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Abstract: This study is intended to propose new criteria to decide appropriate hidden layer neuron numbers
i Recursive Radial Basis Function Networks (RRBFN) and successfully applied to the wind speed forecasting
application in renewable energy system. Purpose of the proposed methodology eliminate both either over fitting
or under fitting issues. The proper hidden layer neuron numbers is evolved through the presented 150 various
criteria. Exact modeling of recursive radial basis function networks possess with three input variables using the
proposed new determining criteria are validated by means of the convergence theorem. In order to verify
effectiveness and generalization capability of the proposed methodology, computer simulation 1s carried out
on two real-time data sets and selection of data influence on the results are analyzed with various training and
testing data. Experiment results confirmed that the proposed criteria result better framework for recursive radial
basis function networks with reduced statistical errors compared with other previous methodologies.
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INTRODUCTION

Artificial neural networks have wide spread familiarity
in lot of fields due to the real-time operation capability,
self-learming  capability, adaptability and  cost
effectiveness. An artificial neural network 1s an
information processing structure developed based on
the inspiration of biological system (brain, process
mformation), 1t 15 designed from intercommected
elementary processing elements is called neurons.
Selection of proper hidden layer neuron numbers are play
active tole in neural networks output. But selection of
proper ldden layer newron numbers 1s one of major
problem in neural networks development process. Neural
networks with few hidden neuron units may not have the
sufficient power to satisfy the requirements such as
accuracy, error precision and capacity. The problem of
over fitting data 1s caused by over training. The over
training issue has occurred in the neural networks design.
Therefore, selection of hidden neuron numbers in neural
networks design 1s one of the important problems.

Feed-forward networks and feedback (recurrent)
networks are classification of artificial neural network.
Feed-forward networks is a network with no feedback
path e.g. Radial basis function networks (RBFN), Back
Propagation Networks (BPN), etc., whereas feedback
networks is a network with feedback path that occur
between the layers (or) within the layers, e.g. Recurrent

Neural Networks (RNN), Hop-field, ete. In late 80°s Radial
basis function networks i1s employed as one of the
important variant of artificial neural networks, generally
applied for prediction, function approximation and pattern
recognition applications.

Due to the need for enhanced and advanced power
system, wind farm planning, scheduling and control
operation several researcher turned their attention
towards wind speed forecasting. This paper propose
novel recursive radial basis function networks for wind
speed forecasting application and right hidden layer
neuron numbers are evolved based on different 150
criteria, suggested all 150 criteria are verified based on the
convergence theorem.

Literature review: This study analyzes the proper choice
of hidden layer neuron numbers for recursive radial basis
function newral networks. If the lidden layer neuron
number is large the hidden output connection weights
become so less, learn easily and also the trade-off in
stability between mput and hidden output comnection
exists. The output newrons become unstable for large
hidden layer neuron numbers. While if the hidden layer
neuron number is small it may fall in to local mini ma due
to slow learming of the network and hidden neurons
become unstable. Therefore, deciding the proper hidden
layer neuron numbers is an important critical problem
for neural networks design and development. Several
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research experiments tried and suggested determining
proper ludden layer neuron numbers m neural networks
by many researchers. A comprehensive swvey is made to
determine the hidden layer neuron numbers in neural
networks design and illustrations are given as below.

Arai (1993) performed selection of hidden neurons in
network design based on Two Parallel Hyper plane
Methods (TPHM), appropriate hidden neurons for
network development is stated as 2%3. Ti et al. (1995)
carried out investigation to found the optimal number of
hidden units in the higher order feed-forward neural
network based on estimation theory. Tamura and Tateishi
(1997) presented finite number of hidden neurons based
neural network capability studies. From the results it
can be observed that N-1 hidden neurons for
three-layered feed-forward network and (N/2)+3 hidden
neurons for four-layered feed-forward network get exact
mput and target relation with mimmum error. Four-layered
network get better performance than that of three-layered
network. Fujita (1998) pointed out proper number of
hidden neurons for feed-forward neural network using
statistical estimation. In addition to the number of
inputs, the non-linearity of hidden neurons has an
effect on output error reduction and stated that
N, = Klog(|P,"Z|/C)/logS are required number of hidden
neurons where: K = data sets, C = allowable output error,
S = total amount of candidates that are randomly found
optimal hidden neurons.

Zhang et al. (2003) developed three layer binary
neural networks using set covering algorithm. The
sufficient and required number of hidden neurons is
determined as 3L/2 where: L = Number of umit sphere
contained in the selected unit sphere covering of
N-dimensional Hamming space. Compared with two-
parallel hyper plane approach, SCA based approach
estimating much reduced number of hidden neurons. Mao
and Huang (2005) performed data structure preserving
criterion based determination of hidden neurons for RBF
neural network classifier. Ke and Liu (2008) pointed out
neural network development for prediction of stock price
and performed neural network sensitivity investigation
based on optimal number of hidden neurons and hidden
layers. Based on the computed generalization and training
errors for forty cases with different hidden neurons using
formula N -, + /N1 where, N, is the number of input
neuron, N, is the number of input sample, L is the number
of hidden layer; the minimum error is evolved as the
optimal number of hidden neurons. Xu and Chen (2008)
suggested feed-forward neural networl for financial data
mining application and mumber of ludden neurons
estimated using novel approach is:

N, =C,(N/(dlog N))"*

Where:

C; = The first absolute moment of the fourier magmtude
distribution of the target fumction

d = The input dimension of target function

N = The number of traming pair

Remarks: In this case local mim ma issue 1s not
addressed, suggested formulation based N, get the
lowest RMS error. Trenn (2008) pointed out the
necessary number of hidden neurons and approximation
order for multilayer perceptron network. Necessary
number of hidden neurons is N, = (n+n,-1)/2 where, n,
number of inputs, which 1s formulated based on the
deswed approximation order and number of input
variables. Shibata and Ikeda (2009) mvestigated the
impact of learmng rate and number of lidden neurons on
stable leamming m large scale layered newral network.
Formulate the leamning rate | _;,, . Jy®®; as and number
of idden neurons y, yfy6)y® ¢

Where:
N® =No. of input neurons
N® =No. of output neurons

Hunter et al. (2012) analyzed appropriate choice of
neural network size and architecture. Different leaming
algorithm (EBP, LM and NBN), various network
topologies (MLP, BMLP and FCC) efficiency and
generalization issues are nvestigated in order to select
the proper neural network size and architecture. For MLP,
BMLP and FCC the required number of hidden nevrons 1s
stated asN, = N+1, N}, = 2N+1and N, =21 a, respectively.

Remarks: Compared to MLP, BMLP network trained
easily. Numerous trials are required for selection of hidden
neurons. Qian and Yong (2013) evolved rural per ca pita
living consumption prediction using BP neural networlk,
better accuracy 1s achieved with:

Ny =+/n+m+a

Where:

n = No. of nodes in mput layer
m = No. of nodes m output layer
a = Integer among 0-10

Sheela and Deepa (2013) implemented wind speed
prediction based on radial basis function network and
hidden neuwrons are searched by means of the new
algorithm. Best hidden neurons are selected from the
suggested 101 criteria based on the minimal error value.
Vora and Yagnik (2014) presented solution for local mini
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ma issue caused due to the large hidden newrons by
means of the new algorithm having structural changes n
feed-forward neural network. Madharasan and Deepa
(2016) proposed wind speed forecasting model using
IBPN (improved back propagation networlk) and analyzed
network hidden neuron mumber selection with existing
and proposed 131 criterion, finally the best result
achieved based on the proposed novel criterion.
According to the previous related works the following
points are observed.

