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Abstract: In this stduy, fault analysis of Quentum-dot Cellular Automata (QCA) circuits 1s carried out
employing a proposed hybrid version of ELMAN neural network approach. The QCA are basically designed
structures with locally intercomnected cellular automata like arrays. The fault analysis is carried out in this study
for QCA circuits because of its wide applicability in signal processing applications and related computational
applications. The QCA operates i a manner to process mformation employing a set of dots in a charged
configuration medule. Considering the QCA design aspect, when the placement of QCA cells at gate level gets
altered, this results in reducing the effect of output polarization of the entire configuration. Hence, this study
focuses on introducing a hybrid version of ELMAN neural network for performing reliability analysis on the
considered QCA circuit. ELMAN neural network 1s a feed forward recurrent neural network model operating
on gradient descent learming rule and its weights are updated using the evolutionary genetic algorithm
approach. For testing the given QCA layout for its reliability, the various faults that may occur during the
fabrication process are well-noted and analyzed. The proposed hybrid version of ELMAN neural network along
with Genetic Algorithm (GA) are applied to the numerous logic gates in QCA module. The proposed model 1s
validated for its effectiveness with the simulation results computed using the QCA designer. Sumulation results
that the proposed model performs reliability analysis in a better manner in comparison with that of the other
methods considered for comparison form the literature.
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Networl, Genetic algorithm

INTRODUCTION

Von Neumann introduced the concept of cellular
automata and an extension of this concept related to
quantum computing 1s the development of Quantum-dot
Cellular Automata (QCA). QCA is noted to be an
emerging module in micro and nano electronics
technology (Tougaw and Lent, 1996). Fundamentally,
cellular automata operate on a uniform grid of cells and
form a finite state machine. Here, at a particular discrete
time nstant one cell can be located at only one fimte
number of states. The approach of cellular automata is
more developed on software modules and to implement
and model it physically is the development of quantum-
dot cells. This was first fabricated and implemented in the
year 1997. This QCA is an important paradigm in contrast
to that of the transistor paradigm. The QCA basically
operates based on the adjustment of electrons within a
minimal boundary area of hardly small amount of square
nanometers in contrast to the transport of electrons.

Currently, QCA has become an important emerging area
of research in the past decade and the early works
reported in the literature 1s presented in this study.

Turvani et al. (2014) present an wmmovative test
environment for NML technology. The test algorithm 1s
integrated in ToPoliNano and it 1s specifically tailored to
support the analysis of faults in large complexity circuits.
This methodology applied to NMIL, circuits can also be
applied to QCA technology. Das, etc. in 2013 introduced
the logic synthesis with tile nanostructure m QCA. The
Coupled Majority-mmority Voter (CMmV) 1s most
promising QCA tile structure which is actually used for
designing n-variable symmetric functions. Dey et al.
(2015) discussed the probability analysis of switching
activity of an Electrostatic Quantum-dot Cellular
Automata (EQCA) cell. The algebraic method is used
to find the reliability using Probabilistic Transfer Matrix
(PTM).

Sen ef al. (2013) developed sequential circuits in
QCA under multilayer framework to build an efficient
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methodology to achieve high device density as well as
minimum delay in logic realization. The proposed
multilayer design achieves 77% improvement in device
density sunultaneously with 50% improvement in delay
than that of the existing conventional design approaches.
Mahdavi et al. (2009) investigated the effects of Single
Event Upsets (SEU) on QCA circuits and the defects
which may occur. Ganguly, etc., intended to see how
optimized QCA designs perform in the presence of the
manufacturing defects, i.e., to find the tolerance level of
the QCA designs where clock zones have been optimized
for speed. The proposed design optimization
methodologies can generate a QCA implementation, not
only faster but also defect tolerant. A QCA full adder is as
an example for this analysis. Hanminen and Takala (2008)
studied the relationship between system reliability and
component failure rates, in the case of a binary multiplier
unit on quantum-dot cellular automata nanotechnology.
The analysis 1s based on a decomposition of probabilistic
transfer matrices, a versatile framework for computing the
conditional probability of system failure. The result
indicates that passive wiring dominates the reliability of
arithmetic designs on the nanotechnology.

Aghababa et al. (2008) described the design of an
asynchronous circuit as an example to discuss the rules
for translating a classical circuit to its QCA counterpart.
Dysart and Kogge (2007) reliability
of several sample
umnplemented 1 a molecular QCA technology. It 1s found
that component error rates must be at or below 10-4 for an
adder to function with 99% reliability and that the straight
wire and majority gate are the most critical components to
each circuit’s reliability. Huang et al. (2007) analyzed the
defect characterization of sequental
circuits implemented by molecular Quantum-dot Cellular
Automata (QCA). The defect characterization shows that
defects affect the functionality of basic QCA devices
resulting mostly in unwanted inversion and majority voter
acting as a wire at logic level.

