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Water Distribution Network Optimization Using a Gravitational
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Abstract: This study proposes a Gravitational Search enhanced Memetic Algorithm (GSMA) proposed for
solving the Water Distribution Network (WDN) problem where the Gravitational Search Algorithm (GSA) will
be the main optimizer for exploration capability and the local search method for exploitation 1s derived from the
Simulated Annealing (SA) and Particle Swarm Optimization (PSO) methods. When one technique cannot handle
a challenging problem on its own then, its performance can be enhanced by functionally integrated with another
technique. Memetic algorithm 1s one such heuristic model where a meta-heuristic approach 1s combined with
a local search technique. The GSA 1s proven as an elite method for thorough exploration of the search space.
Similarly, SA and PSO methods when integrated and utilized properly with appropriate operators will prove to
be a promising local search model. This new memetic algorithm model solves the WDN, a complex real time
optimization problem which 1s NP-hard and requires robust solution techmques for obtaining optimum results.
Numerical experiments on three benchmark WDN problems are executed and the result of the proposed GSMA
method is compared with the other existing methods for WDN in the literature.
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INTRODUCTION

In the recent past, the machine learming groups
around the globe mvested a huge amount of hard work
and time to research, design and develop a new section of
hybrid evolutionary algorithms named as Memetic
Algorithms (MAs). Primarily, memetic algorithms are
simply the hybridization of simple Genetic Algorithms
(GA) with Local Search (L'S) methods for the refinement of
the final sclution of the GA (Moscato and Cotta, 2003).
Due to the advent of several new heuristics algorithms,
the defimtion for MAs gradually changed as per the
contributors aspiration. In general, the interest of MAs
materialized due to the lack of exploitation nature of the
evolutionary algorithms. To overcome this, a Local Search
(LS) method 1s mntegrated m the course of run of the main
algorithm. Tn contrast, this leads to loss of exploration
capability, forcing the main algorithm converge to local
optimum. Therefore, it necessitates a motivating research
problem to improvise the performance of MAs, by
proposing suitable diversity techniques (Nguyen et al.,
2007).

In general, MAs are basically understood as
algorithms derived from gas functionally mtegrated with
any local search mechanisms to improvise the solution

each time the main algorithm is allowed to run. This
integration mechanism may be viewed logically as
hybridization of heuristic and exact or hill climbing
techmques together but still researchers distinguish MAs
in a different perspective (Neri and Cotta, 2012).
Although, hybridization of two algorithms is pretty old,
MAs gained their attention only n the past two decades.
As previously mentioned, genetic algorithms paved the
way for designing MAs as the GAs are very powerful
population based techniques that are named for the
exploration strength but they are week in exploitation
towards the end of the run Hence, most of the past
literatures reviewed about the MAs are based only on
GAs. And in this also most of them are used for
addressing single objective continues optimization
problems. Thus, Elbeltagi et al. (2005) compares the
formulation and results of five recent evolutionary-based
algorithms: genetic algorithms, memetic algorithms, GSA,
(PS0), Ant-Colony systems (ACO) and Shuffled Frog
Leapmng (SFL). Among the rapid growing body of
literature, we would like to review only a few in particular.

In a new framework of MA which integrates the
greedy crossover-based lill climbing and steepest
mutation-based hill climbing (Wang et af, 2009). In
addition to improve, the convergence capability adaptive
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dual mapping and triggered random immigrants is also
discussed. In another development (El Fallahi et al., 2008),
the MA 1s designed based on a post-optimization phase
with path relinking and additionally a Tabu Search (T'S)
method is integrated. In contradictory to GA (Neri and
Mininno, 2010) proposes a Differential Evolution (DE)
framework of MA which as an altemative process the
statistical representation of the population which evolves
over time. Tn addition, to enhance the performance of the
DE it utilizes a stochastic local search algorithm. In
another improvement of the DE based MA, the
exploitative features of three local search algorithms
namely the Hooke Jeeves algorithm, a Stochastic Local
Search and Simulated Annealing (SA) with various pivot
rules and neighborhood generating functions 1s proposed
(Tirronen et ai., 2008).

