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Power System Harmonics Estimation Using Differential Evolution
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Abstract: Harmonics estimation is ¢rucial in improving power quality. Effective mitigation of harmonics requires
accurate estimation. There have been meny research works that find intelligent solutions for mimimizing the error
index in harmonics estimation, thereby improving the accuracy. This study proposes a hybrid algorithm based
on Differential Evolution (DE) and Least-Square (1.S) method in which DE estimates the phases of the harmonics
and 1.5 estimates the amplitudes. Simulation results from MATLAB are presented to demonstrate that the
estimation accuracy 1s greatly improved with the proposed algorithm when compared to evolutionary algorithms
mncluding Genetic Algorithm (GA), Particle Swarm Optimizer (PSO) and Bactenal Foraging Techrique (BFT). The
results confirm the capability of the proposed method in estimating power system integral harmonics and inter
harmomcs, even with the deviation of fundamental frequency. In addition to the simulation results, real time
signals are acquired through an experimental setup using LABVIEW software and the algorithm 1s validated
for practical signals. Results show that the method is effective with very low error index. Although, the selected
area of application 1s power systems, the same algorithm can also be applied to other type of signals from
communication channels, telephones and other encrypted signals.

Key words: Harmonic estimation, interharmonics, Differential Evolution (DE), Genetic Algorithm (GA), Particle

Swarm Optimizer (PSO), Bacterial Foraging Technique (BFT).

INTRODUCTION

Harmonics 1s a sinusoidal compoenent of a periodic
waveform or quantity having frequency that is integral
multiple of the fundamental frequency. The harmful
effects of harmonics are well established in existing
literature (Barnes, 1989, Arrillaga et al., 1985, Owen, 1998).
As harmonics have much adverse effects on the
equipment, [EC and TEEE has developed a standard below
which harmomnics should be maintained. Hence at every
Point of Common Coupling (PCC), it is necessary to
analyze the nature of the load that acts as a source of
harmonics. A proper control strategy must be provided to
mitigate the harmonics. To obtain suitable control
parameter, the harmonics present in the system 1s to be
estimated accurately.

Active and passive power filters are used to mitigate
harmonics problem. Harmonics estimation is important for
thewr proper design. Similarly for all control designs,
accurate assessment of harmomics is considered as
important. A distorted signal is composed of a
fundamental frequency along with n harmonics buried in
stochastic noise. There is a need of estimating the desired
frequency components 1n the signal to filter harmomies.
This estimation includes estimating the amplitude and

phase of the comresponding frequency component.
Estimation algorithms have been developed to obtain
certain parameters from the signal to enhance the
harmonics measurement in the system.

The different approaches to estunate the harmonics
include Discrete Fourier Transform (DFT) (Zhu, 2007),
Kalman filtering (Costa et al., 2007), decoupled models
(Lobos et al, 2001) and artificial neural networks
(Kumar ef al., 2007). Though DFT-based methods are
commonly used, there are snags such as aliasing, leakage
and picket fence phenomena in their applications under
undesirable conditions. Kalman filtering methods are
linear and robust but need knowledge of the statistics of
the electrical sighal and precise definition of the signal
states. Decoupled methods are identified to possess slow
roll off speed (Ray and Subudhi, 2012).

The literature review has identified harmonics
estimation as a minimization problem involving non-linear
model m which the error between the actual and estimated
value 13 to be mimimized. Hence, the problem can be
handled using optimization techniques. Genetic algorithm
techniques have been found to give superior results for
optimization problem in harmonics estimation ( Bettayeb,
1998) but it requires a larger time for convergence with
monotonic nonlinear models.
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To overcome these a hybrid

technique has been proposed combining GA and LS . In

disadvantages,

this techmque, phases are estimated using GA and
amplitudes are estimated with LS. Tt has been found that
the efficiency of GA reduces significantly degraded
when it is applied to a function where the
parameters that are optimized are highly correlated
(Mishra, 2005). Hybrid PSO-LS techmque 1s proposed in
(Lu et al, 2008) for harmonics estimation. PSO shares
many similariies  with evolutionary computation
technicues such as Genetic Algorithms (GA) (Yang et al.,
2005). The system 1s mitialized with a population of
random solutions and searches for optima by updating
generations. However, unlike GA, PSO has no evolution
operators such as crossover and mutation. In PSO, the
potential solutions, called particles, fly through the
problem space by following the current optimum
particles (Miranda and Fonseca, 2002; Eberhart and
Shi, 2001; He et al, 2004). Bactenial foraging
technique 15 used mn (Kumar et af., 2006). BFO follows the
principle of the foraging behavior of Escherichia coli
bacteria in human intestine (Passino, 2002, Kim ef al.,
2007).