Numerous researcher emphases to achieve the better
performance by handling this issue. But in neural networlk
there is no other way to determine the hidden layer
neuron numbers without attempting and evaluating
during the traimng process and evolving the
generalization error. The neural network properties such
as stability and convergence are checked by means of the
performance analysis. Much research developed different
methodologies for searching the proper hidden neuron
numbers 1 neural networks design i order to achieve the
quick convergence, better accuracy and efficiency with
mimimal statistical errors.

In neural networks design process the fixation of
hidden layer neurons play vital role, it helps to achieve
the better performance and stability. Hence, this study
proposes new criteria for proper fixation of hidden layer
neuron numbers in recursive radial basis function
networks for wind speed forecasting application to make
better accuracy, stability and generalization ability.

MATERIALS AND METHODS

Scope of estimating hidden layer neuron numbers:
Determination of correct hidden layer neuron numbers
and parameters 1s crucial and important task for neural
networks design. Major issue 1s to decide right hidden
layer neuron numbers in order to get exact solution for
particular task.

Issues in neural networks modeling: The issues mvolved
in neural networks modeling and training for a specific
application are given as follows:

*  Selecting what architecture to be used n the neural
networks design

*  Selection of how many lidden layers to be used in
the neural networks

¢ Deciding the hidden neurons in each hidden layers

¢ Fixing how many training pair to be used in the
neural networks

*  Deciding which traimng algorithm to be used m the
neural networks

+  Evaluating the networlk to check for over fitting (or)
under fitting issues

¢  Searching a global optimal solution that prevents
local mim ma issue by Hunter ef af. (2012) and
Panchal et al. (2011)

Neural networks is designed with less hidden
neurons produce large training errors and generalization
errors because of the under fitting problem while too
many hidden neurons used in neural networks cause low
traiming error and high generalization error due to over
fitting 1ssue stated by Xu and Chen (2008). Hence, choice
of proper hidden neurons has profound impact on the
errors. The errors are used to evolve the neural network
stability. Ke and Liu (2008) found that neural networlk with
minimum error has the better stability while the network
with higher error has the poor stability.

The process of deciding number of hidden layers and
number of hidden neurons in each hidden layers is still
confusing and challenging task stated by Karsoliva
(2012). Strategies to select the hidden neuron numbers in
artificial neural networks can be classified in to pruning
and constructive strategies. In the prumng strategy the
network starts with oversized and then prunes the
minimum relevant neuron and weights search the minimum
size, while in the constructive strategy network starts with
undersized networl and then supplementary hidden
neurcn are included to the network stated by Li ef al.
(1995) and Zhang and Morris (1998). Neural networks
traiming accuracy is estimated by the parameters such as
neural networks architecture, inputs, number of hidden
layers, hidden neuron nmumbers in each hidden layers,
activation function, outputs and weights updating
process.

Proposed determining criteria: The small size networks
offers simple structure and better generalization ability but
it may not learn the 1ssue well. While in the large size
network learn easily but slow and poor generalization
performance due to over fitting stated by Urolagin ef al.
(2011). In neural network design different heuristics are
exists, there 1s no hard and fast accurate rule for
estimation of hidden neuron numbers in the neural
networks design. Therefore, new criteria are proposed for
proper selection of hidden layer neuron numbers in
recursive radial basis function networks. The considered
150 different criteria are function of mput layer neurons
and are noted to be satisfied the convergence theorem.
Among the 150 different criteria, the best criteria are
estimated based on the least statistical errors. Proposed
new criteria estimate the right hidden layer neuron
numbers in recursive radial basis function networks with
less computational complexity.

Proposed wind speed forecasting model: The ultimate aim
of the proposed wind speed forecasting model is to
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estimate the hidden neuwron numbers in the recursive
radial basis function neural network for wind speed
forecasting with reduced statistical errors and better
accuracy.

TImpact of wind speed: The dual aims of global reduction of
CO, emission and improving energy security (energy
policy goals m many countries) comcides in the
mcreasing use of wind energy for electricity generation.
Due to the time varying and changeability of wind, wind
speed forecasting 1s very mmportant hot topic in research.
Wind power caused bad impact on electrical system 1s
elimmated by accurate wind speed forecasting. Small
fraction deviations of wind speed will lead to a large error
output of wind driving systems. Need for wind speed
forecasting is given below:

*  Reliable and better quality operation of power system

* To assist planning, scheduling and control of wind
farm and power system

¢  Effective integration of wind power to the electrical
power grid

* Mimmizes the operating cost of the wind power
generation

¢+ Tomeetlow spinning reserve

Purpose neural networks for wind speed forecasting:
Wind has uncertain and irregularity characteristic. In
order to achieve the better generalization capabilities for
the wind speed forecasting the input and output 1s to be
modeled and the hidden neuron numbers should be
appropriately selected for the neural network design. The
dynamic system may not achieve a feasible solution due
to the insufficient hidden neuron numbers in the neural
network. Many researchers were tried to developed
different strategies to select the proper hidden neuron
numbers in the neural network but yet none was effective
and accurate. In the current scenario lot of forecasting
research fields have been heuristic in nature. An accurate
wind speed forecasting is one of the important problems
in renewable energy systems because of dilute and
fluctuating nature of wind.

This study ultimate aim 1s developed the recursive
radial basis function networks model for application of
wind speed forecasting and to estimate the optimal hidden
neuron numbers in recursive radial basis function
networks based on the different 150 criteria, where these
criteria are framed as a function of n (input layer neurons).
The single appropriate topology is utilized. The proposed
model confirms that even though large ludden neuron
numbers n the recursive radial basis function networks
get stable performance on training. Features of the

proposed approach are discussed here. The recursive
radial basis function networks superior to radial basis
function networks and back propagation feed-forward
networks because it does not require much training time,
faster rate of convergence, avoid local mim ma problem,
simple and compact. The proposed novel recursive radial
basis function network with single hidden layer is
sufficient to solve any continuous function with reduced
complexity and suitable for various applications such as
prediction,  pattern  recognition and  function
approximation.

Description of recursive radial basis function networks:
The proposed novel recursive radial basis function
networl is a multi-layer feed-forward networks. Recursive
radial basis function networks consist of three layer such
as input layer, hidden layer and output layer. In the case
of novel recursive radial basis function networks weights
are recursively updated in order to male the least output
error. Input layer outputs are evolved based on the
distance between the inputs and hidden layer centers.
Input layer outputs are transformed to the lndden layer as
a nonlinear form. The hidden layer has a large dimension
because all mput layer neurons are linked directly to the
hidden layer. Each hidden neurons of hidden layer has
parameters such as width and center place. In recursive
radial basis function networks each and every hidden
neuron in hidden layer has Gaussian activation function.
The Gaussian recursive radial basis function is fine-tuned
by means of the spread value adjustment, 1.e., shape the
(Gaussian recursive radial basis function curve. At zero
distance the Gaussian activation function curve has a
peak value and further minimizes as distance from the
center increase. The outputs of the hidden layer are
weighted form of the mput layer output which 1s
transformed to the output layer as a linear form. Weights
are updated recursively in order to achieve the minimum
output error. The weight updating process uses the
gradient descent rule. The objective of the suggested
approach 1s to select the appropriate hidden layer neuron
numbers in order to obtain the faster convergence and
better accuracy with minimal statistical error.

