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Abstract: In this study, a Genetic Algorithm (GA) and particle swarm optinization with constriction factor
(CFPSQ) are proposed for solving the short term variable head hydrothermal scheduling problem with
transmission line losses. The performance efficiency of the proposed techniques is demonstrated on
hydrothermal test system comprising of two thermal umits and two hydro power plants. The simulation results
obtained from the constriction factor based particle swarm optimization techmque are compared with the
outcomes obtained from the genetic algorithm to reveal the validity and verify the feasibility of the proposed
methods. The test results show that the particle swarm optimization give the same solution as obtained by
genetic algorithm but the computation time of the constriction factor particle swarm optimization techmaque 1s

less than genetic algorithm.
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INTRODUCTION

The hydrothermal generation scheduling plays an
umportant role in the operation and planning of a power
system. Since, the operating cost of thermal power plant
is very high compared to the operating cost of hydro
power plant, the mtegrated operation of the hydro and
thermal plants in the same grid has become the more
economical (Wood and Wollenberg, 1984). The main
objective of the short term hydro thermal scheduling
problem is to determine the optimal generation schedule
of the thermal and hydro units to minimize the total
production cost over the scheduling time horizon,
(typically 1 day or 1 week) subjected to a variety of
thermal and hydraulic constraints. The hydrothermal
generation scheduling is mainly concerned with both
hydro umt scheduling and thermal unit dispatching. The
hydrothermal generation scheduling problem is more
difficult than the scheduling of thermal power systems.
Since, there 1s no fuel cost associated with the hydro
power generation, the problem of minimizing the total
production cost of hydrothermal scheduling problem 1s
achieved by mmimizing the fuel cost of thermal power
plants under the constraints of water available for the
hydro power generation in a given period of time
(Kothar1 and Dhillon, 2004). In short term hydrothermal
scheduling problem, the generating unit limits and the

load demand over the scheduling interval are known.
Several mathematical optimization techniques have been
used to solve short term hydrothermal scheduling
problems (Farhat and El-Hawary, 2009). In the past,
hydrothermal scheduling problem is solved using
classical mathematical optimization methods such as
dynamic programming method (Tang and Luh, 1995,
Iin-Shyr and Nanming, 198%9), lagrangian relaxation
method (Guan et al, 1997, Al-Agtash, 2001), mixed
integer programming (Nilsson and Sjelvgren, 1996),
interior point method (Kimball et af., 2002), gradient
search method and Newton raphson method (Kothari and
Dhillon, 2004). In these conventional methods simplifying
assumptions are made in order to make the optimization
problem more tractable. Thus, most of conventional
optimization techniques are umable to produce optimal or
near optimal solution of this kind of problems. The
computational time of these methods increases with the
increase of the dimensionality of the problem. The most
common optimization techniques based upon artificial
intelligence concepts such as evolutionary programming
(Maturana and Raff, 2007; Nayak and Rajan, 2012),
simulated annealing (Wong and Wong, 1994a, b;
Simopoulos et al, 2007), differential evolution
(Jayabarathi et al., 2007), artificial neural network
(Diew and Ongsalul, 2008; Basu, 2003, 2004), genetic
algorithm (Gil et ol, 2003, Zoumas et al, 2004;
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George et al., 2010; Orero and Trving, 1998) and particle
swarm optimization (Jeyakumar and Titus, 2007,
Sreeruvasan ef af,, 2011; Sun and Lu, 2010, Mandal and
Chakraborty, 2011; Mandal et al., 2008) have been given
attention by many researchers due to their ability to find
an almost global or near global optimal solution for short
term hydrothermal scheduling problems with operating
constraints. Major problem associated with these
techniques 1s that appropriate control parameters are
required. Sometimes these techmques take large
computational time due to improper selection of the
control parameters.

The P3O is a population based optimization
technique first proposed by Kennedy and Eberhart in
1995. In PSO, each particle 1s a candidate solution to the
problem. Each particle in PSO makes its decision based on
its own experience together with other particles
experiences. Particles approach to the optimum solution
through its present velocity, previous experience and the
best experience of its neighbors (Lim ef al, 2009).
Compared to other evolutionary computation techniques,
PSO can solve the problems quickly with high quality
solution and stable convergence characteristic, whereas
it is easily implemented.