Differential evolution 1s a very simple but very
powerful stochastic optimizer. Since, its inception, it has
proved very efficient and robust in function optimization
and has been applied to solve problems in many scientific
and engineering fields (Qin et of., 2009). In this study,
hybrid differential evolution-least square method 1s
proposed. The DE is applied to optimize the phase
of each individual harmomc and least square technique
is used to obtain the magnitude of each harmonics in a
signal.

Power system harmonic estimation problem: In this
study, the modeling of power system harmonics
estimation problem 1is presented. The harmonic
parameters, the amplitude and the phase angle are
estimated using the nonlinear DE optimization algorithm
and the linear TS method. Let the assumed electrical signal
structure at time t be:

i
f(t)=2>"A, Sin{o,t+, )+ v(t) (1)
n=1
Where:
N = No. of harmonics
A, = Amplitude of nth harmonic
w, = Angular frequency of nth harmomnic
@, Phase angle of nth harmonic
V(t) = Additive noise

To estimate the
harmonic, the following function is built:

unknown parameters of each

g(t)= 3B, Sin(0,+0,) @

n=1

The bult signal g(t) 18 related to the original signal
f(t) by the Eq. 3:

f{t)=g(t)+r(t) (3)

Where, 1(t) is a residue indicating the difference
between actual and built signals. Tf r(t) tends to O then
the estimated parameters exactly equals magnitudes and
phases of the original signal. Hence, the task 1s to force
() to a minimum value.

The basic known fact is that the values of
phases fall in the range 0-2n. The differential evolution
algorithm 1s utilized to obtain the values of phases and
once, the phases and the frequencies are implicit in each
iteration, the amplitude is obtained by the standard TLeast
square regression method.

Discrete model for the continuous system given in
Eq. 1 1is developed with “S” number of samples.
Equation 4 represents the function model with S
samples:

f(k)=H'(k)A+V(k);k=12,..8 “

Where: H'(k) is
given by 5:

a system structure matrix and

sin(wlt1 + q)l) sin(wzt1 + (p2) ..... sin(wnl:1 + (p)

H(k) = sin(w ity + @) Sin(Wots +95) sin{wnt, + ¢y )
sin(wits + @) Si(Wots +@5) ... sin(wytg + g )
(5)

Where, A is a column matrix of amplitude of original
signal. Primarily, an optimization algorithm optimizes the
values of phases of fundamental and harmonics signals
and the system structure matrix H(k) given by Eq. 7 1s
computed. Once, the system structure matrix 1s obtained,
the magnitude estimation is done by applying the least
square method given by Eq. &:

B=[H'(K)H(k)| H (k)f(k) (6)

Where H (k) is given by:
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sin(wltl + 81) sin(w2t1 + 82) ..... sin(Wnt1 +0n)

H(k) = sin(wit, +6,) sin(wyty +0,) ... sin(wpt, + 6y )

si.n(wltS + 81) si.n(wztS + 82) .....
(7)
B 15 the matrix of estimated amplitudes of the signal.
If the values of =g then the estimated phases matches

with the actual phases. The estimated signal will be given
by Eq. 8:

g(k)=H(k)B (8)

The residue at each sample is the difference of
magnitudes of the signal at that nstant and the total
residue 18 calculated using Eq. 9:

2

R:i[f(k)—g(k)] ©)

The algorithm optimization repeats until the total
residue falls below specific tolerance limit. After the
convergence of the problem, the fundamental component
present 1n the signal is computed by:

fund(t) = A, Sin(@t+ ¢, ) (10)
The harmonic components are obtained by:
har(t)=g(t)— fund(t) (1)
MATERIALS AND METHODS

Differential Evolution (DE): Differential evolution was
formulated by Ken price to solve the Chebychev
Polynomial fitting problem effectively. The DE uses vector
differences for perturbing the vector population. The DE
leads to good exploration, since random direction 1s
generated by simple vector subtraction and more variation
in population leads to more search over solution space.
The following 1s the description of DE algorithm used in
this research.