Design structure of Recursive radial basis function
network: Neural networl designing process plays a key
role to get better network performance. Proposed
recursive radial basis function networks based wind
speed forecasting constructed with three inputs neurons
such as wind speed (N,), wind direction (WD,) and
temperature (T,), one hidden layer, one output neuron
(forecast wind speed) and hidden neuron numbers in
hidden layer 1s decided from the proposed 150 various
criteria based on the lowest minimal error. The design
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Wind speed

Input layer

Hidden layer

Wind direction

Temperature

150 criteria

Forecast wind speed

Fig. 1: Proposed recursive radial basis function networks design structure

Table 1: Input and output variables of proposed forecasting model

Input variables Description Output variable  Description

I Wind Speed (N,,) 0 Forecast wind
I Wind Direction (WD,,) speed (Ng,)

I Temperature (Tw)

Table 2: Recursive radial basis function networks design parameters
Recursive radial basis function networks

Parametric values
3[NW =WDW =TW ]

Paramneters
Input neurons
Number of hidden layer

Hidden neuron numbers FEstimated based on 150 criteria
Output neuron 1M,

Number of epochs 2000

Spread 2.5

structure of the proposed recursive radial basis function
networks model for estimating the hidden neuron numbers
15 shown in Fig. 1. Figure 1 mferred mput and output
target vector pairs are described in Table 1.
network each layer

mdependent computations on received data and the
computed results are transferred to the next layer and

In neural performs  the

lastly network output 13 computed this information is
inferred from Fig. 1. The new criteria are used to estimate
hidden layer neuron numbers in network design and the
proposed model 13 adopted for wind speed forecasting
application.

The proposed recursive radial basis function
networks designed parameters includes dimensions and

epochs shown in Table 2. The dimensions such as

input neuron numbers, hidden neuron numbers, output
defined 1in the
and  hidden
interlinked by means of the hypothetical connection.

neuron numbers are network

design.  Input layer layer are
Hidden layer has Gaussian function. Hidden layer and
output layer are interlinked by means of the weighted
radial

networks weights updating process performed recursively

connections. In recursive basis function

in order to improve the convergence rate and achieve
minimal error. The output layer has linear function.
Training learns from the normalized data. Error coming to
a very negligible value 1s a stopping condition for testing
process.

Mathematical modeling:
Input vector:

=[N, WD, T.] (1)

Output vector:

O = [Ng] (2)
Weight vectors of ludden to output vector:
V=[V, V,...V.] (3)

Gaussian activation function:
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Table 3: Collected actual input data samples (from Suzlon Energy Pvt. Ltd)

Temperature {°C) Wind direction (Degree)

Wind speed (msec™)  Temperature (°C)

Wind direction (Degree) Windspeed (nsec™)

26.4 285.5 8.90 24.1 77.30 2.9
25.9 285.5 8.00 241 83.00 1.1
25.8 279.8 770 284 83.00 6.4
261 286.9 6.90 26.8 105.5 7.6
304 2981 6.80 261 101.2 5.6
324 277.0 5.90 25.8 122.3 4.0
275 3150 3.80 24.1 184.2 0.4
26.6 299.5 1.90 25.8 3361 2.4
25.2 112.5 9.20 24.5 26.70 53
26.4 111.1 15.9 23.2 157.5 2.4
£(Z )= o B (4 Data collection and site description: The real-time data

where, Z;, = net input. Output of recursive radial basis
function networks:

7, = Y A= * v ). )
1=1
k=12 ..,m
Where:
n = Number of hidden neurons.
I = Input vector
C = ith center node in hidden layer

h-Ci” = Euclidean distance between C, and T
f (Gaussian activation function
Vi = Weights between hidden and output layer

Numerical implementation of proposed networks: The
wind speed forecasting using neural networks associated
with modeling, training and testing process. Accurate
neural networks model development is a complex and a
challenging task. The input parameters used for the
recursive radial basis function networks are real-time
data. Hence, normalization process is performed due to
overcome training process problem of large valued input
data tend to reduce the effect of smaller value input data.
The min-max normalization techmque i1s adapted to
normalize the different range of real-time data in the range
of 0 to 1. The normalization process helps to improve the
numerical computational accuracy, so the recursive
radial basis function networks model accuracy 1s also
enthanced.

Estimation of proper hidden layer neuron numbers in
neural networks 1s a challenging task, random selection of
hidden neuron numbers lead to over fitting or under
fitting problem. Therefore, new 150 criteria are proposed
in order to select right hidden layer neuron numbers in
neural networks. Presented 150 criteria are verified by
means of the convergence theorem. The appropriate
hidden neuron numbers in hidden layer is estimated by
means of the lowest mimmal error.

was collected from Coimbatore site with various windmill
heights such as 65 and 50 m height at 10 sec time intervals
from Suzlon Energy Private Limited from JTanuary 2012 to
December 2014, First real-time data set is collected from
Coimbatore site wind farm with 65 m windmaill height,
which contains 10,000 data samples. Second real-time data
set is collected from Coimbatore site wind farm with 50 m
windmill height which consists of 10,000 data samples.
Table 3 depicts collected actual data sample 1nputs. The
proposed recursive radial basis function networks based
wind speed forecasting model is developed by means of
two real-ime data sets; each data set contain 10,000
numbers of samples.

Normalization: Scaling (or) Normalization is very
important for dealing with real-time data samples; the
real-time data samples have different range and different
urits. Hence, the normalization is used to normalize the
real-time data within the range of 0-1. The proposed model
utilizes the min-max normalization method. Following
transformation equation 1s used to normalize the real-time
data samples.

Normalized input:

I —[I_Im}(lm T )+ T (6)
.- T.
Where:
L = Actual input data
L., = Mimimum input data
L. = Maximum mnput data
I'.. = Mimmum target value
I = Maximum target value

Criteria for determining hidden layer neuron numbers:
Suggested 150 different criteria are satisfied the
convergence theorem requirement. All chosen criteria
were examined in recursive radial basis function networks
in order to estimate the networks traming process and
statistical errors.
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The development of the proposed model is initiated
by employing the chosen criteria to the recursive radial
basis function networks. After the development process
train the recursive radial basis function networks and
compute the statistical errors. Estimation of right hidden
layer neuron numbers is fixed based on the reduced
statistical error.

Training and testing of the network performance: The
wind speed forecasting model based on recursive radial
basis function networks 15 developed using training data
set while the performance of the proposed model is
evaluated by using the testing data set. The collected
real-time data are imtially classified mto the training and
testing set. Training set 1s used in neural network learning
and testing set is used to compute the error. Collected
10,000 real-time data is classified in to training and testing
sets. Collected 70% of data samples (7000) are used for
traming phase and 30% of the collected data samples
(3000) are used for testing phase of the proposed
networks. The considered 150 various criteria are applied
to recursive radial basis function networks one by one
without changing networks design parameters and check
performance is accepted (or) not The
performance is calculated based on the statistical error
criteria such as MSE, MAE and MRE. Equation (7-9)
represents the statistical error formulas. During tramning

network

process of the network the generalization performance
differ overtime.

