Asian Journal of Tnformation Technology 15 (4): 723-729, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

An Effective Standing Exposure in Gridlock (Deadlock)

'A. Mohan and °P. Senthil Kumar
'Saveetha Engineering College, Anna University, 602105 Chennai, India
“SKR Engineering College, 600123 Chennai, India

Abstract: Gridlock (Deadlock) independence is the most important dispute in developing multithreading
programs. To avoid the potential risk of blocking a program, prior momtoring of threads can be used during the
execution process. The proper monitoring scheme can able to monitor the threads that might enter to a deadlock
stage, it maintains a backup to store the threads so after the execution of one thread the injection of the other
thread can be made from backup into the processing stage. Today’s parallel programs are difficult with deadlock
problem further problem by the shift to multicore processors. By using tlus process, the deadlock can be
avolded in the multithreading environment. Moreover, fixing other concurrency problems like races often
involves introducing new synchronization which also cause the new set of deadlock. Tn the proposed system,
we apply the different necessary condition for a deadlock, we implement the algorithm and report upon our
experience applying it to a suite of multithreaded java program. It helps the threads to recover from deadlock

situation and lets the threads complete their execution.

Key words: Deadlock, synchronization, multithreading, gridlock, thread maps, scrider

INTRODUCTION

Deadlock is a situation in which two computer
programs sharing the same resource are effectively
preventing each other from accessing the resource,
resulting in both programs ceasing to function. The
earliest computer operating systems ran only one program
at a time. Deadlock-freedom 15 a major challenge in
developing multi-threaded programs as a deadlock cannot
be resolved until one restarts the program (mostly by
using manual intervention). To avoid the potential risk of
blocking, a program may use try lock operations rather
than lock operations. In this case, if a thread fails to
acquire a lock, it can take appropriate action such as
releasing existing locks to aveid a deadlock (Mohan and
Kumar, 2014). In the existing system, the usage of
mapping is not implemented and in another mechanism,
there 1s an approach that specifically clears the circular
mutex wait for deadlocks and lock graphs but this model
1s not suited for all environments (Mohan and Kumar,
2014). The existing dynamic method has less efficiency
compared to the static deadlock analysis method so the
proposed system provides an efficient mapping technique
for avoiding deadlocks depending upon priority.

The main aim of the project 1s to avoid the deadlocks
occurred in the threads during execution by providing a
map that stores the thread objects and locks acquired and
requested by the thread. In this case, if a thread fails to
acquire a lock, it can take appropriate action such as
releasing existing locks to avoid a deadlock.

In order to avoid deadlocks in threads during the
execution process in the proposed system, the momnitor
that identifies the threads running in the program, i.e., the
thread objects are identified. After this process, there will
be a map generated that store the thread objects and the
locks acquired and requested by them. Whenever, a
thread tries to acquire a lock if the access 1s denied then
1t waits for the certamn period of time. After the time period
is over, the thread again tries to access the lock, since due
to some reasons if accessing the locks still denies then
thread traverses the map to identify what are all the
threads have requested or hold the same locks requested
by it. So, if it finds any such threads then it detects that
deadlock condition occurred, after tlus, the deadlocked
thread wait for each other for an infinite time. When, 1t
finds deadlock condition prevails, the thread now releases
all the locks acquired by it, so that it might allow the
deadlocked threads to complete their required operation.
In another case if more deadlocks are detected then
according to the prionty the threads given to process
their execution, the execution of the priority based threads
are executed in a random manner during this process the
threads invoelving in execution are been backed up for a
while during other threads are in execution. According to
the priority, the threads execution states are changed, this
helps he threads to recover from deadlock situation and
let the other threads complete their execution.

A problem that no existing analysis can directly solve
effectively in terms of different problems that can be
solved effectively.

Corresponding Author: A. Mohan, Saveetha Engineering College, Anna University, 602105 Chennai, India

Asian J. Inform. Technol., 15 (4): 723-729, 2016

Available: Tn a multithreaded program thread A (tal)
acquires the lock LAl and while holding T.A1, it proceeds
to reach LA2, simultaneously holding both LAl and 2.
Similarly, thread B (tbl) acquires a lock LBl while holding
L.B1, it proceeds to reach 1.B2 such that it helds both LB1
and 2.

Signaling: During the thread B holds LB1, LB2 then lock
acquired by thread A, 1e., LAl will it execution of a
multithreaded program if thread A holds TA1, LA2 and
is same as the lock acquired by thread B, ie, LB2.
Similarly, the lock acquired by thread A at LA2 will it be
same as the lock acquired by thread B, i.e., LBI.

