Asian Journal of Tnformation Technology 15 (8): 1334-1339, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Auto-Bug Triager for Assisting Manual Bug Triage

1S, Kirubakaran, *K. Maheswari and 'K. Reshma Revathi
'Info Institute of Engineering,
“SNS College of Technology, Coimbatore, Tamil Nadu, India

Abstract: Bug triage is an unescapable process in every software organization. A separate team in every
software companies takes care of this process. The complete process occurs in manual which increases the
production time and cost. One of the time taking tasks in bug triage process is assigning an appropriate
developer to fix the new coming bugs than fixing that bug. Automation is the key solution for this problem.
Since the bug reports are in free form of data, it 1s efficient to use data mining techniques to handle. In recent
research, different techniques were applied by different authors trying to automate the bug triage process. But,
up tll now only 64% of triaging accuracy 1s achieved. Our survey shows that the decrease in accuracy 1s
caused by one of the major problem called data reduction. In tlus study, we proposed a new
framework called Auto-BugTriager which focuses on the elimination of data reduction problem to greater extent.
Auto-BugTrager consist of three phases namely InfoZie, DataReduction and NBClassifier which works
together to predict the recommendation list of expert developer for fixing the new bug. We have done the
complete theoretical and experimental analysis of the proposed framework. Our analysis shows, that the
proposed framework eliminated the problem of data reduction to greater extent, thus the data quality and

accuracy of bug triage is increased.

Key words: Bug Triage process, manual triaging, data mining techniques, data reduction, India

INTRODUCTION

Software companies are almost deals with the flow of
bugs in all kinds of projects scenario. In open source
environment, almost 350 bugs are encountered every
day whereas in domain specific environment, almost
50-150 bugs are encountered each day and the growth in
bug depends up on the dimension of the projects. This is
considerable for programmers to handle by themselves as
one may encounter various number of defects/bugs
during the build time. Also, the bug repository contamns
numerous bug reports of all kinds, mostly which are
duplicate of one another. Therefore, each bug report in
the repository must be validated for duplication and then
needs to be triaged. Practically, assigning an appropriate
developer to fix a new bug is time-consuming process
than fixing a new bug,.

In traditional software development, triaging is
performed manually by an expert developer, i.e., a human
triage/manual triage. Due to the huge number of daily
bugs and the lack of knowledge of all the bugs, manual
bug triage is more expensive both m terms of time and
cost. In human triage when a new bug acts, a proficient
developer 1s assigned, who will try to fix this bug. Most of
the time the prediction of expert 13 not 100% accurate.

Manual triage 1s error-prone due to the enormous number
of daily bugs and the lack of knowledge about all bugs by
the developers. Human bug triage outcomes in expensive
time loss, high cost and low accuracy. Reassigning the
new bug for different developers to fix lasts for months
while fixing that bug takes only two to three days.
Therefore, it is essential to automate the bug triage
process 1n every software companies in the motivation of
improving their production quality.

Current research employs data mimning concepts to
deal with the software engineering glitches. There are
various number of mimng techniques such as text
classification, fuzzy logic, text mining, extraction methods
etc., are being implemented to automate the bug triage
process. Bug reports are free-form of data which has
two foremost challenges. First challenge i1s the
duplicate reports are available in the bug repository.
Mining large scale data will only results m low accuracy.
The second challenge 1s the lack of data quality 1.e the
presence of umnformative stop words m every bug
reports. Both these challenges are together are called as
data reduction problem which degrades the accuracy of
bug triage.

In this study, a new framework called
Auto- BugTriager 1s proposed which focus on eliminating
the problem of data reduction and improving accuracy in

Corresponding Author: S. Kirubakaran, Info Institute of Engineering, Coimbatore, Tamil Nadu, India
1334

Asian J. Inform. Technol, 15 (8): 1334-1339, 2016

Attributes extracted based
an the history of bug.
reports are used to train
the classifier,

Fig. 1: The proposed framework called Auto-BugTriager

automating bug triage process. This proposed framework
consist of three phases namely InfoZie, DataReduction
and NBPredictor which process together for the
prediction of recommendation list consisting of expert
developers for fixing the new bug. Tn order to spread our
idea for the practical use, we have proposed to implement
this new framework in a domam specific environment.
Also, complete experimental study has been done by
employing the Auto-BugTriager at the backend process
of a software system.

