Asian Journal of Tnformation Technology 16 (6): 451-457, 2017

ISSN: 1682-3915
© Medwell Journals, 2017

A Flexible and Extendable Data Mining Based Generic Framework for
Preventing SQL Injection Attacks

'T. Pradeep Kumar, A, Udaya Kumar and *T. Ravi
"Department of CSE, Aditya College of Engineering, Madanapalle, Andhra Pradesh, India
*Hindustan Institute of Technelogy and Science, Chennai, India
*Srinivasa Institute of Engineering and Technology, Chennai, India

Abstract: As the contemporary applications are database-driven, SQL Injection Attacks (SQLIAs) have been
capable of causing potential risk to businesses across the globe. Most of the existing solutions focused on SQL
and its structure at application level which is doomed to fail when stored procedures are targeted. In this study,
we propose a framework for detecting SQLIAs at database level. We exploit kemnel level functions and data
mining techmques such as classification to have basis for detection of such attacks. The framework provides
placeholders to have flexible mechanisms that help in using different approaches in future. Thus, the framework

provides pluggable mechanisms, so as to support future techniques as well at database level. We implemented
the functionality of the framework using PostgreSQL. The kemel functions of the RDBMS are exploited in order
to have mtegrated functionality to detect SQLIAs. The empirical results revealed that the proposed framework
is able to provide 99% probability of protecting applications from SQLIAs. The framework also achieve

100% true positives in detecting SQLIAs.

Key words: Database, data mining, SQL mjection attack, classification, applications, pluggable mechanisms

INTRODUCTION

SQL Imjection 1s a mechamsm i which SQL
commands are mserted mnto input fields of a web based
application. Such commands are appended to the
underlying SQL query being used when web form is
submitted. This 1s an attack which 1s aimed at breaking
security of a system and gain access to its sensitive data.
An attacker can mject parts of commands mto an SQL
command of a web application either through input fields
or cookies. SQL imjection comes under code-ijection
attacks (Halfond and Orso, 2005a, b) with SOL imection
attacks are made on Oracle database server without direct
connection to the database by injecting SQL, exploiting
buffer overflows and by redirecting using UTL HTTP
package when output is not returned. With direct
connection to database, attacks can be made by
injecting SQL into pre-defined and user-defined stored
procedures, exploiting buffer overflow in user-defined
and pre-defined procedures and printing output on
attacker’s session (Fayo, 2005). Since, user authentication
or login is one of the main security measures, this
process 18 exploited by attackers. Here, they try SQL
mjection attacks. Once authentication 1s successful, the
malicious users can gain access to sensitive information

which will be used for monetary gains (Chapela, 2005). For
instance consider the following code snippet that
demonstrates SQL injection attack to gain access to
database of SQL server (Algorithm 1).

Algotithm 1; A common vulnerable login query:
SELECT*FROM USERS WHERE userid = ‘anand’ and password =
12345°

The above query appears as follows with SQL Server syntax

var query = “SELECT*FROM USERS WHERE userid =""+formuser + **
and password = " +formpassword +7

Here formuser and formpassword are names of text fields that become request
parameters when HTMI. form is submitted. The injection attack on the
login web page is done by injecting some command through input field
The following are the means to make SQT. injection attack

Formuser =" or 1 =1 -- (observe that -- is the comment as per SQL Server)
Form password = anything

Thus, the final SQL. query appears as follows

SELECT*FROM USERS WHERE userid =** or 1 =1 -- and password =
anything”’;

In similar fashion, the same query for MY SQL appears as follows
SELECT*FROM USERS WHERE userid = ** or 1 =1 # and password

= anything’

As seen in the final SELECT query the text preceded
by 1s comsidered a comment which has no effect in
thequery. Thus, the potential AND logical command 1s
eliminated from the original query. Moreover or 1 =1 is
appended to the predicate and userid is given nothing.