Avoidance: Tn amultithreaded program for example, thread
A acquires LAl, then thread B, thread C and so on Can
also acquire and access the lock at LAL. Sumilarly, for
each lock acquired at LA2, L.B1, LBZ can it be accessible
from more than one threads like thread A, thread B and
thread C.

Comparable: During the execution of program, if suppose
thread A acquires LA2, then will it be possible for thread
B. To acquire LB2 parallel, ie., can different threads
abstracted by TA and TB simultaneously reach LAZ2 and
L.B2Z, respectively.

Non safe: In some execution of a multithreaded program,
15 1t possible for a thread abstracted by TA that does not
hold any lock to acquire a lock at LA and while holding
this lock, proceed to lock I.A2 which is not already held
by it..similarly can thread TB acquire lock LB1 which is
not already held and while holding this can it proceed to
acquire lock L.B2 which 1s not already held.

Thus, if a thread which holds a lock acquires the
same lock then the lock caused at the second time cammot
create a deadlock because the locks can be reentered
again as reentrant is possible in java.

Unmindful: In a multi threaded program, if two threads
say TA and TB hold a common lock say lock “G” then it
is called as guarding lock or simply gate lock. Thus, in
case if there isn’'t any common lock, ie., gate lock
between different threads abstracted by TA and TB then
15 that possible for the threads to reach or acquire the
locks LAl and LBI.

Riterature review: The static and dynamic techniques
used for exposing deadlock potentials (Agarwal et al.,
2010). Tt has three extensions to the basic algorithm (logic
graph) to eliminate, label as low severity and false warning

724

of possible deadlocks. The extensions of lock graph
algorithm to detect the deadlock i static and dynamic
techniques.

They propose a new technique is practical static race
detection for java parallel loops and the use of these
constructs and libraries improves accuracy and scalability
(Radoi and Dig, 2013). The new tool called ITE Race has
been introduced which includes, a set of techniques that
are specialized to use the intrinsic thread, safety and
dataflow structure of collections. The ITE Race 1s fast and
perfect enough to be practical. Tt scales to programs of
hundreds of thousands of lines of code and it reports few
race warnings, thus avoiding a common consequence of
static analyzes. The tool implementing this method 1s fast,
does not delay the program with many warnings and it
finds latest bugs that were confirmed and fixed by the
developers.

The detecting atomicity violations using dynamic
analysis technique is present (Flanagana and Freund,
2008). A more fundamental non interference property is
atomicity. A method execution 1s not affected by
concurrently-executing threads means that method 1s
called as the atomic method. Tt contains both formal and
informal correctness arguments. Detecting atomicity
violations combine an idea of both Lipton’s theory of
reduction and early dynamic race detectors. It 13 effective
error detecting to unintended interactions between
threads. It will be more effective than standard race
detectors.

Flanagana and Freund (2006) proposes the type
inference algorithm for RCC java. The performance of the
algorithm is applied on programs of up to 30,000 lines of
code. The resulting annotations and race-free guarantee
provided by our type inference system. Type inference
algorithm applied to the concuwrent program to manipulate
the shared wvariable without synchronization. This
algorithm has some lock variables. Extending this
inference algorithm to larger benchmeark has some 1ssue.
Tt produces reliable error reporting.

Hasanzade and Babamir (2012) describe an approach
for online deadlock detection for multithreaded programs
using the prediction of future behavior of threads. About
74% of deadlock were predicted using the proposed
method. Some specific behaviors of threads are extracted
at run time and converted mto the predictable format
using time series method. The proposed method has
several advantages compared to the existing static
methods. A powerful technique used for predicting
complex deadlock s.

Bodden and Havelund (2010) implement an efficient
algorithm to sense concurrent programming errors online.
In that system programmers to monitor program events

Asian J. Inform. Technol., 15 (4): 723-729, 2016

where locks are granted or handed back and where values
are accessed that may be shared among multiple Tava
threads. The proposed RACER algorithm uses ERACER
for memory model of java and AspectBench compiler for
implementation. In that project, they proposed a language
extension to the aspect-oriented programming language
Aspect]. The proposed Aspect] have implemented the
following three pomts. There are Lock(), Unlock(),
Maybeshared().