The complete analysis report of the performance
analysis of Auto-BugTriager is provided in the end. Tt is
therefore seen that the prediction of appropriate
developer 1s measured to be almost 98.5% accurate. As
bug triage occurring to be more serious problem, the
corporate world faces the loss both in terms of cost and
time. Therefore, it is significant to solve this problem for
both software productivity and quality.

Problem identification

Aim of the study: The main objective of our project 1s to
study and analyze the data reduction problem in
automating the process of bug triage. We have also
designed a new framework called Auto-BugTriager which
focus on the elimination of data reduction problem to the
greater extent in bug triaging. To improve the accuracy of
automatic bug triage. To encompass our 1dea for real-time
use and assist manual bug triage.

Issues: Manual bug triage 1s expensive both m terms of
cost and time. Therefore, automatic bug triage
methodologies are being proposed using data mining
techniques such as text classification (Anvik and
Murphy, 2004). The accuracy of these automatic
approaches doesn’t provide accuracy of > 60-65%. The
cause for the low accuracy is the major problems of data
reduction (Xuan et al, 2015), ie., to reduce the bug
dimension (Redundant data) and the word dimension
(Data quality). Eliminating the duplicate bug reports
entirely from the bug repository reduces the accuracy of
triaging due to the loss of valuable information’s in the
duplicate reports. Also, all noise data’s are not detached,
where the data quality is not enriched and leads to less
accuracy. Recently, all organization uses manual bug
triage mechanism and not any industry has automated the
process yet which diminishes the software productivity
and quality.

MATERIALS AND METHODS

Proposed system: The newly designed framework entitled
Auto-BugTriager 1s shown m Fig. 1. This proposed
system targets to eliminate the problem of data reduction
in bug triage. The framework (Revathi and Kirubakaran,

1335

Asian J. Inform. Technol, 15 (8): 1334-1339, 2016

2016) consist of three levels, viz. InfoZie, DataReduction
and NBClassifier which works organized to predict the
recommendation list of proficient developers who can able
to fix the new bug. The functioning of each level is
described below.

InfoZie: The first level of Auto-BugTriager is entitled as
InfoZie which perform as a validating tool. Duplicate bug
reports frequently comprises with valuable superfluous
mformation (Bettenburg et af., 2008a,b). Consequently the
duplicate reports are validated for superfluous information
using this InfoZie tool. At this point, the master reports
and duplicate reports are compared using a modified Diff
based algorithm (Revathi and Kirubakaran, 2016) Diff
algorithm 15 a UNIX based procedure that compares two
files of similar version for superfluous information. The
InfoZie tool 1s based on the model of diff algorithm. If
duplicate report comprises superfluous
information, it is merged with the original master report

valuable

otherwise skipped. This level of the framework improves
the bug dimension as well as the accuracy of bug triage.

Data reduction: Data Reduction is the next level of the
proposed framework which implements two subsequent
procedures.

Pre-processing: The text classification technique 1s used
to convert the abridged bug reports into text matrix where
each row signposts one bug report and each column
signposts one word.

Noise reduction: This part of the framework makes use of
feature extraction technique (Bolon Canedo et al., 2013) to
dimiush the word dimension, 1e.,
uninformative stop words from the bug reports.

eliminates the

NB Classifier: The final level of Auto-BugTnager
framework which predicts the recommendation list for the
new bug report 1.e. the NBClassifier which 1s created using
Naive Bayes classifier. The classifier is trained with the
history attributes extracted from existing bug reports.
Attributes are extracted both n terms of technical aspect
and history of developer details who fixed the existing
bugs. Here, the new bug report 1s the test set which fed as
input to the Auto-BugTriager and compared with the
trained set of NBClassifier in order to predict the
recommendation list. Auto-BugTriager helps the software
testing team in administration of bug reports by the
accumulation of added auxiliary features (Breu et al,
2010).

