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Abstract: Dynamically, reconfigurable architectures have emerged as high performance programmable hardware
to execute highly parallel, computationally intensive signal processing functions efficiently. Multipliers are
basic functional units in today’s digital signal processing and digital image processing algorithms. Multipliers
have large area, long latency and consume more power. Many researchers have been trying to design multiplier
architectures which offer the design targets such as high speed, low power consumption and less area. Several
multiplier architectures and their performance characteristics have been analyzed and compared in this study.
Then, a reconfigurable architecture which consists of an array of two different processing elements with
suitable interconnects has been proposed for an efficient implementation of signal processing algorithms. From
the results, it has been identified that the proposed reconfigurable architecture provides an area efficiency of
37% more than the conventional reconfigurable multiplier architecture.
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INTRODUCTION

There 13 an extensive ongomng research work on
reconfigurable architectures. The number of Lookup
Tables (LUTs) per cluster, the number of clusters per
configurable logic block, the most efficient routing
structures and many other parameters are being explored
in order to find the best tradeoff between design area,
performance and power consumption. These architectures
also include special-purpose blocks such as embedded
multipliers and Digital Signal Processing (DSP) blocks,
which are wused to accelerate arithmetic-intensive
applications. Their design corresponds to that of an
Application-Specific Integrated Circuit (ASIC) as they are
specialized for some chosen arithmetic functions and
optimized to achieve the highest performance (Jertic and
Carreras, 2010). The signal processing algorithms used in
wireless communication and image processing
applications usually, require a large amount of arthmetic
operations with very large operands. Multiplications are
fundamental arithmetic operational units which are widely
used for practical hardware and thus the optimization 1s
essential in order to achieve high-performance system
designs (Miyamoto et al., 2011).

different
applications in the same mobile equipment would result in

Designing various architectures for
an intolerable ncrease m physical size, weight and
latency. Therefore, area and latency become another two
challenges m the design of mobile equipments. During the
last decade, reconfigurable architectures became the
mainstream 1mplementation technology for custom
computation and embedded system products in such
fields as wireless communication, image processing, video
processing, multimedia, etc (Xydis ef al,, 2011). These
reconfigurable architectures tackle mainly DSP/multimedia
1ssues. Therefore, the design of efficient reconfigurable
modules is critical for realizing modern applications. The
detailed architecture design of a reconfigurable multiplier
was mntroduced by Koutroumpezis ef al. (2002). It resolves
the design conflict between versatility, area and
computation speed and makes i1t possible to buld a
feasible and highly flexible processor with multiple
multipliers for data mtensive applications. Gao et al.
(2009), the researchers proposed a design for a new
reconfigurable flexible multiplier considerably faster than
existing reconfigurable multipliers. The focus of research
by Haynes et al. (1999) was to realize large size signed
multipliers usig DSP blocks with multigranular embedded
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signed multipliers in reconfigurable architectures. Serial
multipliers are popular for their low area and power
(Pekmestz er al., 2001; Almiladi ef af., 2007) and are more
suitable for bit-serial signal processing applications with
/o on-chip  senal-link
architectures. A new method for computing serial-serial

constraints  and bus
multiplication was mtroduced in (Doroz et al.,2014)
by using low complexity asynchronous counters.
This counter-based multiplier outperformed many
serial-serial and serial-parallel multipliers in speed but its
hybrid architecture does carry an area overhead.

The increase in integration density of the on-chip

modules

congested. To overcome this problem, new techniques are

causes these modules to become highly

needed to have on-chip high speed multipliers which
utilize less number of resources. Compared to the
previous standard and the modified architectures of
multipliers, a new approach has been proposed in
reconfigurable multiplier architecture which has resulted
in considerable improvements in terms of area saving by
reducing resources required.