Chen et al. (2011) examines the performance scaling
of various processor cores and application threads. It
analyzes the performance and scalability by correlating
low-level hardware data to JTVM threads and system
components. [t uses the JTVM tuning techniques to solve
the problems regarding lock conditions and memory
access latencies. The study of performance, scalability of
multithreaded java application on multicore systems is
done. The proposed method reduces the bottlenecks
using JTVM tuning techniques. Tnappropriate use of
synchronization leads to a large number of stall cycles.

Joshi et al. (2009) present a novel dynamic analysis
method to find real dead-locks in multi-threaded programs.
Deadlock-fuzzer 1s the new technique used to find the
deadlocks in two phases. In the first phase, find potential
deadlocks n a multithreaded program using dynamic
analysis techmique by execution of the program. In the
second phase, to control the deadlock creation using
threads scheduler. Deadlock-fuzzer 1s implemented to find
the all previously known deadlocks in large benchmarks
and but it does not discover previously unknown
deadlocks in an efficient manner. This technique needs
both static and dynamic techniques.

Wang et al. (2009) describes a new Java thread
deadlock detection approach called as TDeadlockDetector.
Existing system requires source code and built on
non-official TVMs for Java thread deadlock detection
solutions. Many numbers of Java programs cannot be
evaluated with these solutions. The JDeadlockDetector 1s
built on the official Tava Virtual Machine (TVM), viz.,
OpenJDK’s HotSpot. The JdeadlockDetector has three
unique advantages compared to the existing system.
There are application transparency, detection accuracy
performance The
IDeadlockDetector achieves no false negative and

and minimized overhead.
minimized false positive. IDeadlockDetector to detect JTava
thread deadlock based on holds the capability of
momtoring the thread states and synchromzation states
on runtime. In this way, the technicque achieves their
advantages. To track the control flow and data flow of

a Java program they want to extend the Hotspot

725

introspection architecture. This will afford a capability to
analyze the vulnerability of Tava programs.

In a new two-phase deadlock detection scheme was
introduced which provides efficient memory utilization
and time constraints. The performance of the proposed
system is much higher than the traditional approach to
finding the potential deadlock in an application. The first
phase reduces lock by filter out certain locks that cannot
participate. The second phase creates smaller lock graph
for potential deadlock detection. The proposed work can
minimize the overall deadlock detection time and increases
the performance. We focus on developing dynamic
deadlock detection technique which reduces the deadlock
occurrences.

MATERIALS AND METHODS

System architecture: The system architecture for the

proposed system includes deadlock monitor and
analyzing thread states and explains the efficient ways of
detecting deadlock in the multithread program using
thread map and priority assignment. The java thread has
created based on the set of condition to occurring into a
deadlock situation. Each thread has built based on a
The deadlock
monitor that identifies the threads running in the program,
1.e., the thread objects 1s identified. After thus process,

there will be a map generated that store the thread objects

certain lock to access the resources.

and the locks acquired and requested by them (Fig. 1).

Traversing
thread map

Analyzing thread state '

Fig. 1: System architecture

Asian J. Inform. Technol., 15 (4): 723-729, 2016

When, it finds deadlock condition prevails, the thread
now releases all the locks acquired by it, so that it might
allow the deadlocked threads to complete their required
operation. In another case if more deadlocks are detected
then according to the priority the threads given to
process their execution, the execution of the priority
based threads are executed in a random manner.

Module description

Estimation of available deadlock: For atuple (ta, 1al, la2,
th, 1bl, Ib2) to be a deadlock our aliasing condition must
be satisfied: Can a lock acquired at lal be the same as a
lock acquired at b2 (and similarly for la2, 1bl)? Our
algorithm uses the mayAlias property (Fig. 4) to
approximate this condition:

availableDeadlock(ta, 1al, 1a2, th, Ibl, Ib2) if
mayAlias(lal, 1b2)A mayAlias(la2, 1bl)

For our running example, both tuples d1 and 2 satisfy
availableDeadlock: predicates mayAlias (11, 11) and
available deadlock; additionally, mayAlias (13, 12) holds
because abstract object [h3] satisfies the two comuncts in
the defimtion of mayAhlas and hence tuple d2 also
satisfies availableDeadlock.

Estimation of signaling deadlock: The JDK contains
many classes (e.g., java.utilvector) with synchronized
methods. When such objects cannot be accessed by more
than one thread, they cannot participate in a deadlock.
Thus, for a tuple (ta, lal, la2, tb, 1bl, 1b2) to be a deadlock
our escaping condition must be satisfied: can a lock
acquired at lal be accessible from more than one thread
(and sunilarly for each of 1la2, 1bl, 1b2)?