Corresponding Author: J. Pradeep Kumar, Department of CSE, Aditya College of Engincering, Madanapalle, Andhra Pradesh,

India

Asian J. Inform. Technol., 16 (6): 451-457, 2017

Prevention of SQL IAS

v

v

Defensive coding practice

Detection and prevention techmiques I

v

h 4

I

b

Input type | | Encoding (| Positive patterns| | Identification of Taint based
checking | | of inputs matching all input sources approach
¥
. . " New query Intrusion .
Black box ||Static code||Combine static and| : Instruction set|
. : . development detection || Proxy filters PN
testing checkers || dynamic analysis tigms Systems omization]

Fig. 1: Prevention measures for SQL injection attacks

The appended predicate or 1 = = 1 results in true
always. For this reason, the SELECT query returns
results that are internally used for authentication. The
authentication is always succeeded (Chapela, 2005). Thus,
SQL injection attacks successfully made in the process of
authentication of web applications.

Halfond provides a swvey of different types of
SQL injection attacks and the counter measures available.
Here, we mention the categories and counter
measures. The types include tautologies that bypass
authentication, illegal queries to find structure of database
schema, union queries for by passing authentication,
piggy-backed queries for manipulating data, stored
procedures for privilege escalation, inference attacks to
know database schema and alternate encodings to evade
detection. The counter measures available include
defensive coding practices and detection and prevention
techmiques. The summary of these counter measures 1s
presented in Fig. 1.

As can be shown in Fig. 1, there are many approaches
to prevent SQL injection. However, the focus in this study
is to propose and implement a generic framework that can
help in preventing SQL injection attacks using data
mining techniques. Since, the database level protection is
considered the right place for comprehensive solution to
such afttacks, we used data mining approach in this
study.

The contributions in this study include the study into
SQL injection attacks and counter measures besides the
implementation of a generic frameworl that can be used to
prevent SQL injection attacks with defence provided at
database level.

Literature review: Web applications are generally
vulnerable to SQL injection attack. This study
reviews literature such attacks and prevention measures.
Doug and Evans (2004) proposed an automated

452

mechanism that could prevent two kinds of vulnerabilities
such as cross-site scripting and SQL injection attacks.
They replaced PHP interpreter with an extended one for
precisely tracking taintedness and malicious content. This
solution is nothing to do with the designer skills in
developing a web site. Since, the modified PHP interpreter
takes care of every web site that has been deployed
into web server which used the extended interpreter.
Halfond and Orso (2005a, b) presented a model based
approach that could detect and neutralize SQI. injection
attacks. Tts solution has both static and dynamic parts. In
the static part it builds a model which will be used in the
dynamic part at runtime to compare the static and dynamic
modes to identify any suspicious injection of SQL
commands. Their solution is based on an intuition that
says that web applications have SQIL queries that can be
distinguished from malicious ones. Similar kind of
research was carried out by Halfond and Orso (2005a, b).
According to Litchfield (2005), there are three classes of
SQL injection attacks. They are named as in band, out of
band and inference attacks. When data is extracted from
the same channel of client and server, it 18 known as
in band. When different communication channel is
employed, it is known as out of band attack while
inference attack is the attack where no data transfer takes
place but the attacker can infer the value of data.

Some developers obfuscate their code in order to
prevent analysis of code to detect malicious content.
Such content can be interpreted by using abstract
interpretation based on the analysis proposed by
Gerhard Goos. They combined the abstract stack graph
and value set analysis to create an analyzer that was able
to analyze obfuscated code containing malicious
instructions. Stored procedures are actually vulnerable to
SQL injection attacks. Wei et al. (2006) proposed a
technique to prevent such attacks. Generally most of the
solutions that prevent SQL injection attacks work at

Asian J. Inform. Technol., 16 (6): 451-457, 2017

application layer. However, the solution works at
database layer where stored procedures reside. Their
technique combines static analysis of application code
and validation at run time to get rid of such attacks. The
solution builds a graph containing SQL query behaviour
and that can be used at runtime to validate and prevent
SQL injection aftacks. McClure and Kruger (2005)
presented and employed SQLDOM as solution to SQL
injection attacks. SQLDOM is a set of strongly typed
classes that are generated automatically based on the
database schema. The SQLDOM can help generate SQT
commands i a web application instead of string
manipulation. Tt solves all Call Level Interface (CLI)
vulnerabilities.