MATERIALS AND METHODS

Adder block: Addition is a very crucial operation because
it usually involves a carry ripple step which must
propagate a carry signal from each bit to its lugher bit
position. This results in a substantial circuit delay. The
adder, therefore which lies in the critical delay path,
effectively determines the system’s overall speed. On the
other hand, the option of reducing area and power
consumption of the designed adder, which for many years
has been a narrow specialty has recently been gaining
prominence. This can be attributed to the emergence and
increasing popularity of smaller and more durable mobile
computing and communication systems. Three different
adder structures will be used for reconfigurable multiplier
architectures throughout this research. They are the
Ripple Carry Adder (RCA), the Carry Select Adder (CSA)
and Carry Look-ahead Adder (CLA).

Ripple carry adder: The RCA is the simplest adder circuit.
It comsists of N full adders with the carry signal
propagating from one full adder stage to the next from
1.5B to MSB. Tt has many advantages which include low
power, low area and a simple layout. The drawback of the
ripple carry adder, though, is its slow speed. The delay of
the adder 1s linearly dependent on the bit-width of the
adder. The critical path of the ripple carry adder consists
of the carry chain from the first full adder to the last.
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Table 1: Area requiremnents of full adder
Gate requirements

for full adder Area (unr) Quantity Total area (urr?)
XOR 9.02 2 18.04
AND 882 3 26.46
OR 8.84 2 17.68
Net Area (um?) 62.18

Table 2: Area requirements of 8-bit RCA
Name of the adder No. of full adder
RCA-8 bit 8

Total area (um*)
497.44

Table 3: Area requirements of 8-Bit CSA

Hardware requirements  Area (um®)  Quantity  Total area (um?)
Full adder 62.18 16 994 88
Multiplexer 9.81 16 156.96
Net area (um?) - - 1151.84

Area requirement of 8 bit RCA is calculated as given
in Table 1 and 2. From Table 1 it 1s observed that the area
occupied by full adder is 62.18 um® So the total area
occupied by 8-bit RCA is 497.44 um® since, 8 full adders
are required to design 8-bit RCA. The total delay 15 0.96
ns which is due to 8 full adders since the circuit delay of
each gate 1s 0.017 ns.

Carry select adder: The CSA employs an intelligent
technique to reduce the carry propagation delay
(Ramkumar and Kittur, 2012 ; Dorrigiv and Jaberipur,
2014). As the carry signal takes on a value of eithera 1 or
a 0, if the sum 1s calculated for both the cases in advance,
the carry propagation chain i1z reduced to just the
selection of the correct outputs at each stage using
multiplexers. The critical path will now just consist of
multiplexers at the output of each bit. The speed of CSA
is achieved at the cost of doubling the area because two
adders per bit are required, one adder to calculate the sum
with a carry-in of 0 and another adder to calculate the sum
with a carry-in of 1. In addition, multiplexer is needed for
every bit to choose the result based on the actual carry
value. As a consequence of this duplication of logic, this
design also consumes more power.

Area requirement of 8-bit CSA is calculated as given
in Table 3. From Table 3, it i1s observed that the area
occupied by 8-bit CSA is 1151.84 um’. The tetal delay is
0.624 nsg which is due to 8 multiplexers since the circuit
delay of each multiplexers is 0.078 ns.

Carry look-ahead adder: Carry-ripple delay grows linearly
with the size of the input operand for the RCA but these
delays can be shortened by generating the carries of each
stage n parallel. The CLA adder is theoretically one of the
fastest methods for addition. This adder is based on
carry generation and propagation logic. The delay time of
the CLA architecture exhubits logarithmic dependency on
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Table 4: Area requirements of 8-Bit CLA

Hardware requirements  Area (um®) Quantities Total area (unr)
Full adder 62,18 8 497.44
AND gate 882 8 70.56
XOR gate 902 8 72.16
Net area (um?) -- 640.16

Table 5: Area and timing results of all synthesized adders

Adder design Area in (um?) Min. clock delay (ns)
RCA 8-bit 524.62 1.33
CSA 8-bit 1251.84 1.07
CLA 8-bit 857.02 1.09

the size of the adder which allows the propagation delay
of the carry signal to be minimized. Therefore, the CLA
comes 1n handy for better delay-reduction performance.
However, the CLA consumes more area and power
because of its large number of logic gates.