We approximate this condition using a thread escape
analysis. Our application of this analysis to static
deadlock detection appears novel and we quantify the
need for it in our experiments. The thread-escape problem
1s usually defined as follows:

“In some execution 1s some object allocated at a
given site h accessible from more than one thread?” To
increase precision, we refine the notion of thread-escape
to track when an object escapes. This allows the escaping
condition to elimmate some deadlock reports on objects
that later escape to other threads. Formally, (¢, v) must be
in relation esc if argument v of abstract context ¢ may be
accessible from more than one thread. Our escaping
condition 1s thus:

SignallingDeadlock (ta, 1al, la2, th, 1bl, 1b2) if
(lal, sync(lal YeescA(la2, sync(la 2 Y)gesch
(Ib1, sync(lbl NgescA(Ib2, sync(lb2))cesc

726

For our running example, LogManager. manager (12,13)
and Logger class (11), bemg static fields, clearly escape
everywhere and so both tuples d1 and d2 satisfy escaping
deadlock.

Estimation of avoidance deadlock: For a tuple (ta, lal, a2,
th, Ibl, 1b2) to be a deadlock our parallel condition must be
satisfied: can different threads abstracted by ta and tb
simultaneously reach 1a2 and 1b2, respectively?

The motivation for checking this condition is twofold.
First, it eliminates each tuple (t,*,*,t,*,*) where t abstracts
at most one thread in any execution. The most common
example of such an abstract thread 1s ([], mmain) but it
also applies to any thread class allocated at most once in
every execution. The second motivation is that even if
different threads abstracted by ta and tb may be able to
reach la2 and 1b2, respectively, the thread structure of the
program may forbid them from doing so simultaneously,
namely, threads ta and tb may be in a “parent-child”
relation, causing la2 to happen before 1b2 in all executions.
We approximate these two conditions using a may
happen-in-parallel analysis that computes relation map
which contains each tuple (t1, (o,m), t2) such that a thread
abstracted by t2 may be running in parallel when a
threadabstracted by tl reaches method m in context o. Our
may happen-in-parallel analysis 1s simple and only models
the program's thread structure, ignoring locks and other
kinds of synchromization (fork-jom, barrier, etc). Our
parallel condition 1s thus:

avoidanceDeadlock (ta, lal, 1a2, tb, Ibl, 1b2) if
(ta, 1a2, tbyemhp/\(th, 1b2, ta)emhp

For our nmning example, clearly nothing prevents t1
and t2 from running in parallel, so tuples d1 and d2 satisfy
avoidanceDeadlock.

Estimation of nonsafe deadlock: In Java, a thread can
re-acquire a lock 1t already holds. This nonsafe lock
acquisition cannot cause a deadlock. Thus, for a tuple
(ta, lal, la2, tb, Ibl, Ib2) to be a deadlock ournon-nonsafe
condition must be satisfied: Can a thread abstracted by ta
acquire a lock at lal it does not already hold and while
holding that lock, proceed to acquire a lock at 1a2, it does
not already hold (and similarly for th, b1, 1b2)? Soundly,
identifying nonsafe locks requires must-alias analysis.
Must-alias analysis, however is much harder than
mayAlias analysis. Instead, we use our mayAlias analysis
itself to unsoundly check that whenever a thread
abstracted by t acquires a lock at 11 and while holding that
lock, proceeds to acquire a lock at 12, then the lock it

Asian J. Inform. Technol., 15 (4): 723-729, 2016

acquires at 11 or 2 may (soundness requires must) be
already held by the thread, a property approximated by
unmindfult:
unmindful(t, 11, [231ff 11 =12V
(vL1: (t~11 L1 ==mayAlias({11, 12}, L1)»HV
(vL2: (11-12 L2 ==mayAlas({12}, L2)))

Intuitively, the first conjunct checks that the locks
acquired at 11 and 12 may be the same. The second
conjunct checks that when a thread abstracted by t
reaches up to but not including 11, the set of locks L1 it
holds may contain the lock it will acquire at 11 or 2. The
third conjunct checks that when the thread proceeds from
11 and reaches up to but not mecluding 12, the set of
locks 1.2 it holds may contain the lock it will acquire at 12.
Next, we use the unmindful predicate to approximate our
non-mindful condition as follows:

nonMindfulDeadlock (ta, 1al, a2, th, 1bl, 1b2)if
—unmindful(ta, 1al, 1a2 YA —unmindful (tb, 1bl, 1b2)