Buehrer et al. (2005) proposed a solution based on
the assumption that all SQL injection attacks alter the
original query written by developer of interactive web
applications in one way or other. Their solution is known
as Parse Tree Validation (PTV). Parse tree is constructed
before including the user inputs and after including user
inputs. The comparison of the two provides evidence of
any malicious code that has been inserted into genuine
SQL command. A classification of SQL injection
attacks and counter measures are found by William.
Application layer intrusion detection (Rietta, 2006), SQL
injection analysis in PHP (Merlo et al., 2006, 2007), web
vulnerability analysis (Kals et al., 2006), SQL UnitGet for
dynamic analysis (Shin et al., 2006), SQIL UnitGet for
generating test cases (Shin et al., 2006), static analysis
framework (Fu et al, 2007), automatic fix generation
(Thomas and Williams, 2007 ; Dysart and Sherriff, 2008),
dynamic candidate evaluations (Bandhakavi et al., 2007),
modelling SQL injection attacks (Kiezun et al, 2009,
Alietal., 2011), character distribution models (Kiani et ai.,
2008), genetic algorithms (Shahriar and Zulkernine, 2008),
static and dynamic analysis (Orso et al., 2008), symbolic
execution (Fu and Qian, 2008), location specific signatures
(Mitropoulos and Spinellis, 2009), testing and comparing
(Fonseca et al, 2007), symptom correlation approach
(Ficco et al., 2009), static analysis and penetration testing
(Antunes and Vieira, 2009a, b), detection of attacks in
web services prepared statement based solution
(Thomas et al., 2009), database centric web services
(Laranjeiro et al., 2009), proxy-based solution (Liu et al.,
2009) are different kinds of solutions found in the
literature.

There are many other approaches used for
preventing SQL injection attacks as explored by
Vieira et al. (2009), Antunes et al. (2009), Ciampa et al.
(2010), Kindy and Pathan (2011), Wang et al. (2010),
Tajpour et al. (2010a-c), Halder and Cortesi (2010),
Ali et al. (2011), Khowry et al. (2011), Lee et al. (2011),
Tohari and Sharma (2012), Clarke (2012) and Das et al.
(2010). Out of them Vieira et al. (2009) and Antunes et al.
(2009) explore solutions to attacks in web services. A

453

good survey of SQL injection attacks is found by
Shrivastava and Tripathi (2012) and JTohari and Sharma
(2012). Augmented attack modelling (Wang et of., 2010)
obfuscation based analysis (Halder and Cortesi, 2010) and
dynamic query matching are other solutions available.

MATERIALS AND METHODS

Overview of the proposed architecture: The proposed
framework is flexible and extendable as it provides
placeholders for various methods used in the process.
The placeholder (shown in red colour horizontal bar)
indicates that the method is extendable and our prototype
support plugging new method n future, so as to
support multiple kinds of methods for a particular
mechanism.

As can be shown in Fig. 2, it is evident that there are
two distinct layers in the proposed solution. They are
categorized into offline and online processing. Offline
processing is the continuous database server side work
irrespective of user queries. Even when no user query is
being executed, the offline processing takes place. The
offline processing includes extraction of database logs
that hold previously executed queries, pre-processing,
conversion and transform. Once database logs are
extracted they are pre-processed in order to let them to be
suitable for further processing. The pre-processed
content is given to a conversion technique which
considers syntactic and semantic features of queries and
converts the content into an intermediary form that can be
used conveniently. Tt is in our case in the form of
multi-dimensional feature vectors that can be used to
build a model by using a transformation technique. Once
model is built, it is provided to online processing.
The modelling is done by to the transformation
function that makes use of classification techmques
like SWVM.

The online processing starts only when user provides
an SQL query either directly or through an application.
Then the query is parsed and matched with the query
representations in the model. Then, the suspected query
is given to detection method that thoroughly investigates
to know whether it is an injection attack. Once it is
confirmed that there is injection attack, this query is
provided to the offline processing where model gets
updated in order to have knowhow on such queries
to handle in future with ease. Once the attack is detected
it is prevented by ignoring the query or ensuring the
ACID features of the current transaction.

