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Abstract: Economic Load Dispatch (ELD) problem is one of the most important problems to be scolved in the
operation and planmng of a power system. The main objective of the economic load dispatch problem 1s to

determine the optimal schedule of output powers of all generating umts so as to meet the required load demand
at minimum operating cost while satisfying system equality and inequality constraints. This study presents an
application of Genetic Algorithm (GA) for solving the ELD problem to find the global or near global optimum
dispatch solution. The proposed approach has been evaluated on 26-bus, 6-umt system with considering the

generator constraints, ramp rate linits and transmission line losses. The obtamned results of the proposed
method are compared with those obtained from the Conventional Lambda Tteration Method and Particle Swarm
Optimization (PSO) Technique. The results show that the proposed approach is feasible and efficient.
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INTRODUCTION

With the development of modern power systems,
Economic Load Dispatch (ELD) problem has received an
increasing attention. The primary objective of ELD
problem is to minimize the total generation cost of units
while satisfying all umits and system equality and
mequality constraints (Wood and Wollenberg, 1984). In
this problem, the generation costs are represented as
curves and the overall calculation minimizes the operating
cost by finding the pomt where the total output power of
the generators equals the total power that must be
delivered. In the traditional ELD problem, the cost
function for each generator has been represented
approximately by a single quadratic function and 1s solved
using mathematical programming based optimization
techniques such as Lambda Tteration, Gradient, Newton,
Linear and Dynamic Programming Methods (Salama, 1999,
Report, 1971). All these methods assume that the cost
curve 1s continuous and monotonically increasing. In
these methods, computational time increases with the
increase of the dimensionality of the ELD problem. The
most common optimization techmiques based upon
artificial itelligence concepts such as evolutionary
programming (Sinha et al., 2003), simulated annealing
(Wong and Fung, 1993), artificial neural networks
(Nanda et al., 1997), tabu search (Lin et ai., 2002), Particle
Swarm Optimization (PSO) (Gamng, 2004, Park et al., 2005;
Jeyalumar et al., 2006) and genetic algorithm (Walters and
Sheble, 1993; Tippayachai et al., 2002; Bakirtzis et al.,

1994; Sheble and Brittig, 1995; Chen and Chang, 1995,
Song et al., 1995) have been given attention by many
researchers due to their ability to find an almost global or
near global optimal solution for ELD problems with
operating constraints. Major problem associated with
these techniques is that appropriate control parameters
are required. Sometimes these techmques take large
computational time due to mmproper selection of the
control parameters. The GA is a stochastic global search
and optimization method that mimics the metaphor of
natural biological evolution such as selection, crossover
and mutation (Goldberg, 1990). GA 1s started with a set of
candidate solutions called population (represented by
chromosomes). At each generation, pairs of chromosomes
of the current population are selected to mate with each
other to produce the children for the next generation. The
chromosomes which are selected to form the new
offspring are selected according to their fitness. In
general, the chromosomes with higher fitness values have
higher probability to reproduce and survive to the next
generation. While, the chromosomes with lower fitness
values tend to be discarded. This process is repeated until
a termmnation condition 18 reached (for example, maximum
number of generations).

MATERIALS AND METHODS

Formulation of an ELD problem with generator
constraints: The primary objective of the ELD problem is
to minimize the total fuel cost of thermal power plant
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subjected to the operating constraints of a power system.
In general, the ELD problem can be formulated
mathematically as a constrained optimization problem with
an objective function of the form:

Fr = E E(R) (1)
1=1
Where:
F; = The total fuel cost of the system ($h™)
n = The total number of generating units
F, (P;)= The operating fuel cost of generating unit I

($h™)

Generally, the fuel cost function of the generating
umit 18 expressed as a quadratic function as given n Eq. 2:
F(R)=a:P? + bib + ¢ 2
Where:
P, = Thereal output power of unit i (MW)
a-¢; = The cost coefficients of generating unit T

The minimization of the ELD problem is subjected to
the following constramts:

Real power balance constraint: For power balance, an
equality constramnt should be satisfied The total
generated power should be equal to the total load demand
plus the total line losses. The active power balance 1s

given by:
Z P=R+h
1=1
Where:

P, = The total load demand (MW)
P, = The total line losses (MW)

3)

The total transmission line loss is assumed as a
quadratic function of output powers of the generator
units (Momoh et al., 1999) that can be approximated in the

equation:
PL :EZRBuP] (4)
i=1  j=1
Where:
B. = The transmission loss coefficient matrix

4

P.P =

13 L

The power generation of ith and jth units

Generator power limit constraint: The generation output
power of each unit should lie between mimmum and
maximum limits. The mequality constramt for each
generator can be expresses as:

141

3

Pi,min <P < B max

Where P, . and P,

1, mun

. mee @06 the minimum and maximum
power outputs of generator i (MW), respectively. The
maximum output power of generator is limited by thermal
consideration and minimum power generation is limited by

the flame instability of a boiler.

Ramp rate limit constraint: The generator constraints
due to ramp rate limits of generating umits are given as: As
generation mereases:

Py — Py < URs (6)
As generation decreases:
Py — Py < DR (7

Therefore, the generator power limit constraints can
be modified as:

mHX(P1,min,R(tfl)_DR1)SR(t) (8)
< min(Pas, Pi1) + UR: )

From Eq &, the limits of mimimum and maximum
output powers of generating umits are modified as:

R,nnn,ramp = max (an,R(Fl)*DR1) (9)
Pi,max,ramp :min(Rmax,R (l—l)+UR1) (10)
Where:
P,y = The output power of generating unit i (MW) in

the time interval (t)

Piy y = The output power of generating umut 1 (MW) in
the previous time interval (t- 1)

UR, = The up ramp limit of generating umt 1
(MW /time-period)

DR, = The down ramp limit of generating umt 1

(MW /time-period)

The ramp rate limits of the generating units with all

possible cases are shown m Fig. 1.

t-1 t

hPion Py 4 3

Py Py

Py, P

=1 t

Fig. 1: Ramp rate limits of the generating units
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Overview of Particle Swarm Optimization (PSO):
Particle Swarm Optimization (PSO) 1s a population based
stochastic optimization technmique mspired by social
behavior of bird flocking or fish schooling. The PSO
algorithm searches in parallel using a group of random
particles. Each particle in a swarm corresponds to a
candidate solution to the problem. Particles m a swarm
approach to the optimum solution through its present
velocity, its previous experience and the experience of its
neighbors. In every generation, each particle n a swarm
15 updated by two best values. The first one 1s the best
solution (best fitness), it has achieved so far. This value
1s called Pbest. Another best value that 1s tracked by the
particle swarm optimizer is the best value, obtamned so far
by any particle in the population. This best value 1s a
global best and called ghest. Each particle moves its
position in the search space and updates its velocity
according to its own flying experience and neighbor's
flying experience. After finding the two best values, the
particle update its velocity according to Eq. 11:

v“:me+mex@mﬁ—w)+
(11)
CixRa2 ><(gbestk —Rk)

Where:

Vr = The velocity of particle 1 at iteration k

Pr = The position of particle 1 at iteration k

w = The inertia weight factor

C,, C, = The acceleration coefficients

R, R, = Positive random numbers between 0 and 1
Pbest® = The best position of particle 1 at iteration k
gbest® = The best position of the group at iteration k

The constants C, and C, represent the weighting of
the stochastic acceleration terms that pull each particle
toward Pbest and gbest positions. Low values allow
particles to roam far from the target regions while high
values result in abrupt movement toward or past, target
regions. Hence, the acceleration constants were often set
to be 2.0 according to past experiences. Suitable selection
of inertia weight in Eq. 11 provides a balance between
local and global searches.