The Genetic Algorithm (GA) is a stochastic global
search and optimization method that mimics the metaphor
of natural biological evolution such as selection,
crossover and mutation. GA 1s started with a set of
candidate solutions called population (represented by
chromosomes). At each generation, pairs of chromosomes
of the current population are selected to mate with each
other to produce the children for the next generation. The
chromosomes which are selected to form the new
offspring are selected according to their fitmess. In
general, the chromosomes with higher fitness values have
higher probability to reproduce and survive to the next
generation. While, the chromosomes with lower fitness
values tend to be discarded. This process 1s repeated until
a termination condition 1s reached (for example maximum
number of generations). Most of the GA parameters are
set after considerable experimentation and the major
drawback of this method is the lack of a solid theoretical
basis for their setting.

PROBLEM FORMULATION

The main objective of short term hydro thermal
scheduling problem is to minimize the total fuel cost of
thermal power plants over the optimization period while
satisfying all thermal and hydraulic constraints. The
objective function to be minimized can be represented as
follows:

T HN
Fr= ZHtEt(ngt) (1)
t= 1

i=

In general, the fuel cost function of thermal
generating unit 1 at time nterval t can be expressed as a
quadratic function of real power generation as follows:

F1t(Pg1t) = El.ip2 + b1Pg1t + Ci (2)

ot

Where:

ot

o
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The real output power of thermal generating
unit 1 at time interval t in (MW)
F. (P,) = The operating fuel cost of thermal unit i in

($/h)
Fr = The total fuel cost of the system in ($)
T = The total number of time intervals for the

scheduling horizon
= The numbers of hours in scheduling time

interval t
N = The total number of thermal generating units
a:-c, = The fuel cost coefficients of thermal

generating unit 1

The minimization of the objective function of short
term hydrothermal scheduling problem is subject to a
mumber of thermal and hydraulic constraints. These
constraints include the following:

Real power balance constraint: For power balance, an
equality constraint should be satisfied. The total active
power generation from the hydro and thermal plants must
equal to the total load demand plus transmission line
losses at each time mterval over the scheduling period:

iy M
2Pglt+ thjt:PDHrPLt (3)
=1 =1
Where:
Pr, = The total load demand during the time interval t in
(MW)
Py, = The power generation of hydre unit j at time
interval tin (MW)
P, = The power generation of thermal generating unit 1
at time interval t in (MW)
Py = The total transmission line losses during the time
interval t in (MW)

The total transmission line loss is assumed as a
quadratic function of output powers of the generator
units (Momoh et al., 1999) that can be approximated in the
form:

N+M N+ M
Pu= > > PuBiP: )
Fpg
Where
B; = The transmission loss coefficient matrix
P,.P, = The power generation of hydro or thermal
plants
M = The number of hydro power plants
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Thermal generator limit constraint: The output power
generation of thermal power plant must lie in between its
minimum and maximum limits. The mequality constraint for
each thermal generator can be expressed as:

P < Py, < P (3)
Where:
P™ = Minimum power output of thermal unit i in (MW)
P ™™ = Maximum power output of thermal unit 1 in (MW)

The maximum output power of thermal generator 1 1s
limited by thermal consideration and minimum power
generation 13 limited by the flame nstability of a boiler.

Hydro generator limit constraint: The output power
generation hydro power plant must lie in between its
minimum and maximum bounds. The nequality constraint
for each hydro generator can be defined as:

P < Py < PO (6)
Where:
P,™ = The mimmum power
generating unit j in MW
"# = The maximum power generation of hydro
generating unit J in MW

generation of hydro

Py

)

Reservoir storage volume constraint: The operating
volume of reservoir storage limit must lie in between the
minimum and maximum capacity limits:

Vi < Vi < Vi (7
Where:
V™ = The minimum storage volume of reservoir |

V"™ = The maximum storage volumes of reservoir ]

Water discharge rate limit constraint: The water
discharge rate of hydro turbine must lie in between its
minimum and maximum operating limits.

