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Real Time Noise Filtering for L.ow Cost IMU Sensors
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Abstract: A low cost Tnertial Measurement Unit (IMU) sensor typically includes a gyroscope and an
accelerometer with six degrees of freedom. Due to its low manufacturing cost, it is used in many small projects.
However, the raw data from these sensors are not completely reliable as the accelerometer generates a lot of
noise from physical vibrations and the gyroscope tends to produce a drift over time. Special filters such as
complementary filter and Kalman filter are commonly used to reduce the noise in real-time. For simple
applications complementary filter is fine but more complex and precise projects such as self-balancing robots
and quadcopters requires the use of the Kalman filter. The Kalman filter algorithm is quite complex and has a
lot of floating point matrix multiplications which can be very heavy for a small microprocessor such as arduino.
In applications like quadcopter the Proportional Integral Derivative (PID) loop has to rnn at mimmum 80 Hz. This
research aims to develop a light weight modified version of Kalman filter which can be easily included as an
external library. This allows fast looping time for the microprocessor. The primary purpose of this library is for
applications which require low latency such as quadcopter and self-balancing robots but the library may prove
to be useful in other similar projects too.
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INTRODUCTION

An Tnertial Measurement Unit (IMU) generally
containg an accelerometer, gyroscope, barometer and
magnetometer. The output of this sensor is fed into the
control algorithm to calculate positions, velocity, altitude,
heading orientation depending on the applications. TMU
sensors can be found in almost all forms of computer
guided vehicles such as aircraft, ships, missiles, rockets
and many other guidance system. In such applications,
the IMU 1s of supreme quality, giving stable readings with
extremely high precisions and bandwidth (Maklouf ef al.,
2013). IMU sensors have also found its way mto civilian
day to day applications such as robots, cars, Unmanned
Arial Vehicle (UAV), automated ground vehicles and
other automated systems (Auger et al., 2013).

Problem statement: At present, it is very expensive to
implement high precision IMU sensors in small
projects. Production costs cannot be reduced without
compromising the quality, accuracy and bandwidth of the
devices. The readings from these less-expensive IMU
sensors (such as MPU 6050) contains a lot of noise and
1s not very precise, thus the raw data 1s not suitable for
most application. This noise 15 further amplified by the

external vibrations and magnetic fields generated by the
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Fig. 1: Red) Accelerometer reading;, green) Gyroscope
reading and blue) Motor RPM

components on the device itself. However, supporting
noise filtering algorithms can be used to filter and fuse the
noisy data to get accurate data.

Figure 1 shows the raw data collected from a MPTJ
6050 sensor. The accelerometer readings (red) contains a
lot of noise which 1s amplified by the motor vibrations but
15 stable over time and doesn’t deviate as much from the
true zero value. However, the gyroscope data (greem) 1s
very stable in short time intervals but the error
accumulates over time and slowly deviates from the true
value.
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MATERIALS AND METHODS

Complementary filter: The complementary filter is the
simplest type of filter and very easy to implement. Tt gives
the “best of both worlds™ and by fusing the data from the
gyroscope and accelerometer to a more stable filtered
data. The accelerometer data keeps the output data from
drifting from the true value whereas the gyroscope value
removes the unwanted noise from the output. It uses a
digital low pass filter on the accelerometer and a digital
high pass filter on the gyroscope. The basic formulae for
thus type of filter is:

A, =Px(A, Gy} dt)+Qx(Ay) (M
Where:
PHQ = 1
A, = Current angle
Ay, = Lastknown angle
G, = Qyroscope measuremert
A = Accelerometer measurement
dt = Delta time
P = Gyroscope sensitivity
Q = Accelerometer sensitivity

The basic complementary filter values can be
changed to suit the need for the application (Fig. 2).

Figure 3 shows how the gyro sensitivity and
accelerometer sensitivity parameters affects the output
increasing the P (gyro sensitivity) value will give you a
more jitter free graph. However, the drift will increase over
time. Increasing the Q (acc sensitivity) will give you a
more Jittery graph but 1s reliable for long term.