A chaotic local search for DE to explore a large search
space in the beginning of the run to overcome premature
convergence and exploiting a small region at the end
of the run to fine ttme the final selutions 18 proposed
(Tia, 2011). In a SFL based MA is proposed the virtual
frogs of SFL act as memes and the algorithm performs
simultaneously an independent local search mn each
memeplex. The local search of MA 1s achieved using the
PSO concise only on local search. Similarly in another
attempt (Eusuff et al., 2003, 2006), SFL uses memetic
evolution m the form of infection of ideas from one
individual to another in a local search such that a strategy
for the exchange of information among local searches to
go toward a global optimum is proposed. In a new MA is
proposed combining the global search ability of PSO with
a synchronous local search for tamed local refining of
solution (Liu et al., 2007). The particle updating model
uses the fuzzy global-best to deal premature convergence
and also to ensure diversity among the particle swarm.

In another development (Bao ef al., 2013), the PSO 1s
used for through search of space and capturing the
potential regions containing optimum solutions, in
addition a Pattern Search (PS3) i1s enabled for effective
exploitation of optimum regions discovered by the PSO.
Likewise, PSO with a ring-shape topology and a fuzzy
cognition combination method for designing MA for
dynamic optimization 18 proposed (Wang et al., 2010).
Similarly, i the particles of PSO form sub-regions in the
fitness landscape in parallel, for global exploration and an
adaptive two different TS operators is used in a
cooperative way for exploitation (Wang ef al., 2012). In
another design the MA combines both GA and PSO such
a way that each candidate of GA will be tuned by the PSO
for qualifying into next generation (Marinakis and
Marnnaki, 2010). In a hybrid evolutionary PSO fusing PSO
with fuzzy operators for aiding mimature aerial vehicle
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controllers is proposed (Chiou et al, 2015). A clonal
based MA with the a simulated annealing based local
search algorithm based on Nowicki and Smutnicki's
neighborhood is proposed (Yang et al., 2008). An ABC
based MA is proposed in (Bansal ef al., 2013) such that
ABC works as a local search algorithm a step size is
required to update the best solution using a golden
section search approach.

In a hybrid Differential Evolution Krill Herd (DEKH)
method to overcome the drawbacks of Krll Hers
algorithm 15 proposed (Wang et af, 2014). The
enhancement is done by adding a new Hybrid Differential
Evolution (HDE) operator mto the krill. In another advent
(Wang et al, 2013), a new improved meta-heuristic
Simulated annealing-based Krill Herd (SKH) method is
discussed. This Krill Selecting (KS) operator refines the
krill behaviour to improve algorithms reliability and
robustness. A recent optimization algorithm called
Gravitational Search Algorithm (GSA) inspired from the
law of gravity and mass interactions is presented in
(Rashed: et al., 2009). Here, candidates are a group of
which cooperate together based on the
Newtonian gravity and the laws of motion. Based on this
(Mirjalili et al., 2012), proposes a hybrid of PSO and GSA
to training Feedforward Neural Networks (FNNs) in order
to investigate the efficiencies of these algorithms. In
continuation of the above several MAs proposed so far
and to bets of our knowledge, there is still a vacuum of
literature of the application of a GSA based MA for
several optimization problems.

Optimization of WDN 1s attracted in the recent
few decades due to its computational and complexity
in getting quality solution. The majority of studies
dealt with least-cost optimization (Cunha and Sousa, 1999;
Geem, 2009, Vasan and Simonoric, 2010). Conversely, the
reliability of network design in ensuring adequate head is
also of prime mmportance. The complex relation between
flow and head loss along with the presence of
discrete variables makes any optimizer finds it difficult to
find quality solutions. Many researcher applied several
methods for mimmizing the network cost applying a
large variety of techniques which includes linear and
non lmear programming, mathematical optimization
methods and also meta-heuristic techniques (Banos ef af.,
2010). In a new version of PSO is presented for solving
this problem (Aghdam et af.,, 2014). In order to increase
the convergence speed of the original PSO algorithm,
some accelerated parameters are introduced to the
velocity update equation. Thus, this research proposes a
Gravitational Search enhanced Memetic Algorithm
(GSMA) for solving a real world optimization called Water
Distribution Network (WDN) problem.