A low value of inertia weight implies a local search
while a high value leads to global search. As originally
developed, the inertia weight factor often decreases often
15 decreased linearly from about 0.9-0.4 during a run. It
was proposed in Shi and Eberhart (1998). In general, the
inertia weight w is set according to Eq. 12:

Wz —
) = Wmax —

(12)

Winin
x Iter
Itefina:
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Where:

W, = Minimum value of inertia weight factor
W,... = Maximum value of inertia weight factor
Tter,.. = The maximum iteration number

Tter = The current iteration number

The current position (searching point in the solution
space) can be modified by Eq. 13:

Pl _ pk kel (13)

Implementation of PSO for solving ELD problem: The

step by step procedure of the PSO Technique for solving
ELD problem is as follows:

Step 1: Select the parameters of PSO such as population
size (N), acceleration constants (C, and C,), minimum and
maximum value of inertia weight factor (w,,, and w,,..).

Step 2: Imitialize a population of particles with random
positions and velocities. These wutial particles must be
feasible candidate solutions that satisfy the practical
operation constraints.

Step 3: Evaluate the fitness value of each particle i the
population using the objective function given in Eq. 2.

Step 4: Compare each particle’s fitness with the particles
Pbest. If the current value is better than Pbest then set
pbest equal to the current value.

Step 5: Compare the fitness with the population overall
previous best. If the current value is better than ghest
then set gbest equal to the current value.

Step 6: Update the velocity of each particle according to
Eq. 11.

Step 7: The position of each particle 1s modified
using Eq. 13.

Step 8: Go to step 9 if the stopping criteria is satisfied,
usually a sufficiently good fitness or a maximum number
of iterations. Otherwise go to step 3.

Step 9: The particle that generate the latest gbest is the
optimal generation power of each unit with the minimum
total cost of generation.

The procedure of Particle Swarm Optimization (PSO)
Techmque can be summarized i the flow chart shown in
Fig. 2.
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Define the parameters of PSO (C,, C, 0. 0.)

¥
Initialize particles with random positions and velocitics

:

Evaluate the fithess for each particle position

3
Update pbest and ghest values

3

Update the positions and velocities of particles

Fig. 2: Flow chart of PSO Technique

Genetic Algorithm (GA): The GA 15 a method for solving
optimization problems that is based on natural selection,
the process that drives biological evolution. The general
scheme of GA is initialized with a population of candidate
solutions (called chromosomes). Each chromosome is
evaluated and given a value which corresponds to a
fitness level in problem domain. At each generation, the
GA selects chromosomes from the current population
based on their fitness level to produce offspring. The
chromosomes with higher fitness levels have higher
probability to become parents for the next generation
while the chromosomes with lower fitmess levels to be
discarded. After the selection process, the crossover
operator is applied to parent chromosomes to produce
new offspring chromosomes that inherent information
from both sides of parents by combining partial sets of
genes from them. The chromoesomes or children resulting
from the crossover operator will now be subjected to the
mutation operator m final step to form the new generation.
Over successive generations, the population evolves
toward an optimal solution. The features of GA are
different from other traditional methods of optimization in
the following respects (Mimoun ef al., 2006):

* (A does not require derivative information or other
auxiliary knowledge
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GA work with a coding of parameters instead of the
parameters themselves. For simplicity, bmary coded
1s used m this study

GA search from a population of points in parallel, not
a single point

GA probabilistic
determimstic rules

use transitton rules, not

Genetic algorithm operators: At each generation, GA
uses three operators to create the new population from
the previous population.

Selection or reproduction: Selection operator 15 usually
the first operator applied on the population. The
chromosomes selected based on the Darwin's
Evolution Theory of survival of the fittest The
chromosomes are selected from the population to produce
offspring based on their values. The chromosomes with
higher fitness values are more likely to contributing
offspring and are simply copied on into the next
population. The commonly used reproduction operator is
the proportionate reproduction operator. The ith string in
the population is selected with a probability proportional
to F, where F, is the fitness value for that string. The
probability of selecting the ith string is:

arc

E
Pn :T
ZF

1=l

(14)

where, n 1s the population size, the commonly used
selection operator is the Roulette-wheel Selection
Method. Since, the circumference of the wheel 1s marked
according to the string fitness, the roulette-wheel
mechamsm 15 expected to make F;, copies of the ith
string in the mating pool. The average fitness of the
population:

n

2K

i=l

n

(15)
Favg =

Crossover or recombination: The basic operator for
producing new chromosomes in the GA is that of
crossover. The crossover produce new chromosomes
have some parts of both parent chromosomes. The
simplest form of crossover is that of single point
crossover. In single pomt crossover, two chromosomes
strings are selected randomly from the mating pool. Next,
the crossover site 1s selected randomly along the string
length and the binary digits are swapped between the two
strings at crossover site.
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Mutation: The mutation is the last operator in GA. It
prevents the premature stopping of the algorithm m a
local solution. This operator randomly flips or alters one
or more bits at randomly selected locations m a
chromosome from 0-1 or vice versa.

Parameters of GA: The performance of GA depends on
choice of GA parameters such as:

Population size (N): The population size affects the
efficiency and performance of the algorithm. Higher
population size increases its diversity and reduces the
chances of premature converge to a local optimum but the
time for the population to converge to the optimal regions
1n the search space will also increase. On the other hand,
small population size may result in a poor performance
from the algorithm. This is due to the process not
covering the entire problem space. A good population
size 18 about 20-30, however sometimes sizes 50-100 are
reported as best.

Crossover rate: The crossover rate 1s the parameter that
affect the rate at which the process of cross over is
applied. This rate generally should be high, about 80-95%.

Mutation rate: It 15 a secondary search operator which
mcreases the diversity of the population. Low mutation
rate helps to prevent any bit position from getting trapped
at a single value whereas high mutation rate can result in
essentially random search. This rate should be very low.

Termination of the GA: The generational process is
repeated until a termination condition has been satisfied.
The common terminating conditions are: fixed number of
generations reached, a best solution i3 not changed after
a set number of iterations or a cost that 15 lower than an
acceptable minimum.

GA applied to ELD problem: The step by step algonthm of
the proposed method 1s explamned as follow:

Step 1: Read the system input data, namely fuel cost
curve coefficients, power generation limits, ramp rate
limits of all generators, power demands and transmission
loss coefficients.

Step 2: Select GA parameters such as population size,
length of string, probability of crossover, probability of
mutation and maximum number of generations.

Step 3: Generate randomly a population of bmary string.

Step 4: The generated string is converted in feasible
range by wing Eq. 16

Pirax — Pomin
Pg; :leln+ ——— Pm(l) (16)
2 -1

Where:

L = The string length

Png= The decimal value of ith generating unit in the
string

Step 5: Calculate the fitness value for each string in the
population.

Step 6: The chromosomes with lower cost function are
selected to become parents for the next generation.

Step 7: Perform the crossover operator to parent
chromosomes to create new offspring clromosomes.

Step 8: The mutation operator 1s applied to the new
offspring resulting from the crossover operation to form

the new generation.

Step 9: If the number of iterations reaches the maximum
then go to step 10 otherwise, go to step 5.

Com >

Y
Define cost function, cost variables and
select genetic algorithm parameters

L

Generate initial population

!

Decode the chromosomes

'

Find the cost for each chromosome

!

Select mates for reproduction

h 4
| Crossover operation |

Fig. 3: Flow chart of genetic algorithm
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Step 10: The string that generates the minimum total
generation cost is the solution of the problem.

The procedure of Genetic Algorithm (GA) can be
summarized in the flow chart shown in Fig. 3.