The list of hardware and the area allocated by each
hardware element of 8-bit CL.A is given in Table 4. From
Table 4, it is observed that the area occupied by 8-bit CLLA
is 640.16 pum’. The delay time of 8-bit CLA is 0.903ns,
which 15 the logarithmic dependency on the size of the
adder.

The RCA, CSA and CLA adder designs have been

created in Verilog and synthesized m a 0.18 micron
standard CMOS cell library using leonardo spectrum of
mentor graphics corp. in order to validate the theoretical
results. Area and timing results of synthesized adders are
listed in Table 5. These results have included the area and
delay due to mterconnect lines between hardware
elements. As shown by the results given in Table 5 and
Fig. 1, the CLA is the fastest scheme for implementing
addition, whereas the RCA 1s the smallest. CSA 1s the
fastest area-efficient adder, as it is slightly smaller than a
CLA but sigmficantly faster than an RCA. Since, the goal
1s to target area efficiency and low power consumption for
the proposed architecture, the simple and area efficient
RCA structure has been chosen for addition.
Multiplier block: Multiplication 1s importart
fuindamental anthmetic function currently implemented in
signal processing and wireless communication
applications. They usually contribute significantly to the
time delay and take up a great deal of silicon area in the
architecture (Karhe et af., 2012; Liu et al., 2014). Since
multiplication dominates the execution time of most digital
signal processing applications, using a high speed
multiplier 18 very desirable (Sriraman and Prabakar, 2012).
With an ever-increasing quest for greater computing
power on battery operated mobile devices, design
emphasis has shifted from optimizing conventional delay
time and area size to mimmizing power dissipation whule
still maintaining high

dar
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Fig. 1. Area and speed comparisons of 8-bit RCA, CSA
and CTL.A adder designs

performance (Mariammal et @l., 2013). Therefore, it is
needed to select area efficient high speed multiplier which
is to be used in the architecture.

Array multiplier is one of the simplest techniques for
implementing multiplication. The idea is to add all the N
partial products sequentially using N-1 adders. Tn order to
multiply N bit values then m effect it requires N-1 of N-bit
adders or Nx(N-1) single adder cells (Akhter and
Chaturveds, 2014). Array multipliers are very slow as their
critical path is very long. The wallace tree multiplier
belongs to a family of multipliers called column
compression multipliers. The underlying principle in this
family of multipliers is to achieve partial product
accumulation by successively reducing the number of bits
of information in each column wsing full adders or half
adders. Although, the amount of hardware required to
perform this style of multiplication is large, the delay is
near optimal. Dadda multipliers belong to the column
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Table 6: Area requirements of 8 bit array multiplier

Hardware requirements  Area (um-) Quantity  Total area (um®)
Full adder 62.18 49 3046.82
Half adder 17.84 7 124.88
AND gate 8.82 64 564.48

Net area (um?) - -- 3736.18
Table 7: Area requirements of 8 bit wallace tree multiplier

Hardware requiremnents Area (um?) Quantity Total area ()
Full adder 62.18 38 2362.84
Half adder 17.84 15 267.6

AND gate 8.82 64 564.480

Net area (um?) - - 3194.92

Table 8: Area requirements of 8 bit dadda multiplier

Hardware requirements  Area (um?) Quantity Total area (um?)
Full adder 62.18 35 2176.30
Half adder 17.84 7 124.88
AND gate 882 64 564.48
Net area pum?) - 2865.66

Table 9: Synthesis results of multiplier structures

Multiplier design Area (um) Min. clock delay (ns)
Array multiplier 8 bit 44188 3.35
Wallace tree 8 bit 470 242
Dadda multiplier 8 bit 3558 2.17

compression family of multipliers like the wallace tree
multiplier. The dadda multiplier compresses columns
differently from the Wallace-tree multiplier. The result of
this compression scheme for the partial product matrix is
that the delay of the structure is nearly equal to that of the
Wallace tree multiplier but with a smaller area.