Algorithmic description of DE: The main steps of the DE

algorithm are given below:
Tnitialization
Evaluation
Repeat:
Mutation
Recombination
Evaluation
Selection
Until (termination criteria are rmet)

Differential evolution can be briefly explained as
follows:

Initialization: Differential evolution 15 a population
based optimization method. In the population of Np
individuals X, is the ith individual of gth generation of
the population. The first population 1s selected randomly
in differential evolution.

The mutation: There are several techniques for mutation
of mdividuals in differential evolution. In general, the
mutant mdividual can be defined as follows:

N-1

1
1.8 1.8 ﬁz(x)r(zrwl) ’g_(x)r(2n+2) & (1 2)

n=0

Where, V,, is the mutant vector, X, is the base
vector and F 13 a constant parameter called mutation scale
factor. N represents the number of vector differences
considered for the formation of mutant vector. The
subscript r shows that the individual is selected randomly
1n the population

The most common crossover in
differential evolution 1s unform crossover which can be
defined as follows:

The crossover:

_ {Vj_l_g,ifrj <C, (13)
VX i G
Where:
r; = A umformly distributed random number and
subscript

j = The variable of the ith individual

]
I

. = A constant parameter called crossover constant

The selection: The final step in DE algorithm is the
selection of the better individual for the minimization of
the objective function f(X). This process can be defined
as follows:

- Ui F(U, )= F(X,) 14

X, AFF(U, PE(X, )

1,87

The selection process mvolves a simple replacement
of the original individual with the obtained new individual
if it has a better fitness. Number of vector differences is
usually taken as 1. There are three control parameters in
the DE algorithm: the mutation scale factor

Estimation of phase and amplitude of integral harmonics:
The phases and amplitudes of mtegral harmonics are
estimated using the following procedure. Inputs recuired
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for the estimation of harmonics are the number of
harmonics to be estimated, number of samples (S),
sampled time and the corresponding magnitude of the
signal at the sampled time. The proposed algorithm 1s
described as follows:

Step 1: Imtialize the number of harmonics to be estimated,
parameters of differential evolution such as number of
population, mutation scale factor and crossover constant.

Step 2: Load the data set that comprises of the sampled
time and the magmitude of distorted voltage/current
signal.

Step 3: Generate the imtial population randomly
within the limits of the vanables. Hence, ‘Np” number
of solutions are created as X, =[0,,0,, ...,0,] I=1,
2, ..., np.

Step 4: For each mdividual solution, H(k) 1s calculated
using Eq. 7. By wsing H(k) matrix, B and subsequently g(k)
are computed using Eq. 6 and 8 respectively. Residue R is
calculated using Eq. 9. The objective function to be
mimmized is:

Minimize= R (15)

Step 5: The differential evolution operators such as
mutation, crossover and selection is repeated for all the
individuals of the population using Eq. 12-14 and a new
population is created for the next generation.

Step 6: The steps 4 and 5 are repeated until the
convergence criteria is met.

Objective function R is checked for the error tolerance.
If it is less than the tolerance value then the fitness value
is considered as the best solution. Tf not, the algorithm
moves to next generation. Thus, the production of
offspring for the next generation consists of mutation,
crossover and selection step in sequence. The algorithm
terminates if convergence occurs or the number of
generations reaches its maximum value. The flowchart for
the proposed algorithm 1s given in Fig. 1.

Estimation of frequency: Harmomc frequencies are the
mteger multiples of the fundamental frequency, the
frequency for each harmonic can be calculated only if the
fundamental frequency is known. Hence, harmonic
estimation requires the estimation of the fundamental
frequency. In real time power systems, frequency
deviation widely exists. For the estimation of frequency

I/P 'K' no sampled data
v

Initialize nv, np and DE parameters

v

-—
Create X" = (0" ... 0,.*") |

| Calculate H*" (K) |
v
| Calculate B |

v
| Obtain R (X£*) |

@ Yes

No
Yes %
! No

Gen = gen+1;i=1

>
e 4
| Generate mutant vector and perform crossover

Production of off spring by selection
and update X"
A4

Yes
i<np
No
Yes

No
(o Jo———

Fig. 1: Flow chart of the proposed algorithm

along with the estimation of integral harmonics, the
solutionset x =[0,,02, ... 6,] is modified to x =[0,, 62, ...
0, w,] where, w, is the variable denoting the fundamental
frequency. Thus, the number of variables is increased by
one. The system structure is modified as follows:

sin(WOt1 + 61) sin(ZW(Jt1 + 82) sin(nwot1 +0,)

sin(w0t2 + 61) sm(2W0t2 + 62) sin(nwot2 +0n)