RESULTS AND DISCUSSION

To verify the effectiveness of the proposed
algorithm, a six unit thermal power generating plant was
tested. The proposed algorithm has been implemented n
Matlab language. The proposed algorithm 1s applied to 26
buses, 6 generating umts with generator constraints, ramp
rate limits and transmission losses (Saadat, 1999). The
results obtamed from the proposed method will be
compared with the outcomes obtained from the
conventional Lambda Iteration and PSO Method mn terms
of the solution quality and computation efficiency. The
fuel cost data and ramp rate limits of the six thermal
generating units were shown in Table 1. The load demand
for 24 h is shown in Table 2. B-loss coefficients of 6-units
system is given in Eq. 17. Table 3 shows the optimal
scheduling of all generating umts, power loss and total
fuel cost for 24 h by using PSO Technique. Table 4 shows
the optimal scheduling of all generating umts, power loss
and total fuel cost for 24 h by using genetic algorithm and
Table 5 shows the total fuel cost comparison between
Lambda Tteration, PSO and GA Method. Figure 4-9 show
the relation between fuel cost of each unit and 24 h by the
Lambda Iteration, PSO and GA Method. Some parameters
must be assigned for the use of GA to solve the ELD
problems as follows:

Population size = 20

Meaximum number of generations = 100
Crossover probability = 0.8

Mutation probability = 0.05

And the parameters used in PSO technique to solve
the ELD problem as follows:

Population size = 20

Maximum number of iterations = 100
Acceleration constants C, = 2.0 and C,=2.0
Tnertia weight parameters ., = 0.9 and w,;, = 0.4

17 12 07 -01 -05 —0.2]
1z 14 09 01 -06 -01
07 09 31 00 -10 -06
By =107 a7
-01 01 00 024 -06 -08
-05 06 01 06 129 02
-0z -01 06 08 -02 150]
Figure 4-9 show the relation between fuel cost

for each unit and 24 h by Lambda Tteration, PSO and GA
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Table 1: Fuel cost coefficients and ramp rate limits of 6 thermal units

systemn

a b; [ Pivin  Pine UR; DR,
Unit (BMW) GMW) & OW) oMWy MWH MW/H)
1 0.0070 7.0 240 100 500 80 120
2 0.0095 10.0 200 50 200 50 90
3 0.0090 8.5 220 80 300 65 100
4 0.0090 11.0 200 50 150 50 90
5 0.0080 10.5 220 50 200 50 90
[ 0.0075 12.0 190 50 120 50 90
Table 2: Load demnand for 24 h of é-units system
Time Load Time Load Time Load Time  Load
) MW) () (MW) (1)) MW ) (MW
1 955 7 989 13 1190 19 1159
2 942 8 1023 14 1251 20 1092
3 935 9 1126 15 1263 21 1023
4 930 10 1150 16 1250 22 984
5 935 11 1201 17 1221 23 975
[ 963 12 1235 18 1202 24 960
Table 3: Output powers, power losses and total fuel cost for 24 h by PSO

Method of 6-units system
Time Py P, P P, P P; Loss Fuel cost
h ™MW MW W) MW) MW) W) (MW ()
1 381.5 1208 2104 865 1121 50.0 6.53 1141086
2 375.6 1183 2082 849 111.2 50.0 635 1124850
3 3721 1168 207.0 845 1106 50.0 6.25 1l116l.44
4 369.6 1158 206.1 843 1102 50.0 6.17 1109941
5 3721 1168 207.0 845 110.6 50.0 6.25 1lle6l.44
[ 3849 1222 2116 877 113.0 50.0 o6.04 1151117
7 3949 1262 2158 92.0 1168 50.0 7.00 1183894
8 3990 1337 2221 962 1227 564  7.38 1227052
9 42007 1456 2392 1148 1407 73.2 857 13599.88
10 4277 148.1 2431 1188 1433 77.7 8.85 1391445
11 4431 1549 2478 1275 151.0 859 950 1458885
12 4523 160.5 2515 1331 1554 91.9 995 15042.84
13 4391 1532 2465 1255 1502 844 937 1444265
14 456.1 1627 2543 1363 1579 936 10.18 1525749
15 4588 1645 2557 1389 1592 959 1032 1541910
16 455.6 1625 2541 1362 1579 936 1016 1524401
17 4476 158.8 2504 1299 1537 90.0 9.78 14855.29
18 443.5  155.0 2480 1276 151.1 86.0 9.97 14602.16
19 4307 149.6 2441 1203 1442 788 8.15 14032.85
20 4143 1419 2334 1092 1338 672 838 1315751
21 399.0 1337 2221 96.2 1227 564 7.38 1227052
22 3937 1253 2149 909 1159 50.0 694 1177578
23 3902 1243 2136 89.0 1143 500 6.82 1166216
24 3835 121.5 211.0 87.4 1129 50.0 6.60 1147352
Tatal firel cost () 313041.40