Kalman filter: Kalman filter is a linear, discrete time, finite
dimensional time-varying system that calculates the state
estimate minimizing the mean square error. It computes by
consecutive cycles of prediction and filtering. This filter
is very powerful as it supports estimations of the past,
present and even future states and can also compute
when the precise nature of the modeled system is
unknown.

Kalman filter was developed over 50 years
ago by Rudolf E. Kalman. This filter was even used in
Apollo Navigation Computer m Neil Armstrong’s
historic journey to the moon n 1969. Its mmimum
computational requirements, recursive properties and
quick optimal estimator allows it to be used in a wide
range of applications. Kalman filter 15 widely used for
global positioning receivers, phase locked loops in
radio equipment and in reading various sensor data
(Faragher and Ramsey, 2012).
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Fig 2: Complementary filter for P = 0.9, Q = 0.1; red)
Accelerometer reading; green) Gyroscope reading
and blue) Complementary filter output

Fig. 3: Complementary filter for varying parameters
P =0.95 (black) to 0.00 (grey)

Kalman filter algorithm: The algorithm consists of three
main stages calculate the kalman gain, calculate the
current gain and calculate the new error m estimate
(Zhang et al., 2014). These three phases run repeatedly
over and over again filtering the raw data and estimating
the output (Fig. 4).

Stage 1: Kalman Gain (KG) is calculated from the original
or previous error. This previous error is re-used in the next
iteration of the loop. The error in the measured data is in
the range of uncertainty 1 the raw input data. The Kalman
gain puts a relative importance between the estunated
error and error in raw data. This gain is fed into the next
phase for the calculation of current estimate (Fig. 5).

KG 15 a ratio between error in estimate and sum of
error in estimate and measured value. Its value lies
between 0 and 1 which tells us which parameter is more
important;

KG — EEST
EEST +EMEA (2)
0<KG =1
Where:
KG = Kalman Gain
Egr = Error in estimate

Eues = Error in measurement
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Fig. 4: Basic workflow of the Kalman filter algorithm

Error in estimate Error in data (measured)

)]
Calculate the Kalman gain

Fig. 5: Stage 1 of Kalman filter algorithm

Stage 2: In this stage, it takes into account the Kalman
gain, the previous or original estimate and the raw data to
calculate the current estimate. The estimate after every
loop 1s reused in the next loop. In Kalman filter, the
original (initial) estimate can be any value and the filter
very quickly zeros in on the true value. By determiming the
KG value, we can decide which value is more important
than the other. In this stage, the actual estimated value is
calculated which is the main output of the algorithm:

EST, = EST, , +KG[MEA-EST, | (3)
Where:
EST, = Current/new estimate
EST,, = Previous estimate

MEA = Measurement

The difference between the previous estimate and
current measured value 1s multiplied with Kalman gain
which indicates the importance of the error. Tt is then add
it to the previous estimate to come up to the current
estimate (Fig. 6).
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Fig. 6: Measurements and estimates according to Kalman
gain

If Kalman Gain (KG) is close to 1, it means that the
Error in Measurement (E,) 1s very small (Stage 1)
and the measurements are quite accurate. Therefore, the
(MEA-EST, ) 1s very important and take a large portion of
that. But if Kalman gain is small (close to 0) it means the
Error in Measwrement (Eyz,) is very large, then less
emphasis is put on that therefore a small portion of the
difference is taken. Typically, over time the Kalman gain
will become smaller and smaller which indicates the
estimates are getting closer to the true value and the
result 1s not affected much by the noise in the measured
value.

Stage 3: This stage takes into account of the Kalman gain
and the current error estimate to calculate the estimate for
the next loop:

(4
(EMEA) +(EESTt-1)

E ESTt —

Epen :[I-KG](EESTH)

In general, the second equation 1s used for matrices
where [1-KG] 1s the inverse of Kalman Gain. Soif KG 1s
high, the error in measurement 1s smal and 1t can quickly
close 1 on the real value. If the KG 1s very low, then error
in measurement is very large and therefore, we don’t
reduce the error in estimate very quickly and it zeros in to
the real value very slowly.