masscs



Asian J. Inform. Technol., 15 (3): 353-562, 2016

Water distribution network; problem formulation: The
water distribution network problem 1s formulated in this
section. The WDN 1s a generalized formulation widely
used by several researchers and 1s adopted from
(Montesinos et al., 1999, Lai and Schaake, 1969; Fujiwara
et al., 1987, Cunha and Ribeiro, 2004). The formulations
are revisited for the sake of the readers benefit. The
optimal design of a looped network based on gravity
system is defined by the set of pipe sizes which results in
the minimum installation cost of the entire network. The
network cost optimization problem can be formulated
mathematically in terms of pipe diameter, cost coefficients
and unit length costs as follows. The objective function
for cost mmimization of the water distribution system 1s
given by:
NP

C=3YeL, Di8)

i=l j=1

(1)

Where:

D, = Ripple diameter (in)

I, = Pipe length (ft)

NP = Number of pipes in the system subject to

Continuity constraint: For each junction node (other than
the source), a continuity constraint should be satisfied as:

YQ-2Q =0, @

Energy conservation constraint: the total head loss

within a loop must be equal to 0:

Y} AH, =0, Vle NL

ieLoopl

3)

Where:

AH, = Head loss mn the pipe 1 and

NL = Total number of loops in the system and each
pipes diameter should be within its prescribed
minimum and maximum limits:

dmin S di S deX
i=1,2,3,.NP

“4)

Each pipes pressure limit should be within its
prescribed minimum and maximum limits:

)

Each pipes speed of water flow should be within its
prescribed minimum and maximum limits:
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Vmin S \/Yl S VIDBX

1=1,2,3,

(6)

Reliable loops are considered when the comnected
pipes to a node do not vary widely in diameter, thus a
node termed as “node uniformity coefficient.” Tf and
(where ) are the diameters of three pipes connected to a
node j, then the umformity coefficient of the node 1s
given by:

_(D;+D,+D.)

J )
3D

C

1

This formulation assumes that all systems are a gravity
fed system without pumping stations and other driving
devices. Thus the objective function (1) conveys the cost
minimization of the water distribution network that is
formulated to be a function of the pipe diameters “D” (the
decision variables), with the pipe length “L” and the unit
cost “c” to be known. The total cost to lay the pipes is a
complex problem and declared as NP-Hard as it includes
both continuous and discrete variables. Tn the next study,
we discuss the proposed ne methodology called Memetic
algorithm basically derived from the GSA.

MATERIALS AND METHODS

This study describes the details of the proposed
solution methodology, the Gravitational Search enhanced
Memetic Algorithm (GSMA) where the Gravitational
Search Algorithm (GSA) will be the main optimizer for
exploration capability and the local search method for
exploitation 18 derived from the Simulated Annealing (SA)
(Kurkpatrick et al., 1983) and Particle Swarm Optimization
(PS0O) (Eberhart and Kennedy, 1995) methods. The GSA
1s proven as an elite method for thorough exploration of
the search space. Similarly, SA and PS5O methods when
integrated and utilized properly with appropriate operators
will prove to be a promising local search model.

Gravitational search algorithm: The GSA is inspired
by the natural interaction forces between masses (Rashedi
et al., 2009). The Newton's law of gravity paves the
expression for the gravitational force between any two
particles as follows:

alas
f,=5 52 2 (8)
Where;
piand p;, = The mass for particles 1 and 2
) = The gravitational constant
d = The distance between the particles 1 and 2
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According to the Newton’s second laws of motion,
the gravitational force shall also be expressed as; f; po
which may be re-written:

o="2 )
n

where, ¢ 15 the acceleration of the particles mass. Let us
consider a swarm of particles (or population), P, of size n.
P 1s represented such a way that each component
represents a potential solution for a given optimization
problem as follows:

B =[p,.Ps:PssemaPs ]

In the above vector P, each potential solution p; 1s
considered as the particle position 1n the solution search
space. The force between any two particles i and j, for
dimension m and iteration j is expressed as given in Eq.3:

u, (Glow, (k)

£ = 5(k) 5,00+ E

@y k) —p k) (10}

where, £ is a positive constant (typically 1) and the
gravitational constant is expressed by:

6(1() — 6(kn )k?ﬂ where, e <l (1 1)