RESULTS AND DISCUSSION

The suggested criteria are considered in this study 1s
used to building three layer neural networks. The
proposed recursive radial basis function networks is
developed to r1un on an Acer laptop computer with
Pentium (R) Dual Core processor running at 2.30 GHZ with
2 GB of RAM. Networks performance 1s evaluated based
on the statistical error calculation. The experimental
results confirm with minimum error is determined as the
best solution for selecting hidden layer neuron numbers
in recursive radial basis function networks.

Performance metric for forecast accuracy: The
implemented recursive radial basis function networks
based wind speed forecasting model performance 1s
analyzed based on the performance metric such as Mean
Absolute Error (MAE), Mean Relative Error (MRE) and
Mean Square Error (MSE). From the different 150 criteria,
the best lndden neuron numbers 1s selected based on the
mirmeal error performance. The statistical errors are used

to measure the quality of forecast wind speed obtained by
neural network. Statistical error criteria formulas are given
as follows:

M
MSE = LZ(T; ~T,) 9
N 1=1
13
MAE =—Y (T -T) (8)
N 1=1
L&
MRE = ﬁZ‘(Tl ~T)IT, (9)
1=1
Where:
N = The number of samples

T, = The actual output
The average actual output
. The forecast output

.
Il

Statistical analysis of computed wind speed and error
factors: Evaluating proper hidden layer neuron numbers
in novel recursive radial basis function networks among
from considered 150 different criteria, the experiments
have performed on two real-time data sets. Computed
statistical errors for the proposed forecasting model are
established in Table 4. From the Table 4 it can be noted
that the appropriate hidden layer neuron numbers for
recursive radial basis function networks 1s estimated
as 97 based on the proposed new criteria
N, = [(2(5n™+3 1 ¥(n’-8)]. Proposed recursive radial basis
function network with 97 lidden neuron numbers is
achieved mimmal statistical errors compared to other
considered criteria it can be inferred from experiment on
two real-ime data sets. The experimentation on data
samples collected from 65 m windmill height confirms that
the 97 hidden neurons estimated by means of the criteria
N, = [(2(5n*+3'H1 ¥(n*-8)] achieve minimal statistical errors
MSE of 7.6313e-13, MAE of 5.6554e-07 and MRE of
6.9806e-08. The experimentation on data samples collected
from 50 m wmndmill height revealed that the 97 hidden
neurons estimated by means of the critenia N, =
[(2(5n™+3)+1 ¥/(1’-8)] achieve much minimal statistical
errors MSE of 5.1959¢-13, MAE of 2.5817-07 and MRE of
3.4229¢-08. Comparison with experimentation on two
real-time data sets, the experimentation on data samples
collected from 50 m windmill height proves with the least
statistical errors. Therefore, the proposed criteria improve
the effectiveness and accuracy for recursive radial basis
function networl based wind speed forecasting,.

Based proposed  forecasting model
experimental result comparison between the actual
and forecast wind speed (50 m height windmill) for
3,000 samples is shown in Fig. 2, relationship between

on the
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Table 4: Recursive radial basis function networks statistical analysis of different criteria for estimating hidden layer neuron numbers

Hidden Considered criteria for Data set 1 Data set 2

neuron determining 3 inputs networks

numbers  hidden neurons MSE MAE MRE MSE MAE MRE

6 2n/(n-2) 1.2083e-10 5.3726e-06 6.9102e-07 2.2742e-10 9.8362e-06 1.3614e-06
134 (B(n*+7y+6)/(1?-8) 9.2971e-07 4.5566e-04 5.8607e-05 4.4276e-07 1.5972e-04 2.1176e-05
18 (4nt6)/(n-2) 1.0501e-10 5.0433e-06 6.4867e-07 1.6281e-10 8.2770e-06 1.1456e-06
113 (8(n+5)+2)/(n*-8) 1.2952e-10 5.7588e-06 7.4069e-07 2.3545e-10 1.0240e-05 1.4172e-06
24 (Tn+3)/(n-2) 1.2602e-10 5.3665e-06 6.9024e-07 1.6361e-10 8.2986e-06 1.1486e-06
145 (8(n*+9)+1)/(n*-8) 0.0273 0.1264 0.0153 0.0280 0.0974 0.0129

39 (11nt+6)/(n-2) 6.8661e-06 0.0012 1.5461e-04 5.6724e-06 0.0013 1.8597e-04
128 B+ (n*-8) 0.0024 0.0275 0.0033 0.0010 0.0220 0.0029

82 (6(n*+4)+4)/(n*-8) 7.2482e-05 0.0053 6.3833e-04 5.0668e-07 3.9226e-04 5.4290e-05
100 (8(n+3)+4)/(n*-8) 1.4254e-10 5.2661e-06 6.7732e-07 4.5577e-10 1.3801e-05 1.9101e-06
46 (4n*+10)/(n°-8) 3.6197e-08 2.9994e-05 3.7022e-06 1.3275e-08 2.1791e-05 2.8892¢-06
73 (Hn*+73+9)/(1?-8) 1.197%¢-10 5.1958e-06 6.6828e-07 1.1837e-10 8.9164e-06 1.2341e-06
107 (T(n*+6)+2)/(n*-8) 1.1444e-10 4.9672e-00 6.3887e-05 8.9551e-10 1.7558e-05 2.4300e-06
55 (Hn*+35)-1)/(n*-8) 4.6430e-10 9.2212e-06 1.1860e-06 4.9342e-10 1.4367e-05 1.9884e-06
85 (6(n*+5)+1)/(n*-8) 1.1866e-08 5.5245e-05 7.1056e-06 3.9394e-08 1.2522e-04 1.7331e-05
119 (7(n*+8)/(n*-8) 1.2083e-10 5.3728e-06 6.9104e-07 3.8460e-09 1.7759e-05 2.3546e-06
50 (Hn*+-2)/(n*-8) 4.7313e-04 0.0142 0.0018 2.5660e-04 0.0112 0.0015

65 (Hn*+63+5)/(1?-8) 1.0678e-07 1.8021e-04 2.3179-05 1.6209e-07 2.3875e-04 3.3044e-05
26 (7nt5)/(n-2) 8.2372e-11 4.6618e-06 5.9960e-07 8.6253e-11 5.7373e-06 7.9407e-07
96 (B +7)/(n*-8) 9.0080e-10 1.1002e-05 1.4150e-06 8.1856e-10 1.7042e-05 2.3586e-06
124 (8(n*+6)+4)/(1F-8) 1.0501e-10 5.0429¢-06 6.4861e-07 6.8711e-10 1.8326e-05 2.4298e-06
59 (4nH+H+7)/(n*-8) 1.5100e-10 6.1244e-06 7.8772e-07 1.9687e-10 9.3461e-06 1.2935e-06
3 4n/(nt+1) 0.0314 0.1277 0.0164 0.0558 0.1538 0.0200
140 (8(n+8)+4)/(n*-8) 9.5274e-11 4.9085e-06 6.3133e-07 8.6253e-11 5.7379e-06 7.941 5e-07
88 (7(0*+3)+4)/(n*-8) 9.6024e-07 4.8437e-04 6.2299¢-05 4.898%-07 4.0330e-04 5.5818e-05
132 (B(n*+7y+4)/(1?-8) 1.3299¢-10 5.9495e-06 7.6522e-07 4.6496e-10 7.8083e-06 1.0353e-06
89 (6(0*+5)+5)/(n*-8) 3.5069¢-07 2.9791e-04 3.8317e-05 2.3969¢-07 2.8864e-04 3.9948e-05
118 (8(n+5)+6)/(n*-8) 4.6142e-07 3.6076e-04 4.6401e-05 3.0617e-07 3.1836e-04 4.4063e-05
5 (B3nt1)/(n-1) 0.0173 0.0971 0.0125 0.0186 0.1051 0.0136