Sikdar (2006) evaluated the effectiveness
state-of-the-art ~ VLSIL  test
investigates the possibility of more defect coverage
through N-detectability in QCA designs. The experimental
results shows that the conventional test techmque for
CMOS designs 15 also effective in QCA based designs.
Huang et al. (2004) proposed a novel complex and
universal QCA gate: the And-Or-Inverter (AQI) gate,
which 15 a 5 mput gate comsisting of 7 cells. Design
umnplementations using the AOI gate are compared with
the conventional CMOS and the majority voter-based
QCA methodology.
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Hayati and Rezaei (2014) presented two methods, e.g.,
artificial neural network and a mathematical algorithm
based on the QCA cell-cell response function named
Tansig method are used for the modeling and simulation
of QCA circuits at the cell level. Ganesh et al. (2007)
proposed the use of Hopfield neural network design of
simple QCA cells and study device level uncertainties like
stable polarization at the output cell, near to ground state
configuration of QCA cells. The proposed study is helpful
to synthesize the QCA system for achieving high speed
and errorless circuit. Neto et al. (2007) proposed the use
of computational intelligence technicues in the simulation
and in the automatic synthesis of QCA circuits. The
optimization done by the proposed method reduces the
possibility of failures and guarantees higher speed.
Fortuna and Porto (2004) considered coupled
quantum-dot cells for Quantum-dots Cellular Automata
(QCA) to build Cellular Nonlinear Networks.

Khademi et al. (2014) presented a novel method for
optimal 1mplementation of three variable Boolean
functions by using Ant Colony Optimization (ACO)
algorithm. Simulation results demonstrate that the
proposed method outperforms GA-based methods in the
average number of required gates and levels for
implementing three  variable Boolean functions.
Caires et al (2013) proposed to synthesize QCA
circuits using a Genetic algorithm that considers device
robustness against external influences. The results
obtained demonstrate that the method proposed 1s able to
efficiently and automatically produce robust circuits with
a reduced number of cells. Kamrani et al. (2012) proposed
an efficient method based on Genetic Algorithms (GAs) to
design Quantum Cellular Automata (QCA) circuits with
minimum possible number of gates. The results show that
the proposed approach is very efficient in deriving NAND
based QCA designs.

Beiki et al. (2012) proposed an approach based on
Genetic algorithm which reduces the area size of QCA
circuits. Simulation results show that the proposed
method 13 able to reduce area in QCA circuits design.
Houshmand et al. (2011) proposed a method to minimize
Boolean functions with an arbitrary mumber of outputs.
Simulation results for the circuits with three, four and five
outputs shows that the proposed method on the average
results in 25.41, 28.82, 30.89% decrease in the number of
required gates in comparison with optimizing each output
independently. Houshmand et al. (2009) presented a
method to reduce the number of primitive gates m a
multi-output Boolean circuit based on genetic algorithm
for converting sum of product expressions mto a reduced
number of QCA primitive gates in a single-output Boolean
circuit. Siumulation results show that the proposed method
is able to reduce the number of primitive gates.
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Bonyadi et al. (2007) proposed a novel and efficient
method for majority gate-based design. This method 1s
based on genetic algorithm and can reduce the hardware
requirements for a QCA design. The proposed approach
15 very efficient in deriving the simplified majority
expression in QCA design.

Based on the above presented literature studies on
the area of QCA, this study contributes a hybrid genetic
algorithm based ELMAN neural networlk to perform fault
and reliability analysis of QCA circuits. The features of
GA approach are combined with that of the ELMAN
neural modeling to obtain better sinulation results. The
proposed approach 1s also designed to ensure the
robustness of the QCA devices and circuits. The physical
coupling in QCA is carried out by Coulomb interaction
between the electrons and not based on wired
connections, 1.e., it 1s noted that the flow of mformation in
QCA is based on Coulomb interaction between two or
more cells. ELMAN newral network with its weights
optimized using genetic algorithm converges to obtain a
minimal error rate and proving higher reliability of the
considered quantum cell dots.

QCA cell and Gate modeling; an overview: Basically in
QCA, the coupling between the cells 13 with respect to
their physical interaction and not by means of the wired
inter-connections. The implementation of QCA is carried
out with respect of the quadratic cells which are also
called as the QCA cells. Figure 1 represents a basic four
site QCA cell. From Fig. 1, it can be noted that there exists
four potential points on each corner of the QCA cell. In
four dot QCA cell, two dots on one of the diagonal corner
represents the electron potential points and the other two
on the dots falling on the other diagonal part represents
an empty operational point.