Also, 8(k;) is the randomly preset initial gravitational
constant and i1s the Euclidian distance (distance in
multi-dimensional space) between any two particles.
Thus, the total force f; that acts upon particle i in a
particular dimension, m, is expressed as follows in Eq. 5
by:

USSR YN (12)

5 Bpest » J#L

in which, ¥; denotes an uniform distribution of randomly
generated number in the interval [0,1] and S, is the best
particles selected based on their fitness based on the
objective of the optimization problem undertaken with size
set to 3; (in thus case S; = n) at the beginning of the GSA
run and the value is linearly decreased as the iteration
progress. The «; 15 the acceleration of the particles mass
1s thus calculated using:

o - £5k) 13)
owik

with 1 denotes the mertia mass for particle 1, which 1s
estimated using:

(k
b :7,,([)‘( ) (14)
Z@d(k)
e
and:
(pi(k)zw (15)
£, (k) £, (k)
Where:
ff;(k) = The fitness function value for particle i in
iteration k

f (k) = The worst fitness function value among all
particles in iteration k

F,(k) = The best fitness function value among all
particles in iteration k

After estimation of all above parameters, the new
velocity and the new positions of each particle are
updated as per the following equations:

v (k) =, v (k) ol (k) (16)

pr(k+1) = p" (k)3+vi(k + 1) (17)

Where:

Vi (ktl)= The new velocity calculated from the
previous velocity V™ (k)

p"(k+1) = The new position calculated from the
previous position

T, = A random number uniformly generated
between [0, 1]

The local search framework: The local search part is the
prime segment in a MA. The exploration capability of the
GSA should be appropriately tamed by a local search
subroutine which should be designed with care so that
the newly explored solution regions must be thoroughly
exploited for attaining quality solutions (Pirlot, 1996). This
study proposes a new local search framework deriving the
features of two algorithms. One 13 the simulated annealing
and the other is the particle swarm optimization. Both are
individually proven heuristics for solving wide variety of
problems. Perhaps, both algorithms are designed based
on two different principles, they have a similarity when
the algorithm tends to reach an end. Accordingly:

¢ Tn simulated annealing, the algorithms tries to avoid
the acceptance criterion as the temperature gradually
reaches the cooling point thereby, it only fine-tunes
the final solution region (Kirkpatrick et al., 1983)

¢ In particle swarm optimization, the inertia weight
controls the algorithms global and local search
capabilities, thus when the inertia weight 1s kept low,
then it only fine-tunes the final selution region
{Eberhart and Kennedy, 1995)
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Thus, these two features of the two algorithms are
functionally placed into the GSA and a new MA is
designed. The next section describes tlus proposed
solution method for WDN.

The Gravitational Search enhanced Memetic Algorithm
(GSMA): The Gravitational Search enhanced Memetic
Algorithm (GSMA) 18 designed such a way that the
Gravitational search algorithm will be the main optimizer
used for exploring the solution space to find better
solution region. Meantime, the proposed local search
framework designed using the local search capabilities of
SA and PSO will be used to exploit the better solution
regions discovered by the GSA. The pseudocode the
proposed GSMA 1s as follows:

Step 1: Imtialize the iteration count and randomly set
values for mass, velocity and position

Step 2: Imtialize the masses and evaluating using the
fitness function (objective function of the problem)
Step 3: Update the best and worst positions based
on the fitness values

Step 4: Hstimation of acceleration of all the particles
mass using Eq. 13-15

Step 5: Invoke the local search subroutine

Step 6: Initialize the inertia weight w* = small range
and Temperature T* = large range

Step 7: Route 1; perform the local search using the
PSO with the best position obtained so far

+ Randomly find the neighborhood of the f, (I) and

calculate:
" = whqi +rand, (G — )
such that:
Ppeo =+ DY
» Estimate p‘, and p% is the position

corresponding to f,(k)
Step 8: Route 2; perform the local search using the
SA with the worst position obtained so far
Randomly find the neighbor hood of the
f, (K)estimate £, and check for
If expl(fp*)-fa(P))/ T, ]2, rand (0, 1), once
satisfied, perform till the temperature reaches its
final set value

Estimate p;, and p;* is the position corresponding
to £, (k)

Step 9: Compare the fitness values of p*,, and p¥,
and replace the best with the best position of GSA
Step 10 : If termination criterion is not satisfied, go to
step 3

Thus, the best positions of the GSA as well as the
worst are exploited for better improvement m the solution
independently by both the PSO and SA algorithms. When
the local search subroutine could able to find a better
position, that position will guide the entire GSA for rest of
the run. The flowchart of the proposed GSMA 1s shown
mFig 1.