The list of hardware and the area allocated by each
hardware element of 8 bit array multiplier 1s given in
Table 6. From Table 8, it is observed that the area
occupied by &-bit array multiplier is 3736.1%8 um®. The list
of hardware and the area allocated by each hardware
element of 8 bit wallace tree multiplier is given in Table 7.
From Table 7, it is observed that the area occupied by 8
bit array multiplier is 3194.92 um®. The list of hardware and
the area allocated by each hardware element of 8 bit
Dadda multiplier 1s given in Table 8. From Table &, 1t 1s
observed that the area occupied by 8 bit Dadda multiplier
18 2865.66 pm®.

The multiplier structures discussed above have been
coded in Verilog and synthesized in a 0.18 micron
standard CMOS cell library using Leonardo Spectrum of
Mentor Graphics Corp. and the results have been given in
Table 9. From the comparison chart given in Fig. 2, it 1s
observed that the Dadda multiplier is faster than the
Wallace tree multiplier of the same bit-width, possibly due
to the lower fan-outs of intermediate signals. The smaller
area of the Dadda multiplier is obtained from a reduced
number and size of compressors. So, the Dadda tree
outperforms the Wallace scheme m both area and timing.
The Dadda multiplier 1s also faster and smaller than all
other multiplier schemes examined above of the same
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Fig. 2: Area and speed comparisons of 8 bit array, wallace
tree and dadda multipliers

bit-width. The smallest multiplier by area 1s the Dadda
multiplier with ripple carry adder which is used in the
proposed architecture for multiplication.

Short-cut multiplier: Multiplication can be performed by
various shortcut approaches. In order to determine the
product of two numbers close to 100, the following
approach can be used. Let, the product of 97%95 be
considered for illustration purpose. Initially, the difference
of two numbers with respect to 100 must be determined.
Difference of first number 1s subtracted from the second
number and vice versa (since, both these values are
always equal). The number obtained is multiplied
by 100 (apply left shift operation). The product of
both the differences 1s calculated. These two
results are added to get the final result The
same approach can also be used to determine the
product of numbers close to 10, 20, 200, 300 and
so on. An illustrative representation is shown in Fig. 3.
These types of multipliers require less number of
functional elements.

Another method to determine the product of a
number multiplied by 11, the following approach can be
used. For an example, multiplying 384735 by 11 the
llustration 1s given as follows (Fig. 4):
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Fig. 3: Multiplication illustration with reference to 100,
200 and 20
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Carry 14— 3 € — st 4 o 74— 34— 5

S R A

2 3 2 0 8
Fig. 4: The method of multiplier illustration

Table 10: Area requirements of 8-bit short-cut multiplier

Hardware requirements  Area (Jumn) Quantity Total area (Jum)
Full adder 62.18 17 1057.06
Half adder 17.84 4 71.3600
AND gate 8.82 42 370.44
Net area (uum) -- 1498.86

The ones digit of the multiplier 5 is copied to the
temporary result; Result: 5

Add 3+5=8, so 8 is placed on the left side of the
result; Result : 85

Similarly add 7+3 = 10, so 0 is placed on the left side
of the result and carry 1; Result : 085

Add 4+7 = 11+carry 1 = 12, s0 2 1s placed on the left
side of the result and carry 1; Result : 2085

Add 8+4 = 124carry 1 =13, s0 3 is placed on the left
side of the result and carry 1; Result : 32085

Add 3+8 = 11+carry 1 =12, so 2 is placed on the left
side of the result and carry 1; Result : 232085

Add the carry 1 to the highest valued digit in the
multiplier, 3+1 = 4 and the final result is obtained.
Fmal result: 4232085

The list of hardware and the area allocated by each
hardware element of 8 bit short-cut multiplier is given in
Table 10. From Table 10, it is observed that the area
occupied by 8-bit short-cut multiplier is 1498.86 um’ that
is very less for the product of numbers close to 20, 100,
200, 300 and so on.