RESULTS AND DISCUSSION

We used PostgreSQL which is an open source
RDBMS. As it allows users to customize, the kernel level
interfaces are exploited and the proposed system is

Asian J. Inform. Technol., 16 (6): 451-457, 2017

Offline processing

Extraction of Preprocessmg
database log

Legend

Conversion
technique
(syntactic, semantic
| S—

Transform
| E—

Online processing

Query parsmg

Fig. 2: Overview of the proposed architecture

50,000
45,000
% 35,000
& 30,000~
E 25,000
% 20,000
L7
s

—4— Exccution time (security enabled)
=B Execution fime (security disabled)

15,0004
10,000+
5,000+
0 Y T T T T T T T 1

2 4 6 8 10 12 14 16 18 20
No. of EXEC {) statements in the program

Fig. 3: Performance comparison

99 100

100 A
90 A
80 A
70 A
60 -
50 A
40 4
30 A
20 A
10 1

Performance (%)

(0]

T T
Attack prevention False positives

probability

True positives
Proposed frame work

Fig. 4: Performance of the proposed framework

imnplemented. The whole framework has nothing to do
with client applications. Instead it is at server side
and its offline and online processing methods are
executed in the database server itself. We mnplemented
the whole functionality using PL/SQL package with
all underlying functions. These functions are executed
in such a way the improved versions can be
plugged in future with ease. The standard interfaces
we used can help in switching to different future
techniques.

Figure 3 shows that, it is evident that there is no
much difference m execution time of the proposed
security when compared with queries without security.

454

The reason behind this 1s that the offline processing
makes a model that can be used to mmplement
security without taking additional time. Therefore,
there is negligible difference between execution time
between security enabled and security disabled
settings.

Figure 4 shows that, the proposed solution achieves
100% true positives and 99% probability of detection
probability.

CONCLUSION

In this study, we focused on SQL iyjection attacks
and prevention measures. We proposed a generic
framework that is extendable and flexible. The framework
is based on the data mining techniques to detect and
prevent SQL imjection attacks. The existing solutions
that operate at application level fail to address the
issues when attackers target stored procedures that
reside at server side. The framework overcomes thus
problem by analyzing the logs and building a model that
can be used to detect SQLIAs. The framework has two
layers known as offline and online processing. Offline
processing makes a model that will be used to detect
SQLIAs. The model 1s given to online processing layer
where actual query 1s received from application and
detection and prevention mechanisms are applied as
discussed in this study. We did experiments with
PostgreSQL and the results reveal that our solution
achieves 99% probability in detection and 100% true
positives.

REFERENCES

Al,, ABM., AYIL Shakhatreh, M.S. Abdullah and T.
Alostad, 2011. SQL-injection vulnerability scanning
tool for automatic creation of SQL-1mjection attacks.
Procedia Comput. Sci., 3: 453-458.

Asian J. Inform. Technol., 16 (6): 451-457, 2017

Antunes, N. and M. Vieira, 2009b. Comparing the
effectiveness of penetration testing and static code

detection of SQL injection
vulnerabilities in web services. Proceedings of the
15th TEEE Pacific Rim International Symposium on
Dependable Computing (PRDC'09), November 16-18,
2009, IEEE, Shanghai, Chma, [ISBN: 978-0-7695-3849-5,
pp: 301-306.

Antunes, N. and M. Vieira, 2009a. Detecting SQL injection
vulnerabilities in web services. Proceedings of the 4th
Latin-American Symposium Dependable
Computing, September 1-4, 2009, Joao Pessoa, pp:
17-24.

Antunes, N., N. Laranjeiro, M. Vieira and H. Madeira,
2009. Effective detection of SQL/xpath injection
vulnerabilities in web services. Proceedings of the
IEEE International Conference on Services
Computing, September 21-25, 2009, Bangalore, pp:
260-267.