Initialize of various parameters
the iteration count, inertia weight
and temperature randomly set values
for mass, velocity and position

\4

Evaluate the fitness function using
the randomly generated mass and position

v

Calculate the acceleration of each
particles mass using Eq. (13)-(15)

\ 4

-

Perform the local search using
the PSO with the best position
obtained so far

l

Fig. 1: Continue
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\ 4

Perform the local search using
the SA with the worst position
obtained so far

l
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Randomly find the neighborhood of the f (k)
and calculate g = w'q", + rand ,
(GuP") such that p',=q"" + p"

Randomly find the neighborhood of the
f, (k) estimate f , (k) and check if
exp [(£,(p")-f ()Y T] >rand (0,1),
once satisfied, perform till temperature
reaches its final set value

v

Estimate p',,, the position
finally obtained from PSO

v

Estimate p', sa the position
finally obtained from SA

v

Check which among p" , and p's,is better and
the fitness value of that will be the f, (k)

.

_>

v

Update velocity and position No
check for termination condition
and stop
Fig. 1: Flowchart of the proposed GMSA for WDN optimization
Table 1: Parameter settings for the PSO and GSA methods
Methods PSO GSA SA
Particle size 20 20 1
Parameter Tnertia weight=0.9-0.4 Pos. constant = 0.01 Temp =400-300F
Total iterations 300 100
Termination criteria Mo change in fitness for 20 iterations Mot applicable
Total number of trials 30 trials Not applicable
RESULTS AND DISCUSSION As already mentioned, the three methods mcluding

Numerical simulations: The proposed GSMA method
for WDN 18 experimented using some well-known test
networks from the literature (Montesmos ef al., 1999,
Lai and Schaake, 1969, Fujiwara et al., 1987; Cunha and
Ribeiro, 2004). Three standard WDN is evaluated using
three different optimization techniques PSO, GSA and the
proposed GSMA to solve least-cost design water
distribution network problems. The proposed GSMA
algorithm and other algorithms are used with the
parameters as summarized in Table 1. The WDN used for
simulations 1s studied in three different cases.

Case 1; Hanoi Water Distribution system: The Hanoi
water distribution network shown in Fig. 2 i1s adopted
tested  for
demonstrating the application of proposed techniques.
The network consists of 32 nodes and 34 lnks arranged

widely by several researchers and

in three loops, fed from a single fixed head reservoir with
an overall head of 100 m. The system data adopted from
(Fujiwara et al., 1987, Cunha and Ribeiro, 2004) and is not
reproduced as several literature uses this. Since, a total of
six discrete pipe sizes for the network design make the
optimization problem complex and NP-hard and makes any
search procedure to find the optimal solution in a
cumbersome procedure.

the proposed GSMA 18 simulated for 30 different trial runs
with independent random mitialization of variables. For
one simulation run (the best possible for our knowledge)
the results are tabulated mn Table 2. The convergence plot
for all the three methods are shown in Fig. 3. From the
simulation results, it can be inferred that, the proposed
GSMA produced 6,322,214 (US $) m comparison of
6,387,457 (US §) produced by PSO and 6,338, 445 (US §) as
produced by the GSA. Tt was also observed the GSMA
consistently produced close to this results for all the 30
trial runs.