H(k) =
sin(wgtS + 81) sin(ZWOtS + 62) E:.in(rwv‘:'tS +0p)

(16)
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Thus, in this case, all the elements in the matrix H(k)
depends independent variables w, the
fundamental frequency and 8, the phase angle.

on two

Estimation of  interharmonics: International
Electrotechnical Commission (TEC), the international body
which 1s recognized as the curator of electric power
quality standards (IEC-1000-2-1) officially defined
mterharmonics as ‘Between the harmomics of the power
frequency voltage and current, further frequencies can be
observed which are not an integer of the fundamental.
They can appear as discrete frequencies or as a
wide-band spectrum’. A recent IEC-61000-2-2 draft
redefines interharmonic as “Any frequency which is not
an integer multiple of the fundamental frequency’. TEEE
Interharmonic Task Force adopted this definition. Tn some
cases, it becomes necessary to estimate interharmonics
along with the harmonics.
component, an additional column m H(k) matrix is
mtroduced with unknown interharmonics frequency. A
prior knowledge 1s required to fix the boundary for this
additional variable. For the estimation of interharmonics
and subharmoenics, the solution set X = [6,, 0,, ... 0_] 15
modified to X =[0,, 6,, 0, ... 6,. w;]. Thus, the number of
variables is increased by two including the frequency of
the interharmonics and the phase angle of that particular
component. The system structure is modified as follows:

To obtain interharmonics

sn(wit; +8)) sinfwyt) +85) ... siwyt +8) sinfwit +6,)

E:in(wlt2 + 81) sin(w2t2 + 82) ........ s:in(wnt2 +6,) s:in(wit2 + ei)
Hky=| e
sin(wltS + 91) sin(wztS + 92) sin{wpte +6,) sin(witn + Gi)
(17)
RESULTS AND DISCUSSION

The typical power system current signal in industrial
UPS load 1s used for the simulation. The algorithms are
tested with harmonic sighals generated under different
load conditions. The result for one of the load conditions
is presented in detail.

The signal considered contamns fifth, seventh,
eleventh, thirteenth and fifteenth order frequency
components addition to the fundamental frequency.
Table 1 shows the magnitude and phase angle of the
harmonics and fundamental present in the waveform
simulated.

The comparison between FFT, DFT and optimization
algorithms for the application of harmonics estimation are
made. This study compares the hybrid techniques
involving the optimization algorithms
Square method. To illustrate the effectiveness of the

and Least

Table 1: Magnitude and phase angle of the harmonics and fundamental
present in the waveform simulated

Harmonic order (deg)  Magnitude (pu) Phase (rad) Phase
1(fundamental) 1.000 -0.0353 -2.02
5 0.251 0.0500 2.86
7 0.177 01379 7.90
11 0.083 -2.5674 -147.10
13 0.048 0.000 0.00
15 0.001 0.054 3.09

proposed algorithm, the hybrid DELS algorithm is
compared with hybrid GALS (Maamar, 2003),
hybrid PSOLS (Lu et al., 2008), hybrid BFT (Ray and
Subudhi, 2012).

Estimation of amplitudes and phases: Signals are sampled
at the frequency of 2 kHz and the sampled points are
given as the input to the estimation algorithm. Imtially
random phases are introduced by differential evolution
and using these phase values H matrix mn Eq. 7 1s
constructed. It 13 assumed that the frequency 1s known.
The analysis 1s done in the following aspects.

Case (a): All the algorithms are made to run for 4 sec and
at the end of the elapsed time, the best solution is taken
as the result.

Case (b): All the algorithms are made to run to obtain error
index <0.1

The signal 15 sinulated along with random noises
with different Signal to Noise Ratio (SNR) in either cases.

Results of Case (I): The algonthms runs are taken as
50 from which the best, worst and average values of error
are computed. As the effectiveness of the algorithm is to
be tested with the presence of noise, random noise of 40,
25 and 10 db is added to the original signal and the error
index is obtained. Error index is obtained from Eq. 18:

oo Z;F(Sg(k)* fz(k))z 100 (18)
2T (k)

From the values in Table 2, it is clear that the
proposed DELS algorithm has lower error index. The
figure gives the comparison between the actual signal and
estimated signal for all the four algorithms considered.
The reconstructed signal is almost identical to the original
signal when the SNR 1s lugh. When the noisy condition
gets worse, the estimating result still maintains the
approximate shape. Comparison of error in the estimation
of all frequencies in the signal 1s given in Table 2.