Bandhakavi, S., P. Bisht, P. Madhusudan and V.N.
Venkatakrishnan, 2007. CANDID: Preventing SQL

analysis on the

on

injection attacks using dynamic candidate
evaluations. Proceedings of the 14th ACM
International Conference on Computer and

Communications Security, October 28, 2007, ACM,
New York, USA., ISBN:978-1-59593-703-2, pp:
12-24.

Buehrer, G., BW. Weide and P.A.G. Sivilott, 2005.
Using parse tree validation to prevent SQL

Proceedings of the 5th
International Workshop on Software Engmeering and
Middleware, September 5-6, 2005, Lisbon, Portugal,
pp: 106-113.

Chapela, V., 2005. Advanced SQL injection. MCS Thess,
OWASP, Maryland, USA.

Ciampa, A., C.A. Visaggio and D.M. Penta, 2010. A
heuristic-based approach for detecting SQTL-injection
vulnerabilities in Web applications. Proceedings of
the 2010 ICSE Workshop on Software Engineering for
Secure Systems, May 02, 2010, ACM, New York,
UUSA., ISBN:978-1-60558-965-7, pp: 43-49.

Clarke, T., 2012, SQL TInjection Attacks and Defense.
Elsevier, Amsterdam, Netherlands, ISBN:
978-1-59749-963-7, Pages: 547.

Das, D., U. Sharma and D.K. Bhattacharyya, 2010. An
approach to detection of SQL injection vulnerabilities
based on dynamic query matching. Intl. J. Comput.
Appl, 1: 39-45.

Doug, AN.T.5.G. and G.D. Evans, 2004, Automatically
hardening web applications using precise tainting.
Master Thesis, Unmversity of Virgima, Charlottesville,

injection aftacks.

Virginia.

455

Dysart, F. and M. Sherriff, 2008. Automated fix generator
for SQL imjection attacks. Proceedings of the 19th
International Symposium on Software Reliability
Engineering, November 10-14, 2008, [EEE, Seattle,
Washington, ISBN:978-0-7695-3405-3, pp: 311-312.

Fayo, EM., 2005. Advanced SQL mjection m Oracle
databases. Mandalay Bay, Nevada, TUSA.

Ficco, M., L. Coppoline and L. Romano, 2009. A
weight-based symptom correlation approach to SQI.
mjection attacks. Proceedings of the 4th
Latin-American International Symposium on
Dependable Computing (LADC'09), September 1-4,
2009, IEEE, Toao Pessoa, Brazil,
ISBN:978-1-4244-4678-0, pp: 9-16.

Fonseca, J., M. Vieira and H. Madeira, 2007, Testing and
comparing web vulnerability scanning tools for SQL
injection and XSS attacks. Proceedings of the 13th
Pacific Rim International Symposium on Dependable
Computing, December 17-19, 2007, Melbourne, Q1d,
PP: 365-372.

Fu, X, and K. Qian, 2008. SAFELI: SQL injection scanner
using symbolic execution. Proceedmngs of the
Workshop on Testing, Analysis and Verification of
Web Services and Applications, July 20-24, 2008,
Seattle, WA, USA | pp: 34-35.

Fu, X, X. Lu, P. Verger, B.S. Chen, K. Qian and L. Tao,
2007. A static analysis framework for detecting SQT.
mjection vulnerabilities. Proceedings of the IEEE
Annual International Computer Software and
Application Conference, Volume 1, July 24-27, 2007,
Beijing, pp: 87-96.

Halder, R. and A. Cortes, 2010. Obfuscation-based
analysis of SQL injection attacks. Proceedings of the
TEEE Symposium on Computers and Communications,
June 22-25, 2010, Riccione, [taly, pp: 931-938.

Halfond, W.G. and A. Orso, 2005b. Amnesia: Analysis
and monitoring for neutralizing SQL.-injection attacks.
Proceedings of the 20th IEEE/ACM Intemational
Conference on Automated Software Engineering,
November 7-11, 2005, Long Beach, CA., USA., pp:
174-183.

Halfond, W.G. and A. Orso, 2005a. Combimng static
analysis and runtime monitoring to counter
SQL-injection attacks. Proceedings of the ACM
International Conference on SIGSOFT Software
Engimeering Notes Vol. 30, May 17, 2005, ACM, New
York, USA., pp: 1-7.