Qo < que < di™ &)
Where:
@™ = Minimum water discharge rate of reservoir j
@™ = Maximum water discharge rate of reservoir

Water availability limit: For the scheduling time period,
each hydro generating plant 1s restricted by the amount of
water available in the reservoir as follows:

T
Zthh]t = th (9)

t=1

Where:

Q. = The water discharge rate of hydro unit j during the
time interval t

Vy; = The velume of water stored in hydro reservoir

Water net head variation: For variable head reservoir, the
water discharge rate is a function of output power and the
effective head and can be expressed according to
Glimn-Kirchmayer model as follow:

G = kg (h)p( P (10)
Where:
Q. = The water discharge rate of the reservoir
k = The constant of proportionality
h, = The effective head of reservoir |
P,;. = The output power of hydro generating unit j at time
interval t

where | and ¢ are quadratic functions and are given by:

wihi) = othf + Bai + v an
@ Pujt) = xthJt + yPrt+ 2 (12)
Where:
x,yand z = Water discharge coefficients
o, pandy = Positive coefficients

Consider a hydro power plant j is assumed to have a
small capacity vertical sided reservoir and the water
elevation 1s assumed to be independent of natural mflow.
The effective net head can be expressed as follows
(Kothari and Dhillon, 2004):

hj+1=hy + g(lhﬂ — i) (13)
il
Where:
h, = The water head of the reservoir j during the time
interval t
L, = The inflow rate to the reservoir j during the time
mnterval t

gy = The water discharge rate of reservoir j during the
time interval t
3. = The surface area of the vertical sided reservorr |

OVERVIEW OF GENETIC ALGORITHM (GA)

The GA 13 a method for solving optimization
problems that is based on natural selection, the process
that drives biological evolution. The general scheme of
G A is initialized with a population of candidate solutions
(called chromosomes). Each chromosome 1s evaluated and
given a value which corresponds to a fitness level in
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problem domain. At each generation, the GA selects
chromosomes from the current population based on their
fitness level to produce offspring. The chromosomes with
higher fitness levels have ligher probability to become
parents for the next generation while the chromosomes
with lower fitness levels to be discarded After the
selection process, the crossover operator is applied to
parent chromosomes to produce new offspring
chromosomes that inherent information from both sides of
parents by combining partial sets of genes from them. The
chromosomes or children resulting from the crossover
operator will now be subjected to the mutation operator in
final step to form the new generation. Over successive
generations, the population evolves toward an optimal
solution. A schematic outline of simple genetic algorithm
1s 1llustrated in Fig. 1.

The features of GA are different from other traditional
methods of optimization in the following respects
(Mimoun et al., 2006).

* (A does not require derivative information or other
auxiliary knowledge

*  GA work with a coding of parameters nstead of the
parameters themselves. For simplicity, binary coded
is used in this study

*  GA search from a population of points in parallel, not
a single point

*» GA use probabilistic
deterministic rules

transition rules, not

Genetic algorithm operators: At each generation, GA
uses three operators to create the new population from
the previous population.

Selection or reproduction: Selection operator 13 usually
the first operator applied on the population. The
chromosomes are selected based on the Darwin’s
evolution theory of survival of the fittest. The
chromosomes are selected from the population to produce
offspring based on their fitness values. The chromosomes
with higher fitness values are more likely to contributing
offspring and are simply copied on into the next
population. The commonly used reproduction operator 1s
the proportionate reproduction operator. The ith string in
the population is selected with a probability proportional
to F, where F,is the fitness value for that string. The
probability of selecting the ith string 1s:

Fl
I (14)

Generate initial . Is specification] Best
population [~ Evalvation [ ierin mot?| veg| individual

T 1 No

Start Solution found

Fig. 1: Schematic outline of simple genetic algorithm

Where, n 1s the population size, the commonly used
selection operator 1s the roulette-wheel selection method.
Since, the circumnference of the wheel is marked according
to the string fitness, the roulette-wheel mechanism is
expected to make F/F_, copies of the ith string in the
mating pool. The average fitness of the population is:

2. (15)
Favg = 1=l
n

Crossover or recombination: The basic operator for
producing new chromosomes in the GA is that of
crossover. The crossover produce new chromosomes
have some parts of both parent chromosomes. The
simplest form of crossover is that of single point
crossover. In single point crossover, two chromosomes
strings are selected randomly from the mating pool. Next,
the crossover site is selected randomly along the string
length and the binary digits are swapped between the two
strings at crossover site.