Figure 2 and 3 gives the comparison of original and
estimated waveform without the presence of noise and
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GA-LS PSO-LS BFT-LS DE-LS
Noise Worst Best Average Worst Best Average  Worst Best Average Worst  Best Average
No noise 0.0360 0.0008 0.0179 0.0503 0.0501 0.0501 0.0625 0.0017 0.043 0.0016 0.0003  0.0008
SNR =40db  0.0779 0.0027 0.0029 2.5826 0.2826 0.3204 0.0598 0.0560 0.0553 0.0021 0.0010 0.0019
SNR =25db  0.2603 0.0882 0.1071 2.6038 0.1042 0.8975 0.1399 0.1259 0.1332 01776 01025  0.1059
SNR=10db 1.3075 0.7913 0.8572 3.4294 3.3490 2.2045 2.7492 0.7127 1.5502 1.6854 1.3684  1.3737
15 1t
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Fig. 2: Comparison of original and estimated waveforms; a) GALS; b) PSOLS; ¢) BFTLS and d) DELS without noise
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Fig. 3: Comparison of original and estimated waveforms; a) GALS; b) PSOLS; ¢) BFTLS and d) DELS with noise
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Fig. 4 Convergence for 250 generations; a) GALS; b) PSOLS; ¢) BFTLS and d) DELS

Table 3: Estimated magnitude values compared to the original value

Harmonic order Magnitude (pu) GALS PSOLS BFTLS DELS
1{fundamental) 1.000 1.0001 0.9994 1.0001 1.0001
5 0.251 0.2509 0.2495 0.2509 0.2509
7 0.177 0.1765 0.1753 0.1766 0.1766
11 0.083 0.0795 0.084 0.0797 0.0837
13 0.048 0.048 0.0466 0.0479 0.0480
15 0.001 0.0011 0.0009 0.0010 0.0011
Table 4: Estimated phase angle values compared to the original value
Harmonic order Phase (rad)  GALS PSOLS BFTLS DELS
1fundamental) -0.0353 -0.0339 -0.0330 -0.0367 -0.0372
5 0.05 0.0552 0.0470 0.0592 0.0495
7 01379 0.0737 0.1395 0.0857 0.0813
11 -2.5674 3.1369 3.6940 3.1416 0.0016
13 0 -0.0150 -0.1680 -0.114 -0.0333
15 0.054 0.057¢6 0.0598 0.0561 0.0563

SNR = 25 db, respectively. The convergence graphs of the
algorithms for 250 generations are given 1 Fig. 4. The error
in the graph shows the absolute maximum error between the
estimated and actual values of the waveform at the sampled
nstants.

Results of case (b): In the second case, the algorithms are set
free to run until convergence takes place. The error index
computed from Eq. 13 15 fixed as 0.1. As the nature of
evolutionary algorithms 18 a usage of random numbers
greatly, the time for the convergence differs in each run. The
average time also depends on the initial solution considered
which 15 created random agamn. Hence, the total run of each
algorithm 13 taken as 50 to obtain a proper statistical data for
comparison. The average time is computed for convergence
to obtain error index <0.1 for the four algorithms for 50 runs.
The average time for GALS, PSOLS, BFTLS and DELS 15 8.4,
7.3, 6.12 and 4.46s, respectively. Table 3 and 4 shows the
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estimated magnitude values compared to the original
value. Table shows the estimated phase angle values
compared to the original value.

Separation of fundamental and harmonics signals: The
fundamental component estimation 18 considered primarily
umportant to obtain the real and reactive component of the
signal. The findamental signal 1s determuned from the
Eq. 10 and the comparison of original and estimated is
given inFig. 5.

The active mitigating  device which
researchess on the principle of ijection of harmonics
required the measurement of harmomnics present i the signal.
The algorithm additional to the estimation of integral
harmonics also segregates the fundamental and harmonics
components according to the requirement. The comparison
of the harmonics present in the signal with the estimated
harmonics is given in Fig. 6.

harmonic

Estimation of frequency: The proposed algorithm can be
applied to detect the deviation of the fundamental frequency
effectively. It 13 done by adding the unknown fundamental
frequency mto the variable. The number of variables is
increased by 1 in this case. The range of frequency is given
between 46 and 54 Hz for an electrical signal of rated
frequency of 50 Hz A huge number of UPS current
waveforms are simulated with different frequencies within
this range. The frequencies are varied from 46 Hz in steps of
0.005 up to 54 Hz and 1600 similar waveforms are simulated
and tested. Tt is observed that all the algorithms determine
the frequency effectively within the tolerance of 0.1 Hz. The
average time taken by the algorithms increased approximately
by 15%. Figure 7 shows the comparison of original and
estimated signal in the frequency of 50.5 Hz.