Table 4: Output powers, power losses and total fuel cost for 24 h by GA of

6-units systern

Time P P, Py P, P P TLoss  Fuel cost
o W) W) W) MW) (MW) (MW (MW) (D

1 3784 1184 2107 854 1184 50.0 658 11411.42
2 373.2 1160 2078 847 1164 50.0 638 1124919
3 371.0 114.8 2061 83.7 1153 350.0 628 11162.06
4 369.3 113.8 2051 829 1148 350.0 621 11099.99
5 371.0 1148 2061 837 1153 50.0 628 1116206
6 381.3 1198 2121 865 1197 50.0 669 11511.66
7 3889 1250 2171 90.8 123.9 50.0 7.06 11838.99
8 3958 1328 2220 977 1263 555 738 1227042
9 4225 1473 2395 1143 1380 727 857 13599.96
10 4271 153.0 2435 1188 1400 762 886 13914.33
11 4389 161.9 2520 1285 1458 831 951 1458841
12 4462 1668 2578 134.6 1504 89.0 995 15042.04
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Table 4: Continue

Time Pl P, P P, P; P; Loss Fuel cost
b W OW) MW) OIW) (MW) (MW) (MW)  (§)

13 4369 1601 2501 1262 1442 81.5 937 1444243
14 4502 1695 2601 1367 152.7 91.7 10.18 15256.81
15 4525 171.9 261.6 1396 1542 932 1033 1541834
16 4500 1694 2599 1365 152.6 91.5 1016 15243.36
17 443.0 1649 2557 1319 1482 867 9.76 14854.86
18 4391 1621 2522 1287 1459 832 952 14601.71
19 4289 1549 2445 1208 141.1 774 896 14032.65
20 4119 1420 2361 1084 1353 66.2 820 1315746
21 3958 1328 2220 977 1263 555 7.38 1227042
22 3879 1241 2159 8.8 123.0 500 699 1177586
23 3854 1221 2146 881 121.5 50.0 6.87 1166242
24 3803 1190 2117 8.2 1192 50.0 6.65 11474.06
Total fuel cost (§) 313040.90

Table 5: Total fuel cost comparison between proposed GA, Lambda
Tteration and PO Method of 6-units sy sterm

Method Tatal fuel cost (§)
Lambda Iteration 313045.50
Particle Swarm Optimization (PSO) 313041.40
Genetic Algorithm (GA) 313040.90
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4000+ .
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2 4 6 § 10 12 14 16 18 20 22 24
Time (24 h)

Fig. 4 Fuel cost of unit 1 vs. 24 h by the three used

methods
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Fig. 5. Fuel cost of unit 2 vs. 24 h by the three used
methods
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methods
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method. From Fig. 4-9, it can see that the fuel cost for each
generating unit obtained by the three techniques is
different due to different distribution of powers on 6-units
but the total fuel cost per hour 1s the same.
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Fig. 9. Fuel cost of unit 6 vs. 24 h by the three used
methods

CONCLUSION

In this study, Genetic Algorithm (GA) is used to
solve the ELD problem. The proposed algoritlin has been
successfully implemented for solving the ELD problem of
a power system consists of & units with different
constraints such as real power balance, generator power
limits end ramp rate limits. From the tabulated results, it 1s
clear that the total fuel cost obtained by GA 1s
comparatively less compared to other methods. GA
approach gives high quality
convergence characteristic compared to the Lambda
Iteration Method. The Lambda Iteration Method 1s also
applicable but it can converge to the minimum generation
cost after so many iterations. So, the computational time
of the Lambda Tteration Method is much greater than the
proposed algorithm. Simulation results demonstrate that
the proposed method is powerful and practical tool for
obtaining global minimum or near global minimum of total
fuel cost.

solutions with fast
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