Mutation: The mutation 1s the last operator m GA. It
prevents the premature stopping of the algorithm in a
local solution. The mutation operator enhances the ability
of the genetic algorithm to find a near optimal selution to
a given problem by maintaining a sufficient level of
genetic variety in the population. This operator randomly
flips or alters one or more bits at randomly selected
locations in a chromosome from 0-1 or vice versa.

Parameters of Genetic Algorithm (GA): The performance
of GA depends on choice of GA parameters such as:

Population size (Np): The population size affects the
efficiency and performance of the algorithm. Higher
population size increases its diversity and reduces the
chances of premature converge to a local optimum but the
time for the population to converge to the optimal regions
1n the search space will also increase. On the other hand,
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small population size may result in a poor performance
from the algorithm. This is due to the process not
covering the entire problem space. A good population
size 1s about 20-30, however sometimes sizes 50-100 are
reported as best.

Crossover rate: The crossover rate is the parameter that
affect the rate at which the process of cross over is
applied. This rate generally should be lugh, about 80-95%.

Mutation rate: Tt is a secondary search operator which
increases the diversity of the population. Low mutation
rate helps to prevent any bit position from getting trapped
at a single value whereas high mutation rate can result in
essentially random search. This rate should be very low.

Termination of the GA: The generational process is
repeated until a termination condition has been satisfied.
The common terminating conditions are:

* The algorithm reaches the specified number of
generations

¢ The algorithm runs for a specified amount of time

¢+  The best fitness value in the current population is
less than or equal to the specified value

*  The best solution 1s not changed after a set number
of generations

*  The algorithm runs for a specified amount of time
with no improvement in the fitness function

GA APPLIED TO SHORT TERM
HYDROTHERMAL SCHEDULING

In genetic algorithm, the water discharge through the
turbines during each optimization interval is used as the
main control variable. In bmary genetic algorithm
representation, the water discharge rates for each
reservolr at each time mterval are represented by a given
number of binary strings. In GA binary representation, the
water discharge rate s used rather than the output power
generation of hydro units because the encoded parameter
is more beneficial for dealing with water balance
constraints. The binary representation of hydro thermal
coordination problem 1s illustrated in Fig. 2.

The generated string can be converted m the feasible
range by using the following equation:

Time interval 1 Time interval 2 Time interval T
Qu Dz ™ O G L™ Qu Dz G

Fig. 2: Bmary representation of hydro thermal scheduling
problem

qu=qg+ (BB g (16)
2--1
Where:
q,™" = The minimum value of discharge rate through
hydro turbine j
q,"™ = The maximum value of discharge rate through
hydro turbine j
I. = The string length (number of bits used for

encoding water discharge rate of each hydro umt)
d; = The binary coded value of the string (decimal
value of string)

By knowing the water discharge rate of each hydro
power plant, the output power of hydro power plant can
be determined. The total power generations of all hydro
power plants are subtracted from the total system load
demand for each hour. The remaimng load must be
satisfied by running thermal units for each hour. An
economic load dispatch problem is achieved and the fuel
cost for each thermal unit over the scheduling period is
calculated.

ALGORITHM FOR SHORT TERM
HYDROTHERMAL SCHEDULING PROBLEM USING
GA METHOD

The sequential steps of solving short term hydro
thermal scheduling problem by using genetic algorithm
are explained as follows:

Step 1: Read the system mput data, namely fuel cost
curve coefficients, power generation limits of hydro and
thermal units, number of thermal units, number of hydro
units, power demands, water discharge rate coefficients,
amount of water available in hydro reservoir, transmission
loss coefficients matrix, surface area of reservoir and initial
head of reservoir.

Step 2: Select genetic algorithm parameters, such as
population size, length of string, probability of crossover,
probability of mutation and meximum number of
generations to be performed.

Step 3: Generate the initial population randomly in the
binary form. The mitial population must be feasible
candidate solutions that satisfy the practical operation
constraints of all thermal and hydro umits.

Step 4: Calculate the discharge rate of each hydro umt
from the decoded population by using Eq. 16.