The above approximation itself is sound but the
approximation performed by the unmindful predicate it
uses is unsound, thus, a tuple that does not satisfy
nonMindfulDeadlock 1s not provably deadlock-free. For
our runmng example, the two locks acquired by either
thread do not alias are acquired
prior to the first lock or between the first and second lock
in either thread, so tuples d1 and d2 satisfy nonMinduful
Deadlock.

and no locks

Estimation of unmindful Deadlock: One approach to
preventing deadlock is to acquire a common guarding lock
in all threads might deadlock. Thus, for a tuple (ta, lal, la2,
th, 1bl, 1b2) to be a deadlock our nonsafe condition must
be satisfied: can threads abstracted by ta and tb reach lal
and 1bl, respectively, without already holding a common
lock?

Soundly, identifying guarding locks, like mindful
locks, needs a must-alias analysis. We once again use our
may-alias analysis to unsoundly check whether every pair
of threads abstracted by ta and tb may (soundness
requires must) hold a common lock whenever they reach
la and lb,respectively, a property approximated by safe:

safe(ta, la, th, 1b) iffvL.1, L.2:
(ta~la L1Atb~1b 1L2) == mayAlias(L1, L2)

Then, we use the guarded predicate to approximate
our nonsafe condition as follows:

727

nonsafeDeadlock (ta, 1al, 1a2, th, 1bl, 1b2) if
—safe(ta, lal, th, 1bl)

The above approximation itself 1s sound but the
approximation performed by the guarded predicate it uses
unsound; thus, a tuple that does not satisfy
nonsafeDeadlock 1s not necessarily deadlock-free. For our
running example, as we saw for nonMindfulDeadlock, no

18

locks are acquired prior to the first lock, so tuples d1 and
d2 satisfy nonsafeDeadlock.

RESULTS AND DISCUSSION

Experiments: We evaluated Deadlock Detector (DD) on
a suite of multi-threaded Tava programs comprising over
the processor. The suite includes the multi-threaded
benchmarks from the Java Grande suite (moldyn,
montecarlo and raytracer), from ETH, a traveling
salesman problem implementation (tsp), a successive
over-relaxation benchmark (sor) and a web crawler (hedc);
a website download and mirror tool (weblech), a web
spider engine (jspider), W3(C’s web server platform
(jigsaw) and Apache's FTP server (ftp). The suite also
includes open programs for which we manually.

Wrote harnesses, apache's database connection
pooling library (dbcp), fast caching library
{cached)), the IDK4 logging facilities (logging) and

a

JDK4 mplementations of lists, sets and maps wrapped in
synchronized collections (collections).

The experiments were performed on a 64-bit Linux
server with two 2GHz Intel Xeon quad-core processors
and 8 GB memory. DD, however, is single-threaded and 32
bit and hence utilizes only a single core and at most 4 GB
memory. The “0-CFA’ and ‘k-obj.” columns give the size
of final deadlocks after one and two iterations of our
algorithm final deadlocks is empty or starts to grow and
DD terminates, after at most two iterations for all our
benchmarks. The first iteration uses a k-object-sensitive
analysis that 13 essentially a 0-CFA-based analysis. The
difference between the two columns, most notable for
hedc, weblech, jspider, ftp and dbep, 1s the number of
extra false positives that would be reported by a
0- CFA-based analysis over a k-object-sensitive one. All
previous static deadlock detectors we are aware of employ
a 0-CFA-based analysis or an even more imprecise
CHA-based analysis; moreover, they exclude checking
one or mare of our six necessary conditions (Fig. 2 and 3).

Performance analysis: The performance measurement of
the dynamic deadlock detection technique 1s given below.

Asian J. Inform. Technol., 15 (4): 723-729, 2016

one of below Scridexr opti

HAproject\RBScriden\RBScriden\bin\Release\RBScrider.exe

Please enter number of threads vou want to create:

avoia’deadTack

execution which manages deadlock and rollback

mutesx
MmOt e

section
ection
section
ection
section
ection

section

ection

section

MNNNWWWWARANAL AR RENOWATARLANK

HA\RBScrider\RBScrider\bin\Release\RBScrider.exe

fPlease enter number

5 hooge any one of below Scrider

of threads wou want to create:

option =

Threads execution to avoid deadlock

——) Threads execution

vhich manages deadlock and »ollback

ring critical section <or shared resource sectionl
2]