Data mining concepts plays a vital part in automating
the bug triaging process in effective way. Diff based
algonthm, Pre-Processing, Feature selection algorithm and
Naive Bayes classifiers are the crucial methods used in
our newly proposed framework. A pure and profound
theoretical study of each methods are explained below.

Data pre-processing: The principal of handling the bug
reports using the Auto-BugTriager framework is the data
pre-processing. As the real world data’s are mcomplete
and inconsistent, mining such raw data is tiresome and
error prone process which is one of the causes for the fall
of accuracy while automating the triaging process.
Therefore, transforming those uncooked data into a
reasonable format will make the mining process easy and
consequently accuracy can be attained. The bug reports
have a umform format where the mformation are divided
Therefore, the
framework uses relational database format which provides

into reasonable classes. proposed
a convement way for transforming each bug reports into

number of rows and columns.

Feature selection: Word dimension and bug dimension
are the two Data Reduction problems encountered in
automating the bug triage process. Word dimension
means data quality. By nature, bug reports are defined in
natural language, contaiming noisy mmformation, ie.,
uninformative words. The presence of noisy data drops
the quality of the data and thus resulting maccuracy of
triaging. So, eliminating such noise information from the
bug data i1s an essential process for mcreasing the
correctness of triaging results. Feature selection algorithm
1s a suitable technique that offers attribute selection in a
best way to inprove the quality of data hence making the
triaging process more accurate. The proposed framework
applies the feature selection aka attribute selection in two
stages of the proposed system.

Primarily, the attribute selection (Khoshgoftaar ef al.,
2010) 18 implemented based on the selection of stop words
from the bug reports. Stop words are the words that exist
in the bug reports as noisy data that makes the miming
process more challenging and erroneous. Hence,
removing such stop words 18 inevitable. This will progress
the data quality and ease the mining process. Thus the
accuracy of triaging is improved. Also, additional set of
attribute selection were done established on the technical
terms which are used to train the Naive Bayes classifier by
of prediction algorithm. These selected
attributes are second-handed to the third
called NB classifier. extraction method

means
level
Feature

1336

Asian J. Inform. Technol, 15 (8): 1334-1339, 2016

benefits the Auto-BugTriager in improving the quality of
bug data by removing all the noise information present in
the bug reports.

InfoZie using Diff algorithm: An additional leading
problem mn automating the bug triage process is the
duplication of mformation in the bug repository due to the
presents of duplicate bug reports that resides in it.
Removals of these duplicate reports are imperative, but
every duplicate reports in the bug repositories are not
always a duplicate of the original. Mostly the duplicate
reports are resubmitted purposely by the
developers/programmer with some improvements or
added information to the bug report. As a result, there are
90% of probabilities for the existence of added valuable
information in the duplicate bug reports. So, eliminating
such valued mformation entirely from the database will
decrease the precision of bug triage.

For that reason, it is mnportant to validate every
duplicate bug reports existing in the bug repository. This
validation is be accomplished using a particular tool as in
called InfoZilla (Anvik and Murphy, 2011) which
authenticates the duplicate bug reports over the mined
structural facts from every bug reports. In our proposed
framework, we generated a tool so-called InfoZie which 1s
established on the basis of UNIX based diff algorithm
(“diff” is a data comparison tool used to show the
changes between two versions of the same file in UNTX
environment) that matches the technical features extracted
from both duplicate and master bug reports. When
duplicate report holds additional information, the
duplicate report is merged with the master bug report if
not merging is skipped. This level of InfoZie progresses
the bug dimension and as well the accuracy of bug triage
is increased.