Step 5: Calculate the hydro power generation of each
hydro unit.
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Step 6: Calculate the thermal demand by subtracting the
generation of hydro units from the total load demand. The
thermal demand (total load-hydro generation) must be
covered by the thermal units. The thermal generations are
calculated from the power balance equation given in 4.

Step 7: Calculate the output power of each thermal unit by
solving economic load dispatch problem.

Step 8: Evaluate the variation in water head by using
Eqg. 13.

Step 9: Evaluate the fitness value for each string in the
population by using the objective function stated in
Eq 1.

Step 10: The chromosomes with lower cost function are
selected to become parents for the next generation.

Step 11: Perform the crossover operator to parent
chromosomes to create new offspring chromosomes.

Step 12: The mutation operator is applied to the new
offspring resulting from the crossover operation to form
the new generation.

Step 13: Update the population.

Step 14: If the number of iterations reached the maximum
then go to step 15. Otherwise go to step 4.

Step15: The string that generates the minimum total fuel
cost of the thermal power plants is the optimal solution of
the problem.

Step 16: Print the output results and stop.

PARTICLE SWARM OPTIMIZATION WITH
CONSTRICTION FACTOR

Overview of particle swarm optimization: Particle Swarm
Optimization (PSO) 18 a population based stochastic
optimization technmque, inspired by social behavior of bird
flocking or fish schooling. It 1s one of the most modem
heunstic algorithms which can be used to solve non linear
and non continuous optimization problems. PSO shares
many similariies  with evolutionary computation
techniques such as Genetic Algorithm (GA). The system
is initialized with a population of random sclutions and
searches for optima by updating generations. However,
unlike GA, PSO has no evolution operators, such as
mutation and crossover. The PSO algorithm searches in
parallel using a group of random particles. Each particle in

a swarm corresponds to a candidate solution to the
problem. Particles in a swarm approach to the optimum
solution through its present velocity, its previous
experience and the experience of its neighbors. In every
generation, each particle in a swarm 15 updated by two
best values. The first one 1s the best solution (best
fitness) it has achieved so far. This value 1s called Pbest.
Another best value that is tracked by the particle swarm
optimizer is the best value, obtained so far by any particle
in the population. This best value is a global best and
called gbest. Each particle moves its position in the search
space and updates its velocity according to its own flying
experience and neighbor’s flying experience. After finding
the two best values, the particle update its velocity
according to Eq. 17:

Vi = % VE + arxrix (Pbest! — X))+

(17)
cax r1x (ghest® — XF)
Where:
Vi = The velocity of particle i at iteration k
X = The position of particle i at iteration k
%) = The inertia weight factor
¢, ¢ = The acceleration coefficients
1,1, = Positive random numbers between 0 and 1
Pbest® = The best position of particle 1 at iteration k
ghbest” = The best position of the group at iteration k

In the velocity updating process, the acceleration
constants ¢, ¢, and the inertia weight factor are
predefined and the random numbers r, and r, are umformly
distributed mn the range of (0, 1). Suitable selection of
inertia weight in Eq. 17 provides a balance between local
and global searches, thus requiring less iteration on
average to find a sufficiently optimal solution. A low
value of inertia weight implies a local search while a high
value leads to global search. As originally developed, the
inertia weight factor often is decreased linearly from about
0.9-0.4 during a run. Tt was proposed by Shi and Eberhart
(1998). In general, the inertia weight  is set according to
the following equation:

€ = Mmax —Mxlter (18)
Itetm=
Where:
W, = Minimum value of inertia weight factor
W, = Maximum value of inertia weight factor
Tter,.. = Maximum iteration number
Tter = The current iteration number

The current position (searching point in the solution
space) can be modified by using the following equation:
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X = F 4 e (19)

The velocity of particle 1 at iteration k must lie in the
range:

Vimin < V¥ < Vi (20)

The parameter V,, determines the resolution or
fitness with which regions are to be searched between the
present position and the target position. If V. is too
high, the PSO facilitates a global search and particles may
fly past good solutions. Conversely if V, is too small, the
PSO facilitates a local search and particles may not explore
sufficiently beyond locally good solutions. In many
experiences with P3O, V. was often set at 10-20% of the
dynamic range on each dimension.