de method

Inside LockA and Trying to enter
— entering critical section <or

Inside methodB
Inside LockB
arte
started
ting the mutex
d the critical secti
sting the mutex
started
ing the mutex
l?ompletes operation
is
h, 1-elea_‘e|:l the mutex

h
DER DLOCR OCCURED

leaving the critical section

ntered the critical section

shared

LockE
resource sectionl

inside LockB and inside LockA — completed

Rollback s

= tarted agaln after »ollback
started again after rollback
4 qompleteﬂ operation

arted

leaving the critical section

released the mutesx

d the gritical section

cnmplete
is leawvi
has released the mutex

operation

Fig. 3: Execution of deadlock detection using DD

Court
[l SSIUS NV 1o BN [N ol SSIOSE N Te TN [N)

Total

Deadlock

Threads

Fig. 4: Performance analysis of deadlock detection

The diagram shows how many threads are runmng in the
thread map in the name of total threads and how many
deadlock are solved based on priority level in a show in
deadlocked threads. Based on our program it solves the
nearly 10 deadlocked threads (Fig. 4 and 5).

the critical section

728

80

— Entercs 6{_.—-"'
Exist cs ;
0 Deadlock

DOV
S oW
A

55

WL W
SUNOWnNO
I T T

Time (sec)

G T T T T T T T T 1
15 16 17 18
Threads (t)

Fig. 5: Performance analysis using scrider

The proposed system maintams a deadlock map
that holds the information about all the threads
runming in a program. This will reduce the deadlock
occurrences based on the random priority assignment.
The deadlock momnitor controls the overall process of
program execution.

Asian J. Inform. Technol., 15 (4): 723-729, 2016

CONCLUSION

This study addresses the efficient access of shared
memory by the multiple threads execution using deadlock
monitor. Deadlock monitor can be used to monitor the
thread process regularly. The monitor will reduce the
deadlock occurrences. Deadlock available and avoidance
will be used for dynamic deadlock detection method.
Also, it reduces the cost of accessing memory
and improves the efficiency of multithreaded applications.

REFERENCES

Agarwal, R., S. Bensalem, E. Farchu, K. Havelund and
Y. Nir-Buchbinder et al., 2010. Detection of deadlock
potentials in multithreaded programs. J. Res. Dev.,
Vol 54.10.1147/IRD.2010.2060276.

Bodden, E. and K. Havelund, 2010. Aspect-oriented race

detection in Java. TEEE Trans. Software Eng.,
36: 509-527,
Chen, K.Y., JM. Chang and T.W. Hou, 2011.

Multithreading in Java: Performance and scalability
on multicore systems. I[EEE Trans. Comput.,
60: 1521-1534.

Flanagana, C. and S.N. Freund, 2006. Type inference
against races. Sci. Comput. Program., 64: 140-165.

Flanagana, C. and S.N. Freund, 2008. Atomizer: A dynamic
atomicity checker for multithreaded programs. Sci.
Comput. Program., 71: 89-109.

729

Hasanzade, E. and S.M. Babamir, 2012. An artificial neural
network based model for online prediction of
potential deadlock in multithread programs.
Proceedings of the 16th CSI International Symposium
on Artificial Intelligence and Signal Processing, May
2-3, 2012, Shiraz, Tran, pp: 417-422.

Joshi, P., C.S. Park, K. Sen and M. Naik, 2009. A
randomized dynamic program analysis technique for
detecting real deadlocks. Proceedings of the ACM
SIGPLAN Conference on Programming TLanguage
Design and Implementation, June 15-21, 2009, Dublin,
Treland.

Mohan, A. and P.S. Kumar, 2014. Deadlock maps: A
dynamic deadlock detection for multithreaded
programs. Asian J. Inform. Technol., 13: 356-362.

Rador, C. and D. Dig, 2013. Practical static race detection

loops. Proceedings of the
International Symposium on Software Testing and
Analysis, July 15-20, 2013, Lugano, Switzerland,
pp: 178-190.

Wang, Y., S. Lafortune, T. Kelly, M. Kudlur and
S. Mahlke, 2009. The theory of deadlock avoidance
via discrete control. Proceedings of the 36th annual
ACMSIGPLAN-SIGACT Symposium on Principles of
Programming Languages, January 21-23, 2009, New
York, TTSA., pp: 252-263.

for Tava parallel

	723-729_Page_1
	723-729_Page_2
	723-729_Page_3
	723-729_Page_4
	723-729_Page_5
	723-729_Page_6
	723-729_Page_7