In Fig. 1, the solid dots represent the two electron
points located diagonally. Here, between the individual
quantum dots within a cell, the electrons are allowed to
jump with the concept of Coulomb force and quantum
tunneling (Snider et al., 1999). All the potential points in
Fig. 1 are connected together by electron tunnel junctions
and by employing a clock signal they will allow the
electrons to travel within their stipulated boundaries.
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Fig. 2: States and polarization points of a QCA cell

With respect to the Coulomb force which embodies
between the electrons, they get separated from each other
without any other external forces acting on these
electrons. Henceforth 1s the case that they get embodied
1n the potential pomts that are located diagonally as they
are the maximum possible distance that can separate each
other. The QCA cell occurs 1n the form a square and as
well known, there exists two diagonals mn a square
meaning that the electrons can embody in atleast two
possible locations of the QCA cell These two
possibilities are defined as binary 1 or polarization +1 and
as binary 0 or polarization -1, i.e., each of the QCA cell can
be in either of the two binary states or on the polarization
points. Basically, 1t is adaptable to the Boolean logic as
employed in computers and in this case a high voltage is
represented by polarization +1 or binary 1 and a low
voltage 15 denoted by polarization -1 or binary 0. Figure 2
shows the two states of a four state QCA cell.

The polarization in QCA denotes a measure of the
charge alignments along the cell diagonals. As in Fig. 1
and 2, if the cells 1 and 3 are occupied then it can be noted
that the polarization is ‘-1° and if the cells 2 and 4 are
occupied then the polarization is “+1°. In QCA cell, a
superposition based on equal weights of the considered
configurations results in a ground state and at this point
the net polarization point becomes zero.

QCA majority voter and QCA Gates: In QCA
modeling, the cell state can be transferred to multiple
neighboring cells (Lent and [saksen, 2003). The operation
with multiple neighboring cells is carried in the sumilar way
as that of the individual cells, but the sequential
neighboring cells should have their junctions open at the
same time which enables faster transfer. This makes the
information transfer possible for large distances. The
basic gate of QCA 13 the three mput majority voter and
this 1s constructed with five cells of mdividual four state
QCAs. In QCA majority voter, when the entire input cell’s
Coulomb force corresponding to the electrons gets added,
the centre cell located gets adjusted to that of the nput
cells. At the end, the final cell shown in blue color in
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Fig. 4: a) QCA AND gate and b) QCA OR gate

Fig. 3 gets adjusted with respect to the centre cell and the
majority votes resulting state is computed from the output
cell. Figure 4 shows the QCA AND and QCA OR gate
derived using the resultant Coulombs force on the
positional states of the electron movements.
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Fig. 5: a) QCA NAND-NOR Inverter module and b) QCA
AND-OR-Inverter module

In QCA AND gate, the two inputs of the majority
voter acts as the mput to the AND gate and the third
input forms always a O state and is a fixed cell and the
voter should not come out with a 1, if only one input of
the two inputs is 1. In case of both inputs becoming 1, it
results in summing with a stronger Coulomb force than
that of fixed cell input and the AND gate output is
achieved. In QCA OR gate, fixed cell 1s always designed
with a 1 state and this fixed cell adds to a larger Coulomb
force with a single other input adjusted to 1, henceforth
the OR gate produces an output 1 when any of the free
inputs 18 1. The QCA computing is carried out by mapping
the physical ground state of the QCA array and that of
the logical solution state of that of the computational
problem under consideration. Figure 5 shows the
NAND-NOR-Inverter and AND-OR-Inverter obtained
using the majority voter.

Faults in QCA circuits: To design a QCA logic gate
circutt, the four phase clocking signals are employed
switch, relax, hold and release. Because of these four
phase clocking sighals this QCA gate circuit is noted to
possess clock conflict errors. For example, m case of
majority voter, all the cells should be in the same clock
zone and making some cells present in different clock
zones will lead to wrong results. Tn majority voter, the
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three inputs, the centre cell and the output cell should
always be in the same clock zone to avoid clock conflict
error. The faults may tend to occur during the phases of
chemical synthesis and deposition. Faults m QCA circuit
means any ambiguities that tend to occur during the VTSI
design phase. Faults occur during the fabrication phase
as well. The most important faults that occurs in the QCA
circults involves:

Additional deposition over the cells

Deposition on the cells getting misplaced at other cell
locations

Deposition not made at the respective cells during
the chemical synthesis and deposition phase of
fabrication

This study aims to handle these errors and provide a
solution for fault analysis of QCA circuits employing the
proposed GA based ELMAN neural network model.