The constants ¢, and ¢, in Eq. 17 pull each particle
towards Pbest and gbest positions. Thus, adjustment of
these constants changes the amount of tension m the
system. Low values allow particles to roam far from target
regions while high wvalues result in abrupt movement
toward target regions. Figure 3 shows the search
mechanism of particle swarm optimization technicque using
the modified velocity, best position of particle i and best
position of the group.

Constriction factor approach: After the original particle
swarm proposed by Kemnedy and Eberhart, a lot of
mnproved particle swarms were mtroduced. The particle
swarm with constriction factor is very typical. Recent
research done by Clerc and Kemmedy (2002) indicates that
the use of a constriction factor may be necessary to
mnsure convergence of the particle swarm optimization
algorithm. In order to mnsure convergence of the particle
swarm optimization algorithm, the velocity of the
constriction factor approach can be represented as
follows:
V= o[ x VE + o xn o« (Pbest? —

XY 00 ¢ 1 x (ghest® — X)) 2D

where K 1s the constriction factor and given by:

2
Ker——F—— 22)
‘2 —9-o' 49
Where, @ = c¢tc, @©=4. The convergence

characteristic of the particle swarm optimization techmque
can be controlled by ¢. In the constriction factor
approach, ¢ must be >4.0 to guarantee the stability of the
PSO algorithm. However, as ¢ increases the constriction

[ 3

Fig. 3: Updating the position mechamsm of PSO
technique

factor decreases and diversification 1s reduced, yielding
slower response. Typically when the constriction factor
1sused, P is setto 4.1 (Le., ¢, = ¢; = 2.05) and the constant
multiplier k is 0.729. The constriction factor approach can
generate higher quality solutions than the basic PSO
technique.

ALGORITHM FOR SHORT TERM
HYDROTHERMAL SCHEDULING PROBLEM USING
PSO WITH CONSTRICTION FACTOR

The sequential steps of solving short term hydro
thermal scheduling problem by using genetic algorithm
are explained as follows:

Step 1: Read the system mput data, namely fuel cost
curve coefficients, power generation limits of hydro and
thermal units, number of thermal units, number of hydro
units, power demands, water discharge rate coefficients,
amount of water available in hydro reservoir, transmission
loss coefficients matrix, surface area of reservorr and mitial
head of reservoir.

Step 2: Select the parameters of PSO such as population
size (Np), acceleration constants (c,and c,), initial and
final value of mertia weight factor (w,,, and w_.).

Step 3: Initialize a population of particles with random
positions according to the mimmum and maximum
operating limits of each unit (upper and lower bounds of
power output of thermal generating units and upper and
lower bounds of water discharge rate of hydro units).
These mitial particles must be feasible candidate solutions
that satisfy the practical operation constraints of all
thermal and hydro umts.
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Step 4: Tnitialize the velocity of particles in the range
between [-V,"=, +V,"=.

Step 5: Calculate the power generation of each hydro unit.

Step 6: Calculate the thermal demand by subtracting the
generation of hydro units from the total load demand. The
thermal demand (Total load-hydro generation) must be
covered by the thermal units. The thermal generations are
calculated from the power balance equation given in
Eq 4.

Step 7: Evaluate the variation in water head by using
Eq. 13

Step 8: Evaluate the fitness value of each particle m the
population using the objective function given in Eq. 1.

Step 9: If the evaluation value of each particle is better
than the previous Pbest then set Pbest equal to the
current value.

Step 10: Select the particle with the best fitness value of
all the particles in the population as the ghest.

Step 11: Update the velocity of each particle according to
Eq. 21

Step 12: Check the velocity of each particle according to
the following equation:

Vk+1 if \[imm SV‘}HI < vvimax

1

\[lkﬂ = Jymin f vvlkﬂ S\[lmm (23)

1

\/rimax lf \/rlk+l < Vimax

Step 13: The position of each particle 13 modified
according to Eq. 19.

Step 14: If the stopping criterion is reached (i.e., usually
maximum number of iterations) go to step 15, otherwise go
to step 5.

Step 15: The particle that generates the latest gbest 1s the
optimal generation power of each unit with minimum total
fuel cost of the thermal power plants.