48 (4H(nH+2)+4)/(n*-8) 6.8959¢-08 1.4881e-04 1.913%e-05 6.2725e-08 1.4537e-04 2.0120e-05
74 (4(n*+8)+6)/(n*-8) 1.3867e-08 6.8005e-05 8.7468e-06 3.6147e-08 1.1250e-04 1.5571e-05
126 B(M+7)-2)/(n*-8) 0.0026 0.0310 0.0037 0.0032 0.0427 0.0057

98 (7(*+5)/(n*-8) 1.4308e-10 4.9484e-06 5.8589¢-07 4.7272e-10 1.3909e-05 1.9251e-06
20 (6n+2)/(n-2) 1.1231e-06 5.3271e-04 6.8517e-05 2.2145e-06 7.9545e-04 1.1009e-04
149 (8(0*+9)+5)/(n*-8) 0.0047 0.0444 0.0054 0.0050 0.0544 0.0072

57 (4HnH+4+5)/(n*-8) 4.7505e-09 3.2718e-05 4.2082e-06 4.8799¢e-08 1.4525e-05 2.0104e-05
105 (7(m*+6)/(n*-8) 0.0287 0.1318 0.0169 0.0166 0.1002 0.0130

69 (Hn*+73+5)/(?-8) 1.4886e-08 6.6641e-05 8.5713e-06 5.6481e-08 1.4938e-04 2.0674e-05
52 (4’ +3y+4)/(n*-8) 2.1381e-05 0.0034 4.4306e-04 2.8881e-06 9.7266e-04 1.3462e-04
75 (6(n+3)+3)/(n*-8) 4.9467¢-08 1.3160e-04 1.6927e-05 4.5780e-08 1.3790e-04 1.9086e-05
14 On+1)/(n-1) 1.4257e-10 6.0070e-06 7.7262e-07 1.9804e-10 9.4212e-06 1.303%e-06
139 (9(n*+6)+4)/(F-8) 3.5571 1.6104 0.2071 2.4931 1.3558 0.1760

1 20/t 3) 3.5571 1.6104 0.2071 2.4931 1.3558 0.1760

67 (Hn*+63+7)/(1?-8) 1.5828e-08 6.8276e-05 8.7816e-06 5.7936e-08 1.4583e-04 2.0183e-05
36 (3n*+9)/(r-8) 7.8889%-10 1.3704e-05 1.7626e-06 8.1857e-10 1.7042e-05 2.3586e-06
121 (7(n+8)+2)/(n*-8) 1.0314e-04 0.0068 8.193%¢-04 3.1774e-04 0.0013 1.6581e-04
28 (20*+10)/(n°-8) 8.2778e-06 0.0016 2.0466e-04 4.0868e-06 0.0013 1.7521e-04
9 3n/(n-2) 1.2871e-10 5.6239¢-06 7.2335e-07 2.1342e-10 9.2840e-06 1.284%e-06
144 (9> +7/(n*-8) 6.2045e-07 3.9838e-04 5.1240e-05 2.8439-07 3.0260e-04 4.1880e-05
80 B+ 1))/ (n*-8) 1.685%-10 6.9499¢-06 8.938%9¢-07 2.4975e-10 1.0486e-05 1.4512e-06
133 (7(*+9y+7)/(n*-8) 9.3267e-07 4.8635e-04 6.2554¢-05 1.1293e-06 2.8098e-04 3.7254e-05
84 (7(n*+3)/(n*-8) 1.3931e-08 6.8755e-05 8.8433e-06 1.3436e-07 2.1238e-04 2.9394e-05
150 (9(n*+7)+6)/(1r-8) 1.4413e-10 5.8859%-06 7.5704e-07 4.9600e-10 1.5439e-05 2.0470e-06
25 (9n-2)/(n-2) 1.7786e-10 6.6619e-06 8.5685e-07 1.7154e-10 8.4518e-06 1.1698e-06
104 (B(m*+N)/(n*-8) 3.5571 1.6104 0.2071 2.4931 1.3558 0.1760

37 (9n+10)/(n-2) 5.9654e-10 1.0283e-05 1.3226e-06 6.9907e-10 1.5342e-05 2.1234e-06
60 (5(n*+2)+5)/(n*-8) 6.5638e-09 4.1820e-05 5.3788e-06 2.0324e-08 7.4693e-05 1.0338e-05
127 (7(n+9+1)/(n*-8) 4.6537e-07 3.7539-04 4.8282e-05 3.3559e-07 1.5400e-04 2.0419e-05
19 (7n-2)/(n-2) 7.6032e-11 4.4057e-06 5.6666e-07 8.6250e-11 5.7381e-06 7.9417e-07
95 (6(n*+6)+5)/(1?-8) 4.2535e-07 3.5483e-04 4.5638e-05 4.6891e-07 4.0692e-04 5.6319e-05
49 (4’ +3)+1)/(n*-8) 0.0036 0.0367 0.0047 0.0031 0.0385 0.0050

64 (Hn*+7)/(n*-8) 7.1052e-06 0.0010 1.3107e-04 1.8724e-06 7.48%0e-04 1.0365e-04
56 (Hn*+5))/(n*-8) 1.1940e-10 5.3462e-06 6.8762e-07 1.6726e-10 8.4364e-06 1.1676e-06
8 (3n-1¥(n-2) 6.6538e-05 0.0016 1.941 5e-04 1.0728e-05 6.4206e-04 7.9252e-05
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Table 4: Continue