Processing elements and reconfigurable architecture:
Based on the above analysis, two different types of PEs
which comsist of suitable functional umts such as
adder/subtractor, multiplier, register and shifter are
proposed for the reconfigurable architecture. PEl is
dedicated for multiply and accumulate operation as shown
m Fig. 5, PE2 15 dedicated for performing add/subtract and
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Fig. 5: PEI for multiply and accumulate operation
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Fig.6: PE2 for add and shift operation

shift operation as shown in Fig. 6 and Processing
Elemnent Slice (PES) consists of PE1 and PE2. Figure 7
shows the block diagram of the proposed reconfigurable
architecture which consists of an array of PES for
mapping application. This architecture 1s configured
dynamically either to Dadda multiplier with ripple carry
adder or to short-cut multiplier with ripple carry adder. To
process the data for any signal processing functions the
incoming data are stored in memory block. The received
data are fed to the array of PESs through 1/0 block. The
memory accesses for these operations are coordinated by
the control umt. The configuration controller serves as an
arbiter for controlling the proposed architecture and
surrounding — units  to for

specify  operation

reconfiguration.
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Fig. 7: Block diagram of reconfigurable architecture for mapping application

RESULTS AND DISCUSSION

The proposed reconfigurable architecture described
was simulated for fundamental DFT equation for an N
point FFT as in (Eq. 1):

1
- NYUX(K)WEn =01, ., N-1

x(n

For Eq. 1 was implemented using MAC unit
consists of PE1l and PE2, coded in VHDL and
mapped onto a Virtex 5 FPGA  device

(xc3v1x30ff324) with speed grade (-3) using the tool
Kilinx ISE 921 and synthesized The metrics
extracted from Xilmx ISE after synthesis and
unplementation are the followings: the number of
used Slice LUTs (Look Up Tables) logic registers and 1/0
pins.
Table 11-13 give the comparison between
conventional MAC and reconfigurable MAC for
different bit widths of mputs. Conventional MAC
uses more number of LUTS and registers whereas
reconfigurable MAC  utilizes hardware resources
efficiently based on the bit widths of the input
bits.

Table 11: Comparison between conventional mac and reconfigurable mac for

16 bit
Performance factor Conventional MAC RecontigurableMAC
No of LUTs 116 out of 12480 72 out of 12480
No. of logic registers 113 out of 12480 84 out of 12480
No. of /O pins 73 out of 343 47 out of 343

Table 12:  Comparison between conventional mac and reconfigurable mac

for 32 bit
Performance factor Conventional MAC Reconfigirable MAC
No of LUTs 256 out of 12480 162 out of 12480
No. of logic registers 243 out of 12480 186 out of 12480
No. of /O pins 143 out of 343 107 out of 343

Table 13: Cormparison between conventional mac and reconfigurable mac for

64 bit
Performance factor Conventional MAC Reconfigurable MAC
No of LUTs 529 out of 12480 293 out of 12480
No. of logic registers 517 out of 12480 276 out of 12480

No. of /O pins 261 out of 343 181 out of 343

Figure 8-10 describe the hardware utilization in
terms of LUTs,
and /O pms of conventional MAC compared with
reconfigurable MAC for different bit widths of

of no. dedicated logic registers

mput  operands. From  these graphs it 18
found that Reconfigurable MAC utilizes 37%
less hardware resources than the conventional
MAC.
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CONCLUSION

The different types of adder and multiplier structures
have been compared and analyzed based on the area in
terms of device utilization. From the comparison results
the suitable adders and multipliers have been selected for
the signal processing applications and applied in the
proposed  reconfigurable architecture. Then  the
reconfigurable architecture described was smmulated for
fundamental DFT operation using MAC unit, utilizing
processing elements PEl and PE2.  The proposed
reconfigurable multiplier architecture has been compared
with the conventional architecture m terms of the
hardware utilization for various bit widths. It has been
proved that the proposed reconfigurable architecture with
the suitable multiplier i1s more efficient than the
conventional architecture for implementing any signal
processing algorithms.
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