Asian J. Inform. Technol, 15 (6): 1079-1089, 2016

15 1£
10l @ | 100 ()
= 05 = 05
2 2 o0
g 0.0 : 0
5 05 505
1.0 -1.0
15 . 15
1s 15
_ 10 © 1 - 10 © ]
2 2
g o5 < 05 ]
é 0.0 é 0.0 ]
o 3
© o5 05
1.0 1.0
.15 L L " -1.5] . L R
>0 0005 00l 0015 002 0 0005 001 00155 002
Time (sec) Time (sec)

Fig. 5: Comparison of original and estimated fundamental waveform; a) GALS; b) PSOLS; ¢) BFTLS; d) DELS
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Fig. 8: Simulated signal with interharmonics
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Fig. 9: Hardware setup

Measurement of interharmonics signal: The performance of
the proposed algorithm 15 evaluated in the estumation of a
signal in the presence of interharmonics. In this research to
obtain interharmonics and subharmonics component,
window size is suitably increased and the basic frequency w,
m H(k) matrix 1s fixed as 5 Hz. Hence, the size of H(k) matrix
and the number of input cycle data 1s increased to obtam the
sub harmonics and mterharmonics present in the system. The
data for 10 cycles is given as input to obtain the
subharmonics and interharmonics in the range of multiples of
5. The signal simulated is Fig. 8:

f(t) = 0.96c0s( 2[T50t )+ 0.05cos (2[T125t ) I1/4 +
0.045cos( 211180t + [1/2) + 0.02c0s( 211250t)

(19

1087

Table 5: Error computation in interharmonics estirmation
GA-LS PSO-LS BFT-LS
0.0124 0.0558 0.0234

DE-LS
0.0101

The average error for all the four methods are obtamed
from the Eq. 18 and is provided in Table 5.

Experimental studies and results: For further validation of
the proposed algorithm, a voltage signal is generated
experimentally and the proposed method is applied to
determine the harmonics in the signal. The experimental setup
consists of an arc welder comected to the coil of an
mduction motor and 1s shown n Fig. 9. The voltage signal 1s
acquired using lab view software and the connected data
cord. The signal is sampled at the rate of 2 kHz and the
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Fig. 10:a) Voltage signal from arc welder; b) original and estimated waveforms; ¢) fundamental component in the signal

and d) harmonics component in the signal

Table 6: Error comparison for experimental data

GA-LS PSO-LS DE-LS
Worst Best Average  Worst Best Average Best Average Worst Best Average
0.0067 2.00E-05 0.0012 0.0203 0.0021 0.0067 3.00E-05 0.0051 9.00E-04 _ 3.00E-06 1.00E-04

sampled signal 1s imported to MATLAB environment and
tested with the algorithm. The sampled signal is validated
using Digital Signal Oscilloscope. Figure 10 gives the
experimentally generated waveform, the comparison of
reconstructed waveform using sampled data and estimated
data, the extraction of fundamental and harmonics
present in the signal respectively. Table & gives the error
comparison between the four optimization methods for
the experimental data.

CONCLUSION

Power quality momitoring requires accurate estimation of
amplitudes and phases of the harmonics in any electrical
signal. Harmomes estimation in a power system comprises of
power electronic devices using the evolutionary algorithms
have been mvestigated in the study. This study uses an
effective method based on differential evolution and least
square technique for the estimation of accurate harmonic
characteristics. The estimation process is fast and iterative.
In each generation, the algorithm first applies DE to estumate
the phases and the frequencies and then calculates the
amplitudes using LS method. The corresponding frequency
spectrum is obtained. The time taken for the proposed
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algorithm 1s less compared to other hybrid techmques. The
simulation results demonstrate that the proposed algorithm
15 able to be applied for the estimation of harmonics and
interharmonics, even in the case of the deviation of the
fundamental  frequency. The  proposed algorithm
convergences within few seconds and hence, the algorithm
could be used for online applications.
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