Formulating QCA dynamics (Porod et al., 1999): Let the
two basic states of the QCA cell be represented by p, and
p, and these two states are polarized i nature. With
respect to the basic states, the quantum state 1s:

p="Arp, +Bp, (1)

where, A and P are the quantum amplitudes. Based
on these quantum amplitudes, the cell polarization is
given by:

B =|A[*~ B[ @
The quantum cell dynamics 1s given by:
ihe/om|p|=H ) 3

where, “H’ specifies the Hamiltonian specifier. Thus, for
applying the proposed algorithms the cell polarization
employed in Eq. 2 1s used as the objective function to
perform the iterative process and convergence to a
reliability solution.

MATERIALS AND METHODS

Proposed hybrid ELMAN neural network model for QCA
reliability analysis: This study focuses on developing a
Hybrid Genetic algorithm based ELMAN neural network
model to perform fault analysis and test the reliability
nature of the quantum-dot cellular automata circuits.
ELMAN neural network being a recurrent feed forward
neural network is fed with the traimng data set of the
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position of the electrons located in the cell array and the
testing dataset comprises of the new model of the
developed QCA circuits for which the reliability test s to
be done. In general, for a fundamental ELMAN neural
network the weights that exist between the interconnected
links are randomly assigned during the process flow and
this random assignment leads to the occurrence of local
minima problem and mereases the elapsed training time of
the network. Hence, in this study attempt is taken to
optimize the weights to the ELMAN neural network
employing the evolutionary approach Genetic algorithm.
Genetic algorithm by its virtue of selection, crossover
and mutation operations tends to compute the optimal
weights and enhances the faster convergence of the
ELMAN neural network model. The proposed hybrid
GA based ELMAN neural network model 1s presented
in this study.

Genetic algorithm-an outline (Sivanandam and Deepa,
2008): Genetic algorithm noted to be a evolutionary
population based stochastic optimization approach
operating on the principle of natural selection and is
utilized to solve non-deterministic hard polynomial
problems and as well combinatorial optimization problems.
In the past few decades, GA has thrown its light in
solving numerous optimization problems due to the fact
of avoiding the derivatives of the considered objective
functions. Henceforth, GAs 1s designed to solve problems
with non-continuous cost functions and discrete models.
(GAs 18 capable of handling single objective as well multi
objective optimization problems. The three main process
involved in genetic algorithm flow includes selection
(reproduction), crossover and mutation. These tlwee
operators of GA flow tend to produce new offsprings
which are better than their parents. The process of GA
flow is carried out for several generations and this
procedure stops on identifying the individual with the
optimal solution or as the termination condition is
reached. The algorithmic steps mvolved for GA flow
15 as follows:

Step O: Start

Step 1: Imtialize the necessary parameters for the GA
process like no. of populations, generations,
crossover rate, mutation rate and type of selection
process

Step 2: Randomly generate populations (specified no.
of chromosomes)

Step 3: Compute the fitness of the generated
chromosome in the population

Step 4: Create a new population by performing the
following steps until the new population is generated
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Fig. 6 The ELMAN neural network model for fault analysis

Step 4(a): Selection; two parent chromosomes will be
selected to participate in the process from a
population according to their fitness (the one with
the better fitness has the highest chance to get
selected)

Step 4(b): Crossover; perform cross over between the
parents to generate new offspring. When no
crossover takes place, then the offspring is the exact
copy of parents

Step 4(c): Mutation-mutate new offspring at each
locus, i.e., the position in chromosome

Step 4(d): Replacement, the developed new offspring
would enter the new population

Step 5 Employ the newly generated population to
carry out the further process

Step 6: If the termination condition is satisfied, stop
and then return the
population, else

Step 7: Go to step 3 to evaluate fitness function

best solution in  current

In this study, the presented genetic algorithm 1s
employed to determine the optimal weights of the
recurrent feedforward ELMAN neural network and so as
to identify the fault mechanisms of the designed QCA
cireuits.

ELMAN Neural Network model: ELMAN neural network
(Lin and Hong, 2011) is a recurrent Neural Network
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LXK

Architecture model m which the recurrent links are
incorporated 1nto the ludden layer as feedback
connection. The fundamental layers of ELMAN neural
network include input, hidden, recurrent link and output
layer. The design of recurrent layer is in a mamner to
follow one step delay of that of the ludden layer. The
output of ELMAN neural network model is computed from
its hidden layer. The complete information pertaining to
the ELMAN hidden layer is stored in the recurrent link
layer and this link layer retains the memory of the networl.
The hidden layer employs hyperbolic tangential sigmoidal
activation function and the output layer uses purelin
activation function. In case of the QCA fault analysis
problem considered, the mputs are the gate signals under
consideration and are binary or bipolar (polarization) in
nature. Henceforth, the number of input neurons in
ELMAN model depends on the gated mput signals of the
QCA circuit. As well as the output neurons in this case
will be the existence of fault or not, so even a signal
output neuron in the output layer would satisfy the need.
The proposed ELMAN model for performmg fault
analysis 13 as shown in Fig. 6.

