mejias and
AH. Zenteno, 2007a. Using use case scenarios and
operational variables for generating test objectives.
Syst. Test. Validation, Vol. 23.

Gutierrez, 1.J., M.J. Escalona, M. Mejias and J. Torres,
2007b. Derivation of Test Objectives Automatically.
In: Advances m Information Systems Development.
Wita, W., WW. Gregory, J. Zupancic, G. Magyar and
G. Knapp (Eds.). Springer, Berlin, Germany, ISBN:
978-0-387-70801-0, pp: 435-446.

Harman, M., Y. Jia and W.B. Langdon, 2011. Strong lugher
order mutation-based test data generation.
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations
of Software Engineering, September 5-9, 2011, ACM,
Szeged, Hungary, ISBN:978-1-4503-0443-6, pp:
212-222.

Hartmann, T., M. Viera, H. Foster and A. Ruder, 2004,
UMI-based test generation and execution.
Presentation TAV21 Berlin, 28: 1-5.

Heumann, T, 2001. Generating test cases from use cases.
Ration. Hdge, Vol. 6,

Igbal, M.Z., A. Arcuri and L. Briand, 2012. Combining
Search-Based and Adaptive Random Testing
Strategies for Environment Model-Based Testing of
Real-Time Embedded Systems. In: Search Based
Software Engineering. Gordon, F. and T.D.S.
Jerffeson (Eds.). Springer, Berlin, Germany,
ISBN:978-3-642-33118-3, pp: 136-151,

Kansomkeat, S. and W. Rivepiboon, 2013.
Automated-generating test case using UML
statechart diagrams. Proceedings of the 2003 Annual
Research Conference on South African Institute of
Computer Scientists and Information Technologists
on Enablement Through Technology, September 1-3,
2003, South African Institute for Computer Scientists
and Information Technologists, Republic of South
Africa, ISBN:1-58113-774-5, pp: 296-300.

cascs.

Kim, H., 8. Kang, I. Baik and I. Ko, 2007. Test cases
generation from UML activity diagrams. Proceedings
of 8th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, ITuly 30-Aug. 1,
Qingdao, China, pp: 556-561.

Korel, B., 1990. Automated software test data generation.
TEEE. Trans. Software Eng., 16: 870-879.

Korf, R.E., 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artif. Intell., 27:
97-109.

Kulkarni, P. and Y. Joglekar, 2014. Generating and
analyzing test cases from software requirements
using NLP and Hadoop. Int. I. Curr. Eng. Technol., 4:
3934-3937.

Kundu, D. and D. Samanta, 2009. A novel approach to
generate test cases from UML activity diagrams. J.
Object Technol., 8: 65-83.

Ly, BL,Z8. L1 L. Qing and Y .H. Chen, 2007. Test case
automate generation from UMIL sequence diagram
and OCT. expression. Proceedings of the International
Conference on Computational Intelligence and
Security, December 15-19, 2007, Harbin, China, pp:
1048-1052.

Li, .., X. Li, T. He and I. Xiong, 2013. Extenics-based test
case generation for UML activity diagram. Procedia
Comput. Sci, 17: 1186-1193.

McCabe, T.I., 1976. A complexity measure. TEEE Trans.
Software Eng., 2: 308-320.

McMmn, P., 2004. Search-based software test data
generation: A survey. Software Test. Verfication
Reliab., 14: 105-156.

MecMinn, P., 2011. Search-based software testing: Past,
present and future. Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW),
March 21-25, 2011, TIEEE, Sheffield, UK, ISBN:
978-1-4577-0019-4, pp: 153-163.

McQuillan, J.A. and JF. Power, 2005 A survey of
UML-based coverage criteria for software testing.
Department of Computer Science, Maynooth
University, Kildare, Ireland.

Nayak, A. and D. Samanta, 2011. Synthesis of test
scenarios using UM activity diagrams. Software
Syst. Model., 10: 63-89.

Pechtanun, K. and 8. Kansomkeat, 201 2. Generation test
case from UML activity diagram based on AC
grammar. Proceedings of the 2012 International
Conference on Computer and Information Science
(ICCIS), June 12-14, 2012, IEEE, Songkhla, Thailand,
ISBN: 978-1-4673-1937-9, pp: 895-899.

4289

Asian J. Inform. Technol., 15 (21): 4276-4290, 2016

Prasanna, M. and K R. Chandran, 2011. Automated Test
Case Generation for Object Oriented Systems Using
UMI, Object Diagrams. In: High Performance
Architecture and Grid Computing. Archana, M., N.
Suman, K. Gauravand and K. Sandeep (Eds.).
Springer, Berlin, Germany, ISBN: 978-3-642-22576-5,
pp: 417-423.