The modified diff algorithm used at InfoZ.ie level is
specified further down, this procedure the whole thing as
per the following assumptions. Considering two data sets
named NewBugReports and BugRepository where the
first holds the new incoming bug reports and the last
holds the existing bug reports along with 1its history of
developer who have fixed it.

Algorithm 1; Modified Diff Algorithm for InfoZie:
For each Bugdata in NewBugrepository

Compare NewData with each MasterData in BugRepository
Tt there is a match sequence

Tt (mirrored data found)

Merge the result

Else//Good best match found

ShowReport, ShowOptions (Merge, Skip)

Else

Skip/M™o matches found

End If

End For

The modified Diff Algorithm.1 helps in completely
removing the duplicate bug reports from the repositories
without any loss of wvaluable information hence
diminishing the bug dimension i.e. the redundant data.
This part of Auto-BugTriager is the heart of our proposed
framework that helps in growing both the quality of data
and accuracy of triaging.

Naive Bayes Classifier: Auto-BugTriager framework
practices the Naive Bayes classifier at its final level
of the system for predicting the expert developer
recommendation list. Naive Bayes classifier is easy to
implement and predominantly suitable for very large set of
data. Consequently, this 1s a fiting classifier for triaging
the bug reports which upturns the corporate world.
NBClassifier is a simple and known predictor that
outperform even on very much difficult data. Figure 2

[NBClassifier)

Trained Set
i -
|
i Tw Dy |
I 1
I BUSDATA | H |
! !
: BUGDATA | H :
! !
1 BUGDATA | M] RECOMMEMDED
| I
Ty D I T o ™ LIST OF
! 1
BUGDATA | H ! 1 DEVELOPERS
Comparative 1 SUSDATA | H |
BUGDATA | H ! !
BUG DATA H 1
Alzorithm ! !
BUGDATA | H ! 1
l BUGDATA | H |
I
Test Set ! T b !—\/
I
| BUGDATA |H :
I 1
: BUGDATA |H 1
i
| 1
i BUSDATA |H H
! 1
1

Fig. 2: Working analysis of NB classifier

1337

Asian J. Inform. Technol, 15 (8): 1334-1339, 2016

demonstrations the working analysis of NBClassifier.
Here, T}, and D, are the twofold attributes viz. Technical
History and Developer History. The output of the
Auto-BugTriager 15 the list of recommended developers
(Anvik and Morphy, 2011) who can fix new similar bug.

RESULTS AND DISCUSSION

Here, the experimental analysis of the
Auto-BugTriager has been done thoroughly. The
monitored analysis report from the implemented system
has been provided in detail here. The experiment is done
for different set of datasets for analysing the quality and
improvement of accuracy. The performance analysis of
the implemented Auto-Bug Triager has also been given in
detail for reference. The data reduction problem in
automating the bug triage process has been eliminated
almost. Figure 3 shows the detection rate of duplicate
mformation present in examined sets of different sample
bug reports. Approximately 98% of the duplicate reports
has been well identified without any loss of valuable
information, with the support of InfoZ.ie.

Performance Analysis -Detection of Redundant Data

Deduction Rate (%)

Ne. of sample dataset

Fig. 3: Graph showing detection in the bug reports
experimented for different sets of sample dataset.

Performance Analysis -Detection of Noisy Data

Deduction Rate (%)

Mo. of sample dataset

Fig. 4: Detection rate of noisy information in the bug
reports experimented for different sets of sample
dataset

Similarly, an experiment for different sets of sample
bug reports starting from 5000 to 25000 has been done for
the analysis of noisy information in the bug reports. And
the detection rate is found to be 97% which is shown in
Fig. 4. Also, the analysis of data reduction problem has
been experimented and the report is given in Fig. 5. This
report compares the performance rate for both before and
after the removal of data reduction problem. Therefore,
this clearly explains the increase in data quality in
Auto-BugTriager. The performance rate reaches almost
98.7% of data quality. When data quality is high, the
triaging process will be accurate with its result. Finally,
the yearly comparison of data reduction problem, data
quality analysis and accuracy of automation in bug triage
process is experimented for the same set of different
datasets. The analysis report is shown in Fig. & which
compares the result of Auto-BugTriager with the
Automatic Bug triage system developed between the
years 2004-2015. The analysis report clearly shows that
proposed frameworlk called Auto-BugTriager has
achieved almost 94% in elimination of data reduction

problem, 96% of data quality and automation accuracy
98.5%.