Case 2; New York water supply system: The simplified
one line diagram of the New York water supply system 1s
shown in Fig. 4. This system also studied and analysed
by several researchers as standard case study. The pipe
input data including discrete set of available diameters
and minimum head and demand at each node are simply
adopted from (Lai and Schaake, 1969). It 1s assumed that,
due to pipe aging in nodes 16-20 the existing gravity flow
tunnels cannot accommodate extra pressure. Hence, the
network it 13 proposed by adding new pipes parallel to the
existing pipes it 18 proposed to meet the mimmum pressure
head requirements (Vasan and Simonoric, 2010). Since, a
total of sixteen discrete pipe sizes for the network design
make the optimization problem complex and NP-hard and
malkes any search procedure to find the optimal solution
in a cumbersome procedure.
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New pipe

Fig. 2: Hano1 water distribution system
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Fig. 3: Convergence plot for the cost optimization of
Hanoi water distribution system

In this case also, the three methods mcluding the
proposed GSMA is simulated for 30 different trial runs
with independent random mitialization of variables. For
this case also, a unique simulation run (the best possible
for our knowledge) the results are tabulated in Table 3.
The convergence plot for all the three methods are
shown in Fig. 5. From the simulation results, it can be
mferred that the proposed GSMA produced 38562
(Million TS 3) in comparison of 38247 (Million US §)
produced by PSO and 38187 (Million US 3) as produced
by the GSA. In this case also, it was also observed the
GSMA consistently produced close to these results for all
the 30 trial runs.

Case 3; water supply system as adopted from Cunha and
Ribeire (2004): Another standard system as shown
in Fig. 6 is also simulated for demonstrating the
supertority of the GSMA method. Tlus
also studied and analysed by

system
researchers  as
standard case study. The network consists of 17
nodes and 25 links arranged in three loops, fed from a

91.44 m

New pipe

Fig. 4: New York water supply system
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Fig. 5: Convergence plot for the cost optimization of New
York water supply system
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Fig. 6: Water supply system as adopted from Cunha and
Ribeiro (2004)
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Fig. 7. Convergence plot for the cost optimization of case
3 WDN

Table 2: Optimnum cost generated by various methods for the case 1 WDN
Pipe diameters (inch)

Index Length of

of pipe each pipe (km) PSO GSA GSMA
1 0.100 40.000 40.0000 40.0000
2 1.350 40.000 40.0000 40.0000
3 0.900 40.000 40.0000 40.0000
4 1.150 40.000 40.0000 40.0000
5 1.450 40.000 40.0000 40.0000
6 0.450 40.000 40.0000 40.0000
7 0.850 38.1051 37.7989 38.4981
8 0.850 37.1718 36.4428 36.2596
9 0.800 35.2960 35.0287 355113
10 0.950 29.0486 29.2338 29.0005
11 1.200 26.7962 26.2222 26.7818
12 3.500 23.2752 22.9488 23.2528
13 0.800 19.2726 19.0853 19.7795
14 0.500 15.7921 15.8668 15.5489
15 0.550 12.0000 12.0000 12.0000
16 2.730 22.3046 22.8537 223412
17 1.750 24.9297 25.3336 252741
18 0.800 28.7034 29.0066 29.2371
19 0.400 29.4622 29.6798 29.0893
20 2.200 38.3828 38.9016 389185
21 1.500 17.4017 17.5049 17.4281
22 0.500 12.3009 12.9680 12.5204
23 2.650 32,7879 32,7502 32,7927
24 1.230 21.9384 21.9020 22,1066
25 1.300 18.7000 18.1297 18.2849
26 0.850 12.0000 12.0000 12.0000
27 0.300 22.4646 22,6501 22.6457
28 0.750 24.6913 24.2430 24.8073
29 1.500 21.5848 21.7697 20.9265
30 2.000 19.7968 19.1114 18.8518
31 1600 16.5426 16.2723 169139
32 0.150 12.0000 12.0000 12.0000
33 0.860 12.0000 12.0000 12.0000
34 0.950 22.430 22.3800 22.5100
Optimum cost ($) 6,387,457 6,338,444 56322214

single fixed head reservoir with an overall head of 120.701
m. The pipe input data including discrete set of available
diameters and mimimum head and demand at each node
are simply adopted from . Since, a total of sixteen discrete
pipe sizes for the network design make the optimization
problem complex and NP-hard and makes any search
procedure to find the optimal solution in a cumbersome
procedure.