Prasamna, M., K.R. Chandran and K. Thiruvenkadam,
2011. Automatic test case generation for uml
collaboration diagrams. IETE I. Res., 57: 77-81.

Ray, M., S.5. Barpanda and D.P. Mohapatra, 2009. Test
case design using conditioned slicing of activity
diagram. Int. J. Recent Trends Eng. ITTRTE., 1: 117-120.

Samuel, P., R. Mall and A K. Bothra, 2008. Automatic test
case generation using Unified Modeling Language
(UML) state diagrams. TET. Software, 2: 79-93.

Santiago, V., N.L. Vijaykumar, D. Guimaraes, A.S. Amaral
and E. Ferreira, 2008. An environment for automated
test case generation from statechart-based and finite
state machine-based behavioral models. Proceedings
of the IEEE International Conference on Software
Testing Verification and Validation Workshop
ICSTW'08, April 9-11, 2008, IEEE, Sao Jose Dos
Campos, Brazil, ISBN: 978-0-7695-3388-9, pp: 63-72.

Sarma, M. and R. Mall, 2007. Automatic test case
generation from UM models. Proceedings of 10th
International Conference on Information
Technology, Dec. 17-20, Washington, USA., pp:
196-201.

Schieferdecker, 1., 2012. Model-based testing. TEEE
Software, 29: 14-18.

Shahbaz, M., P. McMinn and M. Stevenson, 2015.
Automatic generation of valid and invalid test data
for string validation routines using web searches and
regular expressions. Sci. Comput. Programming, 97:
405-425.

Shanthi, A.V.K. and G.M. Kumar, 2012, Automated test
cases generation from UM sequence diagram. Int.
Conf. Software Comput. Appl., 41: 83-89.

Shirole, M. and R. Kumar, 2010. A Hybrid Genetic
Algorithm Based Test Case Generation using
Sequence Diagrams. In: Contemporary Computing.
Sanjay, R., A. Banerjee, K. K. Biswas, 3. Dua and P.
Mishra (Eds.). Springer, Berlin, Germany, ISBN:
978-3-642-14833-0, pp: 53-63.

Shirole, M., A. Suthar and R. Kumar, 2011. Generation of
improved test cases from UML state diagram using
genetic algorithm. Proceedings of the 4th India
Conference on Software Engineering, February 24-27,
2011, ACM, Thiruvananthapuram, Kerala, India,
ISBN:978-1-4503-0559-4, pp: 125-134,

Sumalatha, V.M. and G.8.V.P. Raju, 2012. UML based
automated test case generation technique using
activity-sequence diagram. Int. . Comput. Sci. Appl.
TIJCSA., 1: 58-71.

Sumalatha, V.M. and G.S.V.P. Raju, 2013. Model based
test case generation from UML activity diagrams. Int.
I. Comput. Sci. Appl. TITCSA., 1: 46-57.

Swain, R., V. Pantli, P. K. Behera and D.P. Mahapatra,
2012. Test case generation based on state machine
diagram. Int. J. Comput. Inf. Syst., 4: 99-124.

Swain, S.K. and D.P. Mohapatra, 2010. Test case
generation from behavioral UML models. Int. T.
Comput. Appl., 6 5-11.

Tahbildar, H. and B. Kalita, 2011. Automated software test
data generation: Direction of research. Int. J. Comput.
Sci. Eng. Surv., 2: 99-120.

Veanes, M., C. Campbell, W. Grieskamp, W. Schulte and
N. Tillmann et al., 2008. Model-Based Testing of
Object-Oriented Reactive Systems with Spec
Explorer. In: Formal Methods and Testing. Hierons,
R.M.,, PB. Jonathen and M. Harman (Eds.). Springer,
Berlin, Germany, ISBN: 978-3-540-78916-1, pp: 39-76.

Xing, Y., Y.Z. Gong, Y. W. Wang eand X.Z. Zhang, 2015. A
hybrid intelligent search algorithm for automatic test
data generation. Math. Prob. Eng., Vol. 2015,

Ye, I, Z. Zhen, C. Jin and Q. Zhang, 2009. A Software
Test Cases Automated Generation Algorithm Based
on Immune Principles. In: Autonomic and Trusted
Computing. Jaun, G.N., R. Wolfgang, W. Guojun and
I. Indulska (Eds.). Springer, Berlin, Germany, ISBN:
978-3-642-02703-1, pp: 62-74.

4290

	4276-4290_Page_01
	4276-4290_Page_02
	4276-4290_Page_03
	4276-4290_Page_04
	4276-4290_Page_05
	4276-4290_Page_06
	4276-4290_Page_07
	4276-4290_Page_08
	4276-4290_Page_09
	4276-4290_Page_10
	4276-4290_Page_11
	4276-4290_Page_12
	4276-4290_Page_13
	4276-4290_Page_14
	4276-4290_Page_15