In Fig. 6, it is noted that each of the neuronal layers
perform independent computation on the received data
and that passes the results to the subsequent layers and
finally the output 1s computed for the network. The gated
input signals are transmitted through the hidden layer
wherein the optimal weights computed employing GA
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Table 1: Parameters in ELMAN Neural Network model

Parameters used in the network architecture

Description of parameters

X, X0, X5, 0 K
Yy, Yo, o Ya

W= (W, Wia, ... Wi, Woy, W, o, Wo, o, Wy, W, L, W)
V=(Vi, Viz oo Viw, Var, Vi, Vs, oo, Vi, s Vi, Vi, s Vi)
W= (W, Warg, o s W, Waar, Wogs oo, Waan oo Wz, Wi, o0, Wy
X =XK1

Gated input signals

Diagnosed output

Weighted interconnection between the input and the hidden layer
Weighted interconnection between the hidden and the output layer
Weight interconmection of recurrent link layer to input vector
Tnput entering recurrent link layer

gets multiplied with the continuous hyperbolic tangential
sigmoidal function. The recurrent link neural network
learns the function based on current input along with the
record of already diagnosed output. Added to this, the
value K(k) gets transmitted through the
connection multiplied with that of the purelin activation
function. Table 1 presents the parameters employed in the

second

designed ELMAN neural network controller model for
fault analysis of QCA circuits.

Algorithmic steps of ELMAN Neural Network model:
The algorithmic procedure followed n the process of
ELMAN Neural Network (NN) model 1s as given below.

Step 1; initialization process: Initialize the various
parameters like learning rate, initial weights and activation
functions of the ELMAN neural model. The necessary
inputs from the considered QCA gates are also initialized.

Step 2; Data scaling: Min-Max techmque 1s used to
perform scaling operation, which scales within the range
of [0 1]. The Min-Max technique 1s used for scaling of
mput data. The scaling of data 1s done by Eq. 4:

.
O~ D

o =¢ N~ Dl )+ Pl (4)

where, ¢, &, and ¢, are the actual input data, mimmum
and maximum mput data and &', ¢',.. are the minimum
and meximum desired target value. In QCA circuits, since
the gated inputs may be either in binary or bipolar as a
result scaling operation may not be required.

Step 3; Design of ELMAN network: The various
parameters like number of nputs, hidden and output
neurons are to be assigned. Hidden layer neurons are set
as half that of the input neuron. The input arguments get
transmitted through the hidden layer wheremn it gets
multiplied with the weights and the hyperbolic sigmoid
function 1s applied over it. The output 1s noted to get
transmitted through the second commection and this gets
multiplied with weights by purelin activation function. As
the training progresses, past information 1s observed to
reflect on the ELMAN neural network model. The
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termmation condition for the neural network algorithm
includes reaching the minimum error point or a fixed
number of iterations.

Step 4; Training and computing performance of ELMAN
NN model: The input data 1s presented into the designed
neural network model and the learmng process 1s imtiated.
The training data of the input QCA gate signals are used
to develop reliability models and the diagnosed output
determines whether or not the clock conflict error or
misplaced deposition of cells ccours. Mean Square Error
(MSE) is used as the criteria to perform effective training
process. MSE 1s given by:

MSE = i% (5)

i=1
Where:
Y, = Specifies the predicted output
Y = Specifies the actual output
N = Gives the number of samples considered

Thus, this ELMAN network develops a fault analysis
model to implement the action on the considered QCA
gate circuit. Further, in the ELMAN Neuronal model
Genetic algorithm technique is hybridized for tuning the
optimal weights of the output layer and hidden layer and
as well, the weights between the hidden layer and input
layer. Figure 7 depicts the flowchart of the proposed
methodology employing ELMAN neural network model to
carry out reliability analysis of QCA circuits.