Johari, R. and P. Sharma, 2012. A swvey on web
application vulnerabilities (SQLIA, XS8) exploitation
and security engine for SQL mnjection. Proceedings of
the International Conference on Communication
Systems and Network Technologies, May 11-13,
2012, Rajkot, pp: 453-458.

Asian J. Inform. Technol., 16 (6): 451-457, 2017

Kals, 5., E. Kirda, C. Kruegel and N. Jovanovic, 2006.
Secubat: A web vulnerability scanner. Proceedings of
the 15th International Conference on World Wide
Web, May 22-26, 2006, ACM, New York, USA.,
[SBN:1-59593-323-9, pp: 247-256.

Khoury, N, P. Zavarsky, D. Lindskog and R. Ruhl, 2011.
An analysis of black-box web application security
scanners against stored SQL injection. Proceedings
of the 2011 IEEE 3rd Inernational Conference on
Privacy, Security, Risk and Trust (PASSAT) and
Social Computing (SocialCom), October 9-11, 2011,
IEEE, Boston, Massachusetts, TUSA.
ISBN:978-1-4577-1931-8, pp: 1095-1101.

Kiam, M., A. Clark and G. Mohay, 2008. Evaluation of
anomaly based character distribution models in the
detection of SQL ijection attacks. Proceedings of the
3rd International Conference on Availability,
Reliability and Security, March 4-7, 2008, Barcelona,
pp: 47-55.

Kiezun, A., P.I. Guo, K. Tayaraman and M.D. Ernst, 2009.
Automatic creation of SQL injection and cross-site
scripting attacks. Proceedings of the 31st
International Conference on Software Engineering,
May 20-22, 2009, Vancouver, BC, Canada, pp:
199-209.

Kindy, D.A. and A.SK. Pathan, 2011. A survey on SQL
injection: Vulnerabilities, aftacks and prevention
techmques. Proceedings of the IEEE 15th
International Symposium on Consumer Electronies,
June 14-17, 2011, Singapore, pp: 468-471.

Laranjeiro, N., M. Vieira and H. Madeira, 2009. Protecting
Database Centric Web Services against SQL/XPath
Injection Attacks. In: Database and Expert Systems
Applications, Kung, I. and W. Roland (Eds.).
Springer, Berlin, Germany, ISBN:978-3-642-03572-2,
pp: 271-278.

Lee, I, S.I.S. Yeoc and T. Moond, 2011. A novel methed
for SQL injection attack detection based on removing
SQL query attribute. J. Math. Comput. Mod., 55:
58-68.

Litehfield, D., 2005, Data-mimng with SQL injection and
inference. Next Generation Security Software Ltd.,,
Manchester, UK. https://www.exploit-db. com/docs/
215.pdf.

Liu, A, Y. Yuan, D. Wijesekera and A. Stavrou, 2009.
SQLProb: A proxy-based architecture towards
preventing SQL injection attacks. Proceedings of the
ACM Symposium on Applied Computing, March
8-12, 2009, Honolulu, HI., USA., pp: 2054-2061.

McClure, R.A. and TH. Kruger, 2005 SQL DOM:
Compile time checking of dynamic SQL statements.
Proceedings of the 27th International Conference on
Software Engineering (ICSE 2005), May 15-21, 2005,
IEEE, Califormia, USA., [SBN:1-59593-963-2, pp:
88-96.

]

456

Merlo, E., D. Letarte and G. Antonmiol, 2006.
Insider and ousider threat-sensitive SQL
mjection vulnerability analysis m PHP.

Proceedings of the 13th Intermnational Working
Conference on Reverse Engineering (WCRE'06),
October 23-27, 2006, TEEE, Benevento, Ttaly, pp:
147-156.

Merlo, E., D. Letarte and G. Anteoniol, 2007. Automated
protection of PHP applications against
SQL-imjection attacks. Proceedings of the 11th
European International Conference on Software
Maintenance and Reengineering (CSMR'07), March
21-23, 2007, TEEE, Amsterdam, Netherlands, pp:
191-202.