Hidden Considered criteria for Data set 1 Data set 2

neuron determining 3 inputs networks

numbers  hidden neurons MSE MAE MRE MSE MAE MRE

143 (8(n*+8)+7)/(n*-8) 0.0066 0.0506 0.0061 0.0080 0.0678 0.0090

91 (6(n*+6)+1)/(r-8) 1.5602e-09 2.2331e-05 2.8722e-06 2.2779%-09 2.7563e-05 3.8148e-06
30 (Bn*+3)/(1?-8) 8.7292¢-11 4.6900e-06 6.0322e-07 9.9821e-11 6.3262e-06 8.7557e-07
77 (6(0*+3)+5)/(n*-8) 1.1240e-06 4.9024e-04 6.3055e-05 5.4781e-07 3.8869e-04 5.3796e-05
122 (B(n*+6)+2)/(1?-8) 1.1697e-10 5.3566e-06 6.8896e-07 1.3423e-09 2.1810e-05 3.0185e-06
42 (5m-3)/(n*-8) 1.4049¢-05 0.0023 2.9711e-04 4.9671e-05 0.0052 6.7384e-04
110 (7(*+7)-2)/(n*-8) 3.2454e-05 0.0038 4.6311e-04 9.5261e-05 0.0014 1.8447e-04
13 (8n+2)/(n-1) 9.8711e-11 5.0858e-06 6.5413e-07 9.7176e-11 6.2378e-06 8.6334e-07
135 (7(0*+9)+9)/(n*-8) 1.0468e-10 5.3874e-06 6.9293e-07 1.2402e-09 2.1362e-05 2.9566e-06
58 (4H(nH+53+2)/(n*-8) 1.3299¢-10 5.9489¢-06 7.6514e-07 1.8419e-10 9.0026e-06 1.2460e-06
116 (8(n*+5)+4)/(n*-8) 9.6423e-11 5.2674e-06 6.7749¢-07 9.9819%-11 6.3262e-06 8.7557e-05
93 (6(n*+6)+3)/(1f-8) 7.6612e-11 4.4852e-06 5.7688e-07 5.7067e-11 4.5017e-06 5.8438e-07
142 (8(n*+9)-2)/(n*-8) 0.0042 0.0395 0.0048 0.0062 0.0537 0.0071

17 (6n-1)/(n-2) 7.7547e-11 4.5303e-06 5.8269e-07 8.6249¢-11 5.7378e-06 7.9414e-07
32 (Bn*+35)/(1?-8) 9.3178e-10 1.4103e-05 1.813%e-06 2.0631e-10 4.0038e-06 5.3086e-07
129 (7(0*+9)+3)/(n*-8) 1.2752e-10 5.4716e-06 7.0376e-07 4.5854e-10 9.7168e-06 1.2883e-06
76 (B(n*+)-2)/(n2-8) 1.3761e-08 6.6826e-05 8.5951e-06 1.7968e-08 7.1201e-05 9.854 5e-06
108 (8(n*+4+4)/(n*-8) 8.4532e-11 4.7974e-06 6.1704e-07 8.6252e-11 5.7376e-06 7.9411e-07
23 (6nt+5)/(n-2) 8.3579%-06 0.0016 2.0417e-04 1.8340e-05 0.0029 3.6998e-04
81 (7(nH+2)+4)/(n*-8) 3.6066e-10 8.7042e-06 1.1195e-06 4.5578e-10 1.3801e-05 1.9101e-06
4 (5nt+1)/(t1) 1.2896e-10 5.6447e-06 7.2602e-07 2.9784e-10 1.1327e-05 1.5678e-06
61 (4H(n+53+5)/(n*-8) 2.4017e-09 2.4971e-05 3.2117e-06 3.4706e-09 3.2703e-05 4.5262e-06
53 (4’ +4+1)/(n*-8) 6.6840e-06 0.0011 1.3923e-04 2.4713e-06 8.9012e-04 1.2320e-04
45 (O™ +9)/(n*-7) 1.4960e-09 2.1341e-05 2.7449¢-06 1.7917e-09 2.4952e-05 3.4534e-06
148 (9’ +Ty+4)/(n*-8) 6.0190e-07 3.9979-04 5.1421e-05 1.3898e-07 2.1342e-04 2.9538e-05
21 n/(n-2) 8.9046e-11 4.7974e-06 6.1704e-07 9.7423e-11 6.2253e-06 8.6161e-07
125 (T(n*+H-1)/(12-8) 3.5571 1.6104 0.2071 2.4931 1.3558 0.1760

87 (6(n*+5)+3)/(n*-8) 1.5178e-10 6.1521e-06 7.9129¢-07 4.3200e-10 1.3324e-05 1.8441e-06
114 (T(*+63+9)/(1?-8) 0.0016 0.0258 0.0031 0.0014 0.0286 0.0037

35 (4e-1)/(n*-8) 9.5319e-09 4.8073e-05 6.1831e-06 6.9161e-09 4.1699e-05 5.7713e-06
72 (4(*+8)+4)/ (1 -8) 2.0472e-06 7.3737e-04 9.4840e-05 9.8844e-07 5.6531e-04 7.8242e-05
44 (512-1)/(n2-8) 1.4061e-12 7.6798e-07 9.4794¢-08 8.9927e-12 2.0200e-06 2.6782e-07
138 (8(0*+8)+2)/(n*-8) 0.0053 0.0454 0.0055 0.0074 0.0047 6.2236e-04
11 (4n-1)/(n-2) 0.0022 0.0240 0.0031 0.0149 0.0936 0.0121

102 (6(n*+8)/(n*-8) 1.2691e-10 5.5813e-06 7.1787e-07 4.6572e-10 1.3100e-05 1.8132e-06
92 (7(n*+3)+8)/(1f-8) 9.7861e-07 4.8396e-04 6.2247e-05 2.4658e-07 2.8304e-04 3.9174e-05
12 (Tn+3)/(n-1) 1.0753e-10 5.2254e-06 6.7208e-07 1.5811e-10 8.1855e-06 1.132%e-06
147 (8(0*+9)+3)/(n*-8) 5.8067e-07 3.9410e-04 5.0688e-05 1.3690e-07 2.0988e-04 2.9048e-05
94 (B(n*+7)-2)/(n2-8) 8.1461e-10 1.5709e-05 1.9390e-06 2.0328e-10 9.4973e-06 1.3145e-06
117 (7(n*+ 7 +5)/(n*-8) 4.3138e-10 1.1579e-05 1.4010e-06 1.3953e-09 9.3098e-06 1.2344e-06
31 (On+4)/(n-2) 1.185%-10 5.3855e-06 6.9268e-07 1.841%-10 9.0024e-06 1.2460e-06
71 (A7) (e -8) 1.6637e-05 0.0030 3.8774e-04 1.8714e-06 7.4827e-04 1.0356e-04
7 (2nt+1)/(n-2) 0.0034 0.0390 0.0050 0.0036 0.0397 0.0052

83 (5(n*+7y+3)/(1?-8) 1.0564e-04 0.0070 8.4422¢-04 0.0012 0.0258 0.0033

136 (8(n*+8))/(n*-8) 0.0032 0.0317 0.0038 0.0031 0.0327 0.0043

15 Gn+3)/(n-1) 7.5771e-11 4.4571e-06 5.7328e-07 1.7349¢e-10 8.3037e-06 1.1010e-06
109 (7(n*+6)+4)/(1r-8) 5.4350e-07 3.8364e-04 4.9344e-05 4.7698e-07 4.1426e-04 5.7336e-05
66 (4 T+2)/ (e -8) 1.4958e-08 6.6814e-05 8.5936e-06 5.7122e-08 1.5105e-04 2.0906e-05
40 (5me-5)/(n*-8) 1.0568e-09 1.5928e-05 2.0486e-06 2.8293e-09 2.9811e-05 4.125%¢-06
54 (4P +4+2)/(n*-8) 1.5213e-10 6.3538e-06 8.1723e-07 1.8137e-10 8.9160e-06 1.2340e-06
123 (7(n+8)+4)/(n*-8) 1.0748e-10 5.2865e-06 6.7995e-07 1.1889%e-09 2.0552e-04 2.844 5e-06
78 (5(n*+7)-2)/(n*-8) 0.0028 0.0327 0.0040 0.0014 0.0275 0.0036