Proposed hybrid GA based ELMAN Neural Network
model for fault analysis: This study proposes the
approach of hybridizing ELMAN Neural Network model
and Genetic algorithm to perform reliability analysis of
QCA gate circuits under consideration. The ELMAN
performs the synthesis action and the weights of ELMAN
neural network are tuned for optimality to achieve
minimum square error and faster convergence employing
Genetic algorithm. ITn ELMAN NN model, the initial
weights between all the layers including the recurrent
layer are randomly 1mitialized. This random mutialization
and random process of weight updation gets stuck up
with the local and global minima during the traming
process of the network. Also, since randomness exist in
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Fig. 7: Flowchart for the designed ELMAN neuronal
model for QCA circuit analysis

the networlk, this leads to premature convergence of the
neural network model. Henceforth, this paper aims to build
a hybridized ELMAN newal model with that of the
genetic algorithm approach to tune for the optimal
welghts resulting m faster convergence and avoiding
the problems of local and global mimma. The algorithm
developed for the proposed hybrid GA-ELMAN NN
model is as given below:

*  Step 1: Imtialize the necessary GA parameters no. of
populations, crossover rate, mutation rate and so on

* Step 2 Compute the fittness of the problem
considered (MSE) and sort the population from
best to worst

¢ Step 3: While the termination condition criteria is not
met do

s Step 4 Perform selection; fitest individual is selected
to participate in the next process

¢ Step 5 Perform crossover, generate new offspring
with the information of parents

*» Step 6 Perform mutation, mutate the crossover
strings to obtain another set of new offsprings

s  Step 7: Evaluate the fitness and sort the population
from best to worst. Reject the unfit population strings

*  Step 8: Input the values related to best fitness to tune
the weights

»  Step 9 With the tuned weights, perform learming rule
process of ELMAN neural network

¢+ Step 10 Evaluate the mean square emror of the
network

¢ Step 11: Perform weight updation and compute the
training performance

»  Step 12: Sort the population strings

o Step 13 Check for feasibility of the computed
soltuion

»  Step 14: Stop the algorithmic process

The above presented hybrid GA based ELMAN
neural network approach 1s used to perform fault and
reliability analysis on the QCA Gate circuits. This ensures
better solution and will not be over run and as well result
1n faster convergence towards the necessary action of the
QCA problem domain.

Proposed hybrid ELMAN test model for reliable QCA
design: The proposed hybrid GA based ELMAN neural
network is employed in this paper to perform the fault
analysis and test the reliability of QCA device at the
gate level and circuit level. The developed hybrid
ELMAN model is tested for its effectiveness by
comparing it with the simulation carried over in the
literature by QCA  designer. Figure 8 shows the
proposed hybrid GA-ELMAN model for QCA reliability
analysis.

In this study, possible QCA layouts for a given logic
are examined with necessary simulation studies over three
fault factors additional cell deposition fault, random cell
displacement fault and Missing cell depositional fault. To
depict the applicability of the proposed hybrid ELMAN
model with its optimal weights tuned using GA, test
criterion is developed for three input majority voter with
the specified three different faults. Extra cells are imposed
on the three nput majority voter around the mputs
covering the maximum possible radius of effect over the
QAC device cell as shown in Fig. 9.

Figure 9 shows the majority voter with three mnputs;
input 1, 2 and 3 and four extra cells as shown by extra cell
1 to extra cell 4. These four extra cells are noted to be
mounted over the three input majority voter. The extra cell
1 is imposed between the input 1 and input 2, extra cell 4
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Fig. 9. Three mput majority voter with 4 extra cells
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Fig. 10: Proposed Hybrid ELMAN model for 3 mput
QCA majority voter

is imposed between the input 2 and 3 and the extra cell 2
and 3 oceurs near to mput 1 and mput 3, respectively. The
complete effect of polarization of all the three inputs;
input 1-3 with that of the four extra cells are imposed on
the centre cell C and this polarization developed in “C” cell
is carried towards the output of the majority voter. Figure
10 shows the proposed hybrid ELMAN model of 3-input
majority voter.

RESULTS AND DISCUSSION

Simulation results: The simulation results present the
measurement of prediction of fault tolerance at the time of
fabrication of three mput majority voter. The faults occur
in the three input majority voter at the time of deposition
phase like the additional cell deposition, missing cell
deposition points and misplacement of deposition in
The computed
results considering the fault cases are presented in
this study.