Kalman filter in matrix form: Kalman filter is
more frequently used in the form of matrix with
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multidimensional inputs. The flowchart below gives
a bnef idea of how the matrices are calculated in
the filter. A simple moving object in space with
acceleration/deceleration 1s used as an example (Fig. 7).
The state matrix X is essentially the initial state and
process covariance matrix (Ribeiro, 2004) and is typically
the property value of the object. In this example, the state
object will contain the position, velocity (2 dimensional)
and acceleration (3 dimensional). The process covariance
matrix sunply represents the error in the process. This
variable keeps track of the error through the filter loop:

X, = AX,, +Bu, +W,

1/2dT?
y dT
[1 4T +dTy
AX = Y|z ey
0 1|y Oty (3
| 12dT? g 12dT?
Bu = [e]=
daT edT
- (Y, +dTY,, 112dT’g
0+Y, ,+dTg

The next part calculates the theoretical value based
on calculation on the previous state. The u vector
represents the control variable which mcludes the factors
that are controlling the movement of the object such as
the readings. Matrix a and b are sunple matrices that are
used to convert the old state to the new state. These
matrices may need to be calculated separately at the
beginning depending on the nature of filtering. The
process covariance matrix is also updated periodically
using A inverse and noise (Q).

Once, the predicted matrix is calculated, the actual
reading is taken and merged with the prediction. The X,
1s the actual reading; Matrix C 1s used to convert it mto
the right format and 7, takes care of the measurement
noise. Once, we have Y, we use the Kalman gain (K) to
decide how much of the predicted value and actual
measured value should be used m the final value.

Once the loop is complete, it updates the new
process covarlance matrix and also shows the updated
state as an output.

Kalman filter Mathematical equations: The Mathematical
equations to estimate the current state of the system at
time k are as follows.

Prediction: First the current state is predicted based on
the previous states and the new gyro measurement. The
Matrix B is called the control unit since an extra input is
included to estimate the current state at time k:
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w = Predicted state noise matrix
Q =Process noise covariance matrix

Fig. 7. Equation at each stage of the Kalman filter in
matrix form

X =Fx +Bo,

Kkl T kel k (6)
Next the priori error covariance matrix is estimated
based on the previous error covariance matrix:

Pk\krl = FPk—l\k—lJrFTJer 7

This matrix 1s used to understand the importance of
the values in the estimated state. The smaller the value,
more umportance 1s given to the current estimated state.
The error covariance matrix will increase since we last
updated thus estimate. Therefore, the above equation can
be explained as multiplying the error covariance matrix by
the state model F and the transpose of Matrix F and add
the current process noise Q, at time k. The error
covarlance matrix 1s a 2x2 matrix as shown:

P00 P01
P10 P11

difference between the current

(8)

Update: First the
measurement z and the priori state x., 1s computed. This
is called innovation. H is the observation model that is
used to map the priori state which is the measurement
from the accelerometer and this v, 1s not a matrix:

Y, =2, Hxg, ()
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Next the innovation covariance is calculated based
on the priori covariance matrix and the measurement
covariance matrix R. This value predicts the reliability of
the measurement:

S, =HP,, H%R (10)

The bigger the value of measurement noise is the
larger S5, will be. Therefore, less importance 1s given to the
Incoming measurement. S, 18 not a matrix.