112 (T(n*+7)/(n*-8) 9.3003e-11 4.9095e-06 6.3146e-07 9.7424e-11 6.2254e-06 8.6162e-07
41 (11n+8)/(n-2) 5.8167e-10 9.8489¢-06 1.2668e-06 5.3190e-10 1.4969e-05 2.0718e-06
27 (8n+3)/(n-2) 1.0920e-05 0.0019 2.4305e-04 1.9728e-05 0.0026 3.5977e-04
101 (6(n*+8)-1)/(n2-8) 1.1053e-10 5.2106e-06 6.701 9e-07 1.8418e-10 9.0021e-06 1.245%¢-06
62 (Hn*+6)+2)/(r-8) 1.2098e-08 5.5756e-05 7.1713e-06 2.0940e-08 7.8072e-05 1.0805e-05
130 (B(n*+73+2)/(1?-8) 0.0025 0.0313 0.0040 0.0012 0.0259 0.0034

99 (6(n*+7)+3)/(r-8) 0.0029 0.0331 0.0043 0.0154 0.0946 0.0123

34 (Ot 7/ (n-2) 1.2418e-10 5.4934e-06 7.0656e-07 2.8658e-10 5.3006e-06 7.0280e-07
141 (9(n*+a)+6)/(n*-8) 9.8718e-11 5.0865e-06 6.5422e-07 9.9822e-11 6.3262e-06 8.7558e-07
146 (9(n*+7)+2)/(1r-8) 0.0032 0.0339 0.0044 0.0037 0.0271 0.0036

33 (8n+9)/(n-2) 0.0172 0.0971 0.0125 0.0235 0.1221 0.0158
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Table 4: Continue

Hidden Considered criteria for Data set 1 Data set 2
neuron determining 3 inputs networks
numbers  hidden neurons MSE MAE MRE MSE MAE MRE
137 (9’ +6)+2)/(n*-8) 0.0045 0.0398 0.0048 0.0035 0.0340 0.0045
79 (49 +7)/(n*-8) 1.6292e-08 7.2830e-05 9.3674e-06 1.2467e-07 2.0933e-04 2.8972e-05
106 (8(0*+4)+2)/(n*-8) 1.212%-10 5.1435e-06 6.6156e-07 1.0350e-09 1.8980e-05 2.6270e-06
90 (7(+4)-1)/(n*-8) 9.1207E-07 4.8173E-04 6.1960e-05 4.7620e-07 3.7718e-04 5.2203e-05
63 (HnH+N-1)/ (n2-8) 2.4080e-09 2.5976e-05 3.3410e-06 2.4822e-09 2.912%e-05 4.031 6e-06
16 (10n+2)/(n-1) 0.0018 0.0262 0.0034 0.0017 0.0285 0.0039
120 (8(n*+6))/(n*-8) 0.0024 0.0277 0.0033 0.0063 0.0395 0.0052
2 4n/(nt-3) 0.1375 0.2978 0.0383 0.144 0.2631 0.0342
111 (8(n*+35)-1)/(n*-8) 1.2602e-10 5.3664e-06 6.9022e-07 5.6137e-10 6.4726e-06 8.5819-07
70 (4(*+8)+2)/(1f-8) 1.072%-06 4.933%-04 6.3460e-05 1.2201e-06 5.6691e-04 7.8462e-05
29 (On+2)/(n-2) 3.5571 1.6104 0.2071 2.4931 1.3558 0.176
43 (11n+10)(n-2) 8.7200e-10 1.5122e-05 1.9450e-06 8.9532e-10 1.7020e-05 2.3556e-06
51 (4(*+3)+3)/ (1 -8) 6.4465e-06 0.0011 1.4207e-04 2.9611e-06 9.36%e-04 1.2968e-04
38 (10n+8)/(n-2) 5.0684e-10 9.4646e-06 1.2173e-06 5.5484e-10 1.4630e-05 2.0249-06
22 (nt1)/(n-2) 8.2422-11 4.6612e-06 5.9952e-07 9.7421e-11 6.2253e-06 8.0161e-07
68 (4(*+8))/ (1 -8) 3.6261e-08 1.1061e-04 1.4226e-05 8.8446e-08 1.7980e-04 2.4884e-05
97 (2(5n+3)+1)/(n’-8) 7.6315e-13 5.6554e-07 6.9806e-08 5.1959¢-13 2.5817e-07 3.422%9¢-08
115 (T(*+73+3)/(1?-8) 0.0016 0.0251 0.003 0.0011 0.0058 7.1050e-04
47 (4’ +1+7)/(n*-8) 1.4530e-05 0.0025 3.2647e-04 1.5506e-04 0.0087 0.0011
131 (7(0*+9)+5)/(n*-8) 0.0032 0.0346 0.0041 0.002 0.0256 0.0034
10 (B3nt1)/(n-2) 0.0059 0.0551 0.0068 0.0003 0.0481 0.0064
103 (6(*+T+7)/ (e -8) 1.4446e-10 5.2961e-06 6.8118e-07 6.9908e-10 1.5343e-05 2.1235¢-06
86 (7(n+3)+2)/(n*-8) 2.2585e-07 2.8276e-04 3.6368e-05 4.5820e-07 4.1012e-04 5.6763e-05
u Comparison between actual and forecast wind speed
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Fig. 2: Compearison between actual and forecast wind speed (50 m height windmaill)

actual and forecast wind speed (50 m height
windmill) is noticed from Fig. 3 and forecasting
error (50 m height windmill) s shown m Fig. 4.
Similarly comparison between the actual and forecast
wind speed (65 m height windmill) for 3,000 samples is
shown in Fig. 5, relationship between actual and forecast
wind speed (65 m height windmill) 15 shown in Fig. 6 and

forecasting error (65 m height windmill) 1s depicted in

Fig. 7. Comparison of proposed recursive radial basis
function networks based on statistical error such as MSE,
MAE and MRE vs. hidden layer neuron numbers 1s
shown m Fig. 8 Presented approach merits are very
effective, statistical simple
implementation for wind speed forecasting. Problems of

minimum error  and

appropriate lidden neuron numbers for a particular
problem are to be selected. The suggested approach was
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Fig. 3: Relationship between actual and forecast wind speed (50 m height windmill)
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Fig. 4: Forecasting error (50 m height windmill)

sinulated using MATLAB and results prove with mimmal
statistical errors such as MSE of 5.1959-13, MAE of
2.5817e-07 and MRE of 3.4229-08 for real-time data
samples (50 m height windmill).

Earlier approaches use trial and error rule to
determine hidden neuron numbers in neural
networks. This starts network with undersized
hidden neuron numbers and newons are added to
N,. Demerits of earlier approach are there are no
guarantees of selecting the number of hidden neuwrons
and 1t consumes high computational time. Therefore,
this study presented new criteria to avoid both
either under fiting and over fitung problems and
chosen criteria adopted to recursive radial basis function

2000 2500 3000

network for wind speed forecasting application 1s
[2(50°*+3)+1)/(n’*-8) which utilized 97 hidden layer neuron
numbers and aclieved a reduced Mean Square Error
(MSE) value of 5.195%-13 in comparison with other
criteria.