The realization of 3 input majority voter using the
proposed hybrid GA based ELMAN model is performed
1n the following manner. To start with the weights of all
the three inputs are taken to be +1 and the net input is
calculated. Extra cell 1 and 4 generates a+2 and the

another cell positions. simulation

Extra cell 2 and 3 generates a+1. The cumulative sum at
C is noted to be >0, resulting in the polarization to be +1.
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Table 2: Proposed hybrid GA - ELMAN Neural Network parameters

Parameters of the ELMAN NN model Set values Parameters of GA process Set values
Number of output neurons 1.00 No. of populations 30
No. of hidden layer 1.00 No. of generations 100
No. of Epochs 100 Crossover rate 0.1
Threshold 1.00 Mutation rate 0.01
Learning rate parameter 0.10 Selection Roulette wheel
Activation function Tangential sigmoidal Crossover Two-point crossover
Table 3: MSE evolved during generations 1.8
Generations Mean square error values
10 0.3576 167
;g g 3;; 1.49  ——QCA designer by Walus, ete. in 2002
10 01090 & 121 Proposed Hybrid ELMAN model
50 0.1865 g
60 01022 £ 1.0
70 0.0772 g
80 0.0247 = 0.8
90 0.0155 £
100 0.0039 S 0.6
0.4+
Extra cells
0.24
Input 1 -
00 T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100
Input 2 i O\ C Output Extra cell deposition QCA layout (%)

/ O
Input 3

T~

S

Fig. 11: Proposed GA ELMAN model for 3 input majority
voter (extra cell deposition)

When the weights of the inputs are changed to that of -1,
the cumulative sum obtained at the *C” point is noted to
be less than zero and results a polarization of -1. All the
possible randomly generated weights are chosen for the
three inputs and the realization process is carried out by
simulation and the optimal weights tuned by GA process.
Table 2 shows the parametric values of the proposed
hybrid GA ELMAN model employed for fault analysis of
QCA circuits. Table 3 gives the MSE values generated
during the traimng process of three mput majority
voter module.

Additional cell deposition: In this case of extra cell
deposition, to analyze the fault condition eight additional
cells are deposited on the three input majority voter.
Figure 11 shows the proposed hybrid ELMAN model for
the tiled three 1nput majority voter. Table 4 presents the
computed simulation results employing the proposed
approach and that of the solution from QCA designer.
The comparison of the simmulated results obtained
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Fig. 12: Convergence plot of the proposed model
{(extra cell deposition case)

using the proposed approach and that from the QCA
designer from the existing literature 13 given mnFig. 12.
The computed results prove the effectiveness of the
proposed model and it justifies the significance with
that of the simulation of QCA designer for fault of
extra cell deposition

Missing cell deposition: With respect to the missing cell
deposition, it can be noted that the device cell 15 missing
in the three input majority voter. Figure 13 shows the
missing cell in 3 mput majority voter and as well the
proposed ELMAN model of the same. In case of the
proposed Hybrid ELMAN model, the input polarization of
all the mputs are noted to be imposed on the driver cell as
specified by CR. This CR cell tends to calculate the
weighted sum of the inputs and determine the output
polarization. Table 5 shows the computed results using
the QCA designer as available m the literature and as that
computed from the proposed model. The simulated results
prove that employing the proposed model, it can be noted
that the output polarization gets decreased but tend to
remam same using the QCA designer. The decrease in
output pelarization using the proposed model proves that
the reliability is reduced with the missing cell deposition
occurrence. Hence, the proposed model diagnoses that
with the noted fault of missing cell deposition, the
reliability of the QCA cireuit gets reduced which 1s



Asian J. Inform. Technol.,

Table 4: Simulation result of extra cell deposition of three input majority voter

15(3):504-517, 2016

Tnputs for three input majority voter

Extra cell deposition from Output polarization with QCA Output polarization
Input 1 Input 2 Input 3 the exact lay out (%) designer by Walus etc. in 2002 using proposed model
1 1 -1 10 +0.959 +0.900
1 1 -1 20 +0.959 +0.912
1 1 -1 30 +0.959 +0.937
1 1 -1 50 +0.959 +0.941
1 1 -1 75 +0.959 +0.949
1 1 -1 100 +0.959 +0.951

Table 5: Simulation result of missing cell deposition of three input majority voter

Inputs for three input majority voter

Extra cell deposition from Output polarization with QCA Output polarization
Input 1 Input 2 Input 3 the exact layout (%) designer by Walus etc. in 2002 using proposed model
1 1 -1 10 +0.942 +0.950
1 1 -1 20 +0.942 +0.903
1 1 -1 30 +0.942 +0.826
1 1 -1 50 +0.942 +0.791
1 1 -1 75 +0.942 +0.645
1 1 -1 100 +0.942 +0.527
Input 1 ®)
(@)

Missing device cell ‘ O Driver cell (CR)
O® -
O\ @O
| @) O®
‘ O Output (majority)
O@®

Input 3

Input 2

\Driver cell (CR)
2w
B4 Output

??\?