Next the Kalman gain 1s calculated. It indicates how
much we trust the innovation measurements over error
covariance:

K, =P, HS; (1)

Kalman gain K, is a 2%2 matrix as shown:

SH I
I<1

Now the posteriori estimate of the current state is
updated by adding the priori state xy,, with the Kalman
gain times the innovation vy

Ny = X TR Y, (13)
Lastly, the posteriori error covariance matrix is updated:
Py = (I-K, H) B, (14)

Modeling

Kalman filter with single variable input: When the
underlying model of application and sensor is simple, a
single variable Kalman filter is sometimes enough to get
rid of noise from the readings. This can be used where
there is only accelerometer reading available or to
smooth out the accelerometer reading and then merge it
with the gyroscope readings. Since, only one reading 1s
considered equations becomes very simple as shown:

R =K.tQ
KG = P
(P,+R) (15)
X, =X, TKGOx (M, X, )
P, = (1-KG)xB,
Where:
P = Estimated error
Q= Process noise

KG = Kalman Gain
Sensor noise
Value/output
Measurement/input
= Estimated error

o K
Il

The filter needs to be initialized with the process
noise Q and sensor noise R. The initial estimated error P
and initial value of X need not be inmtialized. However, P
should be high enough so that it can narrow down to its
correct value. But adjusting the P and R 18 very mmportant
to get proper output.

Kalman filter with double variable input: For a more
complex application, Kalman filter can be used in its real
form of fusing the data of accelerometer and gyroscope.
Some of these steps shows how equation can be
simplified and implemented as:

Xk\k-l = FXk-1|k-1 +B6,

MRS AR

- e-ebm} J{At}e
- k
L eb -1k 1 0 (1 6)

[ 6-0, At+0At
eh

(ot é f)-eb )}

In Eq. 16, 8k|k-1 which is the priori state 1s equal to
the estimate of the previous state plus rate times At. And
we assume the estimated bias equal to the previous one.
This can be implemented as:

Rate =new_rate-bias

Angle = angle+ratexdt
Now, we calculate the error covariance matrix P.

Although, it contains complex matrix multiplication and
transpose but can be simplified as shown:

Pldk-l = FPk.uk.lFT +Q,

{PDD Pm:lk :|:1 -AI:”:PDD Pm} {1 0}+|:Qe 0 }At
Pm P11 k1 0 1 Pm R1 k-1 A 0 er

zthth{1§H@ wm
Pm Pu ol A1 0 er
=7%D-AIHD-A[(PD1-AIP”) Pm'ALPh J{Qe 0 }AI
RU_AtRI P11 1 0 er
:_Puu'AtRu'At(Pm'le) Pm'AtPn }
L Pm'AtPu Pl1+erAt
- Puu'At(AtRl'Pm'RquQe) P01'AtR1 :|
L Pm"AIPn P11J|'erAt
(17)

In C, this can writte as:
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P[0][0] =P[0][0]+dtx (dtx P[1][1]-
Plo][1]-P[1][0]+Q angle

P[0][1] = P[o][1]-dux P[1][1]

P[1][0] = P{1][0]-dtx P[1][1]

P[1][1] = P[1][1]+Q gyro biasxdt

(18)

Next, we calculate the innovation:

Ye = Z’k'I_IXklkJ

]

=Z, 'eklk—l

(19)

In C, we can write this as:

Y =new_angle angle (20)

Next, we calculate the innovation covariance:

8, =HP,, HT+R
01

=1 0]{PUU 0 Lk[(ﬂm

¥ 11

n

o

(21
=P,

n0klk-1

:Puuk|kr1

+R.

“var (measurement )
This equation can be written as:

S =P[0][0]+R_measure (22)

k, =

<)

PklkrlHTSI;I

Next, we calculate the Kalman gain:
{PDD Pﬂl
Py
|:PDD
10

} { 1 } :
Sk
Pll fle-1 0
|:Puu
10

:|k -
|
S

(23)

o

-

j|kk1

In Eq. 23 the last step, we have directly divided by S,.
However, we can do thuis since, we have changed the
value of S to a single variable that 1s not a matrix. In the
original form, it is a matrix and we had to take the inverse
of it and multiply with the other matrix. In C code, we can
write this as:
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K[o]=P[0][1]/8
K[1]=P[1][0]/8

(24)

Now, we update the posteriori state using the Kalman
gain and previous posteriori state:

Xklk—l = Xk\krl +kkYk
= Y
eb klk-1 eb ek -1 kl i (25)

0

eb k-1 k1 Yl

angle = angle+K[0]x y

InC:
bias = bias+K [1]x y
To update the posteriori matrix:

Pk\k = (l'kk H) Pklk—l

i EH e ol

B, B 0 1][k e F, B, efte 1
(M1 o]k, 0] VR, B, (26)
Lo oL L.
_[ P Pm} _{kupw kupm}
Bo Py, LKPo KBy

In C, we can reduce it to:

P temp="P

plo][o] = P[o][0]-k[0]P_temp[0][0]
Plo][1]=Plo][1]-k[0]xP_temp[o][1]
P[1][o] = P[1][0]k[1]P_temp(0][0]
P[] = PA][1]-k[1] P_temp(o][1]

(27)

RESULTS AND DISCUSSION

The exact same raw data is used as input for all the
graphs. For simplicity, only one axis 1s been used. In
Fig. 8, the blue line shows the output value. Although, it
lags behind the real value but most of the noise 1s
removed. It can be used in applications where a slight
delay 1s acceptable.

In Fig. 9, it shows decreasing the sensor noise value
R, will give a more non-delayed output. The R_measure,
Q angle and Q bias values can be further tweaked to
change the behaviour (Fig. 10-14).
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Fig. 8 Single variable Kalman filter on accelerometer
value with P=1.05, Q =0.125; R = 10; red) Raw
data and blue) Cutput
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Fig. 9: Single variable Kalman filter on accelerometer
value with variable R = 2 (black) to 40 (grey)
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Fig. 10: Kalman filter output for multiple variable
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Fig. 11:Kalman filter with variable R _measure = 0.03
{(black) to 0.43 (grey)

Library: The above algorithms are implemented and
uploaded as an open-source project in GitHub. This
library can be mcluded in projects. The mdividual
parameters can also be adjusted to suit the requirements.
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Fig. 12: Kalman filter with vanable Q_angle =0.001 (black)
to 0.041 (grey)

v: [J \ A n_ < ;;kak“!}’}‘k“‘ F jL R

Fig. 13: Kalman filter with variable Q_bias = 0.003 (black)
to 0.403 (grey)
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Fig. 14:Red) Accelerometer reading; green)
Complementary filter and blue) Single variable
Kalman filter and black) Double variable Kalman
filter

Algorithm; GitHub Link:
https://github.com/digantal 62004/KalmanFilterLite. git
Usage:
Kalman kalman = new Kalman{)
float Q_angle = 0.001f

() bias = 0.003f

R_measure = 0.03f
kalman.setAngle(0.0)
kalman.set_params(()_angle, () bias, R_measure)
while (data is available){

{f collect accelerometer (ax)

I gyroscope (gx) and

/ delta time (dt)

double angle =kalman.getAngle (ax, gx, dt)
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CONCLUSION

In this study, we have seen three algorithms that can
be used to remove noise from the raw data of a low cost
IMU sensor. All of these algorithms are very lightweight
and can be used in low processing devices such as
Arduino without compromising the speed for other
process. These are tested using an Arduino Uno board
with a MPU6050 TM1UJ sensor along with a simple PID
algorithm for quadcopter runs well over 80 Hz (minimum
for a stable quadcopter). Each of these algorithms gives
a slightly different graph, based on delay, jitter and
sernsitivity.

The graph depicts all the filter outputs together. Each
of these lines have a different behavior. As discussed in
equations, the constant values can be further manipulated
to get different outputs. However, deciding which
algorithm will work best depends on the nature of the
application.

LIMITATIONS

The algorithms managed to smooth out most of the
noise, a from the motors runming at high RPM. In the test
scenario small amount of motor vibration steel creeps in
to the output data. These are high frequency vibration
noise no motor damping or frame vibration damping
material 1s used which enabled us to get the raw result.
However, in real life projects, one would generally balance
the motors and use damping materials on the structure
which helps to reduce these motor vibrations.
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