Performance Rate(%)

No of sample dataset

Fig. 5. Examination of data quality individually before and
after the removal of data reduction problem

95
u %

Deduction Rate (%)

Years (2004 - 2016)

Fig. 6: Evaluation of data reduction problem, data quality
and accuracy of bug triage process between the
years 2004 to 2016. This includes overall project
performance

1338

Asian J. Inform. Technol, 15 (8): 1334-1339, 2016

CONCLUSION

In this study a new framework called AutoBug Triager
has proposed which aims to assist the manual bug triage
i every software compamnies. Data reduction 1s found to
be a major problem in automating the bug triage process
using data mining techniques. The proposed frameworks
worls better when implemented for domain specific
environment as the attribute extractions are in terms of
technical aspects. A complete theoretical and experimental
analysis of the proposed framework 1s reported. The
analysis shows, that the quality of data and accuracy of
bug triage has been improved rapidly.

RECOMMENDATIONS

Our future work focuses on the complete automation
of bug triage without human help to create a new
infrastructure for the software testing team. Tt might help
them handle bugs in effectively. Also, we tend to
implement this model with real time industrial data.

REFERENCES

Anvik, T. and G.C. Murphy, 2011. Reducing the effort of
bug report triage: Recommenders for
development-oriented decisions. ACM. Trans.
Software Eng. Method., Vol. 20, 10.1145/2000
791.2000794

Bettenburg, N., R. Premraj, T. Zimmermamn and 5. Kim,
2008a. Duplicate bug reports considered harmful
really?. Proceeding of the TEEE International
Conference on Software Maintenance, September
28-October 4, 2008, IEEE, Beymg, Clina, ISBN:
978-1-4244-2613-3, pp: 337-345.

Bettenburg, N., R. Premraj, T. Zimmermann and S. Kim,
2008b. Extracting structural information from bug
reports.
Working Conference on Mining Software
Repositories, May 10-18, 2008, ACM, Leipzig,
Germany, ISBN: 978-1-60558-024-1, pp: 27-30.

Canedo, V., N.
A. Alonso-Betanzos, 2013. A review of feature
selection methods on synthetic data. Knowl Inf
Syst., 34: 483-519.

Breu, 5., R. Premraj, J. Sillito and T. Zimmermann, 2010.

Proceedings of the 2008 International

Bolon Sanchez-Marono and

February Information needs in bug reports:
Improving cooperation between developers and
users. Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, February
06-10, 2010, ACM, New York, USA., ISBN:
978-1-60558-795-0, pp: 301-310.

Khoshgoftaar, TM., K. Gao and N. Seliya, 2010.
Attribute selection and unbalanced data: Problems
m software defect prediction. Proceedig of the
22nd IEEE Intemational Conference on Tools
with Artificial Intelligence (ICTAIL), October 27-29,
2010, Arras, France, ISBN: 978-1-4244-8817-9,
pp: 137-144.

Revathi, K.R. and S. Kirubakaran, 2016. A Swrvey on
automatic bug triage using data mining concepts.
Intl. J. Sci. Res., 5: 184-186.

Huan, I, H. Tiang, Y. Hu, Z. Ren and W. Zou et al., 2015.
Towards effective bug triage with software data
reduction techniques. Knowl. Data Eng. TEEE. Trans.,
27: 264-280.

1339

	1334-1339 - Copy_Page_1
	1334-1339 - Copy_Page_2
	1334-1339 - Copy_Page_3
	1334-1339 - Copy_Page_4
	1334-1339 - Copy_Page_5
	1334-1339 - Copy_Page_6