The simulation results are proved that the forecast
wind speed 1s in the best agreement with the experimental
measured values. Comparative analysis is performed on
the earlier approaches with presented new criteria and
results revealed that the proposed approach made the
best results then that of other existing approaches.
Table 5 depicts that compared to the other existing model
the suggested model achieves better mmimal statistical
errors.
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Fig. 5: Comparison between actual and forecast wind speed (65 m height windmill)
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Fig. 6: Relationship between actual and forecast wind speed (65 m height windmill)
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Fig. 7: Forecasting error (65 m height windmill)
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Hidden neurons VS Statistical errors

Statistical errors
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Fig. 8: Comparison of statistical errors vs. hidden layer neuron numbers
Table 5: Comparative analysis of different existing approaches performance with proposed approach
Hidden neuron numbers Years Ditferent approaches Statistical Error (MSE)
W, = /3 1993 M. Arai Approach 0.0314
N, = ( I +8n,1);2 1995 Jin-Yan Li ef af. Approach 0.1375
N, =N-1 1997 8. Tamura, M. Tateishi Approach 0.1375
N, = Klog(Hpv(mZ",fc) logs 1998 Osamu Fujita Approach 1.2896e-10
W, = 2/ 2003 Zhaozhi Zhang et ai. Approach 0.1375
N, = (Nm *JE"L) 2008 Jinchavan Ke, Xinzhe Lie Approach 1.7786e-10
W, =0 (0 /(dlog )} 2008 Shuxiang Xu, Ling Chen Approach 0.0034
N, = (n+n, -1)/2 2008 Stephen Trenn Approach 0.1375
W, = VNETe 2009 Katsunari Shibata, Yusuke Ikeda Approach 0.1375
N, =21 2012 David Hunter et al. Approach 1.4915¢-08
W, =+armra 2013 Gue Qian, Hao Yong Approach 1.2896e-10
M, = (4 18/ @D 2013 K. Gnana Sheela, S.N. Deepa Approach 5.8167¢-10
N, = [(2(5111 +3)+ 1)m2 _8J Proposed Approach 5.195%-13
Table 6: Variations of training and testing data samples
Variations of training Statistical errors
and testing
data samples Data set 1 Data set 2
Training data (%) Testing data (%0) MSE MAE MRE MSE MAE MRE
1000 (10) 2000 (90) 3.3783e-10 1.2028e.05 1.7737e-06 1.4282e-08 3.4033e-05 5.4554e-06
2000 (20) 8000 (80) 1.0872e-10 7.3804e-06 1.0622e-06 7.3771e-11 2.5613e-06 3.9901e-07
3000 (30) 7000 (70) 2.4856e-11 3.0573e-06 4.1603e-07 5.7354e-07 5.0474e-05 7.9505e-06
4000 (40) 6000 (60) 1.9712e-12 8.6414e-07 1.1039e-07 1.6502e-09 8.0838e-06 1.1111e-06
5000 (50) 5000 (50) 2.0527e-09 2.6952e-05 3.2737e-06 2.6808e-11 2.2128e-06 2.8856e-07
6000 (60) 4000 (40) 5.0830e-11 5.2097e-06 6.3651e-07 2.1233e-09 2.4538e-05 3.2208e-06
7000 (70) 3000 (30) 7.6315e-13 5.6554e-07 6.9806e-08 5.195%9-13 2.5817e-07 3.4229¢-08
8000 (80) 2000 (20) 8.5922e-10 1.8222e-05 2.2351e-06 4.6908e-09 3.5496e-05 4.6890e-06
9000 (90) 1000 (10) 1.3035e-06 6.5636e-04 7.6540e-05 2.616%-08 8.1286e-05 1.0181e-05
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Validation of proposed best criteria: The proof for the
estimation of hidden layer neuron numbers 1s mmtiated
based on the convergence theorem discussion in the
Appendix. Lemma 1 1s proves the convergence of the
presented estimation criteria.

Lemma 1:

The sequence S, = [(2(5n™+3)+1)/(n’-8)] is converged and
8.2 0. The sequence tends to have a finite limit u, if there
exists constant £>0 such that | S -u|<g, then Lim s, =u.

Proof: Lemma 1 based proof defined as follows.
Regarding to convergence theorem, the selected
parameter (or) sequence converges to finite limit value:

5, - @OW+I+D (10)
n’ -8

2
lim (2(5n2+3)+1)
ise  nt -8
n’[(10+6/m’) + 1’| (1D
=lim - -
e n“(1-8/n*)
=10, finite limit value

Here, 10 1s limit value of the selected sequence as lim.
Hence, above sequence is convergent sequence because
it has the finite limit where n number of input parameters.

Analysis of data samples influence on the results: The
existence of the neural networks output errors are
depends on the proper division of training and testing
sets. Neural networks with smaller number of training data
samples may not respond effectively while neural
networks with larger number of data samples also not
respond properly.

Therefore, the proposed recursive radial basis
function networks with 97 Iudden layer neuron
mumbers based forecasting model influence of
different training and testing sets analyzed and
variations made m the traimng and testing data
samples randomly are established in Table 6. Based on the
Table 6 observed that newral networks with 70%
randomly chosen data samples for training process
and 30% randomly selected data samples for testing
process achieve the best results with mimmal statistical
errars.

CONCLUSION

This study investigates the various previous work
related to selection of hidden layer newron numbers in

neural networks and performed comparative analysis with
the proposed criteria. Impacts of data selection on the
results are investigated and best training and testing data
samples are selected. From the experimental evaluation on
two real-time data sets with various windmill height
concluded that the proposed criteria 13 effectively decided
the proper hidden layer neuron nmumbers in Recursive
radial basis function networks and outperform than that
of other previous hidden neuron selection methodologies.
Hence, the implemented recursive radial basis function
network adapted for wind speed forecasting outperform
in terms of better accuracy with miimal error, stability,
generalization ability and improving the convergence
speed.
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APPENDIX

Considering different criteria with ‘n’ as input variables. All
considered criteria are noted satisfied the convergence theorem. Tt the limit
of sequence is getting to finite value, the sequence is called convergent
sequence. If the limit of a sequence does not tend to a get finite value, the
sequence is called divergent defined by Dass (2009). The convergence
theorermn possesses the following characteristics: A convergent sequence has
a finite limit. All convergent sequences are bounded. An oscillatory sequence
does not tend to have a unique limit.

Tn a network there is no change occurring in the state of the network
regardless of the operation is called the stable network. In the neural network
model most important property is it is abways converges to a stable state.
The infinite sequence is changed into finite sequence is called convergence.
Tn real-time optimization problem the convergence play a major role, risk of
getting stuck at some local mini ma problem in a network is prevented by
the convergence. The real-time neural optimization solvers are designed by
the use of convergence properties. For the research work. Taking the
sequence:

5 :3n+1 (1)

" n-2

Applying convergence theorem, it has finite value:

. 3n+l 1mn(3+1fn):3;50 (2)
n=e n(1-2/n)

Hence, the terms of sequence has a finite limit value and is bounded
50 the considered sequence is convergent in nature. Take the sequence:

2n’ +10 3
8, =— ( )
n* -3
Apply convergence theorem,
2 2 2
Limg, = Lim 2 210 _ [ B2H10/0 3]y “
e nos ot =8 mo=| nf(1-8/n%)

it has finite value. Thus, the terms sequence has a finite limit value and is
bounded so the considered sequence is convergent in nature.
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