Fig. 13: a) Configuration of missing cell in 3 input majority voter and b) Proposed model of missing cell deposition

— QCA designer by Walus, etc. in 2002
'''' Proposed Hybrid ELMAN model

e

Output polarization
/]
/

0.6- “

0.4

10 20 30 40 50 60 70 80 90 100
Extra cell deposition QCA layout (%)

Fig. 14: Convergence plot of the proposed model (missing
cell deposition case)
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indicated by the decrease in value of output polarization.
Figure 14 shows the results of output polarization
obtamed using the proposed model and its comparison
with the results of QCA designer.

Misplacement in the cell deposition: This type of
misplacement fault is noted to occur during the deposition
phase of the fabrication process. In this case for
analyzing, lets consider that the cells are misplaced
around up/down and left/right n the exact QCA layout.
The misplacement of cell position 1s studied in this study
of 10% cell to that of 100% cell with the displacements
defined as<5 nm and between 5-7 nm. Table 6 shows the
simulated results computed using the proposed model
and as well that of the traditional QCA designer module.
The misplacement of cell position is as shown in Fig. 15
along with the proposed model and Fig. 16 shows the
convergence plot of the output computed.
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Table 6: Simulation result of misplacement cell deposition of three input majority voter

Misplacement.

cell (<25 nm) Output Output Misplacement Output Output.
Inputs for three input majority voter deposition polarization with polarization cell (5-7 nm) polarization with polarization
from the QCA designer by  proposed using  deposition from QCA designer by proposed using
Input 1 Input 2 Input 3 exact layout ~ Walus, etc. in 2002 model the exact layout Walus etc in 2002 model
1 1 -1 10 +0.931 +0.930 10 +0.873 +0.870
1 1 -1 20 +0.872 +0.851 20 +(.849 +0.824
1 1 -1 30 +0.756 +0.737 30 +(.827 +0.819
1 1 -1 50 +0.739 +0.724 50 +{.800 +0.765
1 1 -1 75 +0.726 +0.709 75 +0.769 +0.738
1 1 -1 100 +0.703 +0.685 100 +0.717 +0.698
(a)
(b)
Input 2
Output
(majority)

o Q

E Input 1 \’O/ / Output

i=

Input 3

Input3— |

Fig. 15: a) Configuration of misplaced cell in 3-input majority voter and b) Proposed model of misplaced cell deposition

1.89

—— QCA designer Walus, etc. in 2002
Proposed Hybrid ELMAN model

1.6

1.44

—_
S8}

—

Output polarization
(=]

T T T T T T T 1
30 40 50 60 70 80 90 100
Extra cell deposition QCA layout (%)

20
Fig. 16: Convergence plot of the proposed meodel

(misplacement cell deposition <5 nm)

Discussion on the simulated results: The simulated
results are computed employing the proposed model for
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the considered fault cases of extra cell deposition, missed
cell deposition and misplaced cell deposition of three
input majority voter. From the computed simulation
results, the following observations are made. With respect
to the occurrence of extra cell deposition on the three
input majority voter, the results show that the proposed
model achieves steady increase in output polarization rate
in comparison with that of the traditional QCA designer
which remains the same for all extra cell deposition rates.
In connection with that of the missed cell entity wherein
the device cell is vanished and the existence of driver cell
153 noted which drives towards the output cell. The
obtained results show that there is a higher reduction rate
in the output polarization employing the proposed model
which substantiates that the reliability and robustness
has got decreased which 1s not been observed when
using the regular QCA designer. Thus, the proposed
model achieves and analyses the reliability nature of the
system. The case of misplaced cells, the results are
obtamed for <5 nm msplacement and between 5-7 nm cell
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misplacement. There is a steady decrease in the output
polarization rate of the proposed model proving the
reduction in robustness and reliability nature of the
system and it analyses in a better way than that of the
regular QCA designer. Thus, the convergence plots of
each of the three fault cases of the majority output voter
proves an effective analysis is made on the reliability and
robust nature of the QCA circuit.

CONCLUSION

A Hybrid Genetic algorithm based ELMAN Neural
Network model is developed in this study to carry out
fault analysis and test the reliability nature of the QCA
circuits. QCA circuits are basically operating on cell
mechanisms and their respective movements. This study
explores the three input majority voter circuit of QCA
module. In the three input majority voter, the located
faults that can occur during the fabrication phase are
analyzed; extra cell deposition, missed cell deposition and
misplacement cell deposition. The proposed ELMAN
model is trained for the optimal weights employing the
Genetic algorithm approach and the simulation results are
computed for basic three mput majority voter and as well
with the specified three faults mcluded The obtained
simulated results prove the effectiveness of the proposed
model in determining the reliability nature of the
considered QCA circuit.
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