Table 3: Optirmum cost generated by various methods for the case 2 WDN
Pipe diameters (inch)

Tndex Length of

of pipe each pipe (km) PSO GSA GSMA
1 3.5355 52.1605 51.7191 51.9435
2 6.0347 49.6091 49.6987 49.9155
3 2.2249 63.2898 63.5714 63.2440
4 2.5297 55.8733 55.3744 55.5229
5 2.6212 57.4308 57.2192 56.9759
3] 5.8214 59.1511 58.7548 59.2698
7 2.9259 59.1278 59.5483 593204
8 3.8098 55.2442 55.0328 54.9798
9 2.9259 50.0000 50.0000 50.0000
10 34136 50.0000 50.0000 50.0000
11 44194 116.1220 115.7692 116.7001
12 37184 1254946 125.3529 125.5389
13 7.3453 126.6379 1264203 126.8087
14 6.4310 133.0099 1329854 133.0683
15 47242 126.9534 126.3250 126.2340
16 8.0463 19.7033 19.8944 19.6635
17 9.5093 91.5426 91.3450 91.6500
18 7.3148 73.0992 73.0280 73.2201
19 4.3889 72.7388 73.0808 72.8366
20 11.7037 50.0000 50.0000 50.0000
21 8.0463 54.8200 54.4538 54.5271
Optimum cost (million $) 38562.0 38247.0 38187.0

Table 4: Optimumn cost generated by various methods for the case 3 WDN
Pipe diameters (inch)

Tndex Length of

of pipe each pipe (km) PRO GSA GSMA
1 0.3657 51.2943 50.8751 504536
2 50.7398 50.7514 50.9756
3 50.6400 50.3439 50.9992
4 203.0142 202.7272 203.4275
5 50.6651 50.6127 50.7784
6 101.4932 101.1129 101.6548
7 50.8915 50.6840 504210
8 101.2197 101.7831 101.5508
9 50.3381 50.3928 51.0159
10 50.7586 50.3353 51.1928
11 203.5699 203.3124 202.9731
12 203.6342 203.3085 202.9548
13 0.2438 202.9644 202.7158 203.5656
14 50.4603 50.3164 50.5324
15 51.1729 50.4901 51.1049
16 50.5379 50.8869 51.2084
17 203.3458 202.7576 202.9319
18 203.6669 203.0676 202.9393
19 101.7649 101.7315 101.1498
20 51.1704 51.0176 503784
21 101.1099 101.7927 101.7408
22 50.4370 50.3841 50.4909
23 101.9188 101.5544 101.9439
24 101.5302 101.5418 101.2739
25 0.9144 254.3903 253.8533 253.6708
Optimum cost (3) 812,784 809452 807,214

In this case also, the three methods including the
proposed GSMA 1s simulated for 30 different trial runs
with independent random initialization of variables. For
this case also, a unique sunulation run (the best possible
for our knowledge) the results are tabulated in Table 4.
The convergence plot for all the three methods are shown
in Fig. 7. From the simulation results, it can be inferred
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that the proposed GSMA produced 812,784 (US §) in
comparison of 809,452 (US §) produced by PSO and
807,214 (US $) as produced by the GSA. In this case also,
it was also observed the GSMA consistently produced
close to this results for all the 30 trial runs.

CONCLUSION

This study proposes a Gravitational Search enhanced
Memetic Algorithm (GSMA) where the Gravitational
Search Algorithm (GSA) will be the main optimizer for
exploration capability and the local search method for
exploitation 1s derived from the Simulated Annealing (SA)
and Particle Swarm Optimization (PSO) methods. The GSA
1s proven as an elite method for thorough exploration of
the search space. Similarly SA and PSO methods when
integrated and utilized properly with appropriate operators
will prove to be a promising local search model. This new
memetic algorithm model is proposed for solving the
Water Distribution Network (WDN), a complex real time
optimization problem, which 13 NP-hard and requires
robust solution techniques for obtaining optimum results.
Numerical experiments on three benchmark WDN
problems are executed and the result of the proposed
GSMA method is compared with the other existing
methods for WDN in the literature. Numerical results
demonstrate that the proposed GSMA method 1s superior
in producing quality network cost for laying the water
distribution system. The robustness of the algorithm is
proven by simulating the solution methods for 30 different
trial runs with independent random initialization of
variables. In all the trials, the GSMA method produced
better solutions than the other two methods. The newly
proposed local search framework could prove itself as a
better alternative to aid the GSA m exploiting the better
solution regions. In future, additional constramts
considering networks with electric pumps, additional
reservoirs, etc., will be considered.
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