Mitropoulos, D. and D. Spinellis, 2009. SDriver:
Location-specific signatures prevent SQL imjection
attacks. Comput. Secur., 28: 121-129.

Orso, A., W. Lee and A. Shostack, 2008. Preventing SQL.
code injection by combining static and runtime
analysis. Master Thesis, Defense Techmical
Information Center, Fort Belvoir, Virgima, USA.

Rietta, F. 5., 2006. Application layer intrusion detection
for SQL injection. Proceedings of the 44th Annual
International Conference on the Southeast Regional,
March 10-12, 2006, ACM, New York, USA.,
ISBN:1-59593-315-8, pp: 531-536.

Shahriar, H. and M. Zulkermine, 2008. MUSIC:
Mutation-based SQL mjection vulnerability checking.
Proceedings of the 8th International Conference on
Quality Software, August 12-13, 2008, Oxford, pp:
77-86.

Shin, Y., W. Laurie and X. Tao, 2006, SQLUnitGen: SQL
Injection testing using static and dynamic analysis.
Master Thesis, Department of Computer Science,
North Carolina State Urniversity, Raleigh, North
Carolina.

Shrivastava, S. and R.R.K. Tripathi, 2012. Attacks due to
SQL myjection and their prevention method for
web-application. Intl. I. Comput. Sc1. Inf. Technol., 3:
3615-3618.

Tajpour, A., M. Massrum and M.7Z. Heydari, 2010a.
Comparison of SQL injection detection and
prevention techniques. Proceeding of the 2nd
International Conference Education Technology
and Computer, June 22-24, 2010, Shanghai, pp:
174-179.

Tajpour, A., M.7Z. Heydari, M. Masrom and S.
Tbrahim, 2010c. SQL injection detection and
prevention tools assessment. Proceedings of the
2010 3rd IEEE International Conference on
Computer Science and the Information
Teclmology (ICCSIT) Vol. 9, July 9-11, 2010, IEEE,
Chengdu, China, ISBN:978-1-4244-5537-9, pp:
518-522.

Asian J. Inform. Technol., 16 (6): 451-457, 2017

Tajpour, A., 7. JorJor and M. Shooshtari, 2010hb.
Evaluation of SQL injection detection and prevention
techmques. Proceeding of the 2nd International
Conference Computational Intelligence,
Communication Systems and Networls, Tuly 28-30,
2010, Liverpool, pp: 216-221.

Thomas, S. and L. Williams, 2007. Usmg
automated fix generation to secure SQL
statements. Proceedings of the 3rd International
Workshop on Software Engineering for Secure
Systems, May 20-26, 2007, IEEE, Washington, DC.,
USA., pp: 1-10.

Thomas, S., L. Williams and T. Xie, 2009. On automated
prepared statement generation to remove SQL
iyjection vulnerabilities. Inform. Software Technol,
51: 589-508.

457

Vieira, M., N. Antunes and H. Madeira, 2009. Using web
security scanners to detect vulnerabilities in web
services. Proceedings of the IEEE/IFIP Intemational
Conference on Dependable Systems and Networks,
Tune 29-Tuly 2, 2009, Lisbon, Portugal, pp: 566-571.

Wang, I, R.C.W. Phan, IN. Whitley and D.J. Parish, 2010.
Augmented attack tree modeling of SQL iyection
attacks. Proceedings of the 2nd IEEE Intemational
Conference on Information Management and
Engineering, April 16-18, 2010, Chengdu, pp: 182-186.

Wei, K, M. Muthuprasamma and S. Kothari, 2006.
Preventing SQL 1imjection attacks 1n stored
procedures. Proceedings of the International
Conference on Software Engineering Australian,
April 18-21, 2006, IEEE, Sydney, New South Wales,
Australia, pp: 1-8.

	451-457 - Copy_Page_1
	451-457 - Copy_Page_2
	451-457 - Copy_Page_3
	451-457 - Copy_Page_4
	451-457 - Copy_Page_5
	451-457 - Copy_Page_6
	451-457 - Copy_Page_7