Step 16: Print the output results and stop.
CASE STUDY AND SIMULATION RESULTS
To verify the feasibility and effectiveness of the

proposed algorithms, a hydrothermal power system
consists of two thermal units and two hydro plants

were tested. The scheduling time period is 1 day with
24 mtervals of 1 h each. The data of test system are taken
from Kothari and Dhillon (2004). The fuel cost data of the
thermal generating units are given in Table 1. In thus case
study, the water discharge rate is represented according
to Glimn Kirchmayer Model. The rate discharge variations
of hydro reservoirs are expressed by using bi-quadratic
functions in terms of effective net head and active power
generated. The water discharge rate coefficients of hydro
power plants are given m Table 2. The hydro reservoirs
have small capacity and vertical sides. The water
available, surface area of reservoirs, constant of
proportionality and initial height of head are given in
Table 3.

The scheduling time period 1s 1 day with 24 mtervals
of 1 h each The load demand for 24 h is given in
Table 4. The B-matrix of the transmission line loss
coefficients is given in Eq. 24. The proposed algorithms
has been implemented in MATLAB language and
executed on an Intel Core 13, 2.27 GHz personal computer
with a 3.0 GB of RAM. The optimal control parameters
used i GA are listed m Table 5 The PSO control

Table 1: Fuel cost data of thenmal generating power plarnts

Plant a ($MWh) b; ($/MWh) ¢ ($h)
1 0.0023 32 25.0
2 0.0008 3.4 30.0

Table 2: Discharge rate coefficients of hvdiro power plants

Plant X Y, Z o 13 Y

1 0.000216 0.306 0.198 0.00001 -0.0030 0.90
2 0.000360 0.612 0.936 0.00002 -0.0025 0.95

Table 3: Reservoir data of variable head hydro power plants

Plants Water vol. (Mft")  Surface area (Mft*)Initial height (ff) Constant
1 2850 1000 300 1.00
2 2450 400 250 1.00

Table 4: Load demand for 24 h
Howr Pp (MW) Hour Pp(MW) Hour Pp(MW) Howr Pp (MW)

1 800 7 800 13 1300 19 1430
2 750 8 1000 14 1350 20 1350
3 700 9 1330 15 1350 21 1270
4 700 10 1350 16 1370 22 1150
5 700 11 1450 17 1450 23 1000
[ 750 12 1500 18 1570 24 900

Table 5: Control parameters of genetic algorithm

Genetic algorithm parameters Values
Population size 50.00
Maximum number of generations 300.00
Crossover probability 0.80
Mutation probability 0.05
Table 6: Control parameters of particle swarm optimization

Genetic algorithmn parameters Values
Population size 50,000
Maximum number of generations 300,000
Acceleration coefficients (c)/c) 2.050
Minimum inertia weight (to,; ) 0.400
Minimum inertia weight ((ye; ) 0.900
Constriction factor (k) 0.729
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Table 7: Hourly hydro thermal generation schedule and power loss obtained from CFPSO technique

Thermal generation

Hydro generation

Hours P, (MW) P, (MW) Py (MW) Py (MW) Loss (MW) F1 ($Mh) F2 ($h) Ft ($/h)

1 152.4248 363.8048 270.4755 35.5583 223234 570.8427 1373.0584 1943.9011
2 144.8257 338.5783 260.0466 26.1074 19.5580 540.8784 1272.8744 1813.7529
3 135.0622 315.8243 249.7131 16.3725 169721 502.8035 1183.5986 1686.4022
4 134.9919 315.7188 249.7953 16.4658 16.9718 502.5311 1183.1866 1685.7177
5 134.8697 315.6251 249.9371 16.5392 169711 502.0576 1182.8207 1684.8783
6 144.6575 338.4855 260.2032 26.2109 19.5571 540.2185 1272.5087 1812.7271
7 151.8314 364.4496 271.2132 34.8247 223189 568.4924 1375.3875 1943.8799
8 185.0214 468.8102 317.2587 64.2852 353755 702.6508 1799.7811 2502.4319
9 242.7784 639.0795 388.3615 123.9886 64.2080 949.2443 2529.6084 3478.8526
10 246.1715 647.7730 393.5562 128.7538 66.2545 964.2498 25681161 3532.3659
11 262.6850 701.1779 414.5501 148.6341 77.0471 1038.1005 2807.3252 3845.4257
12 271.7323 726.3529 425.6139 159.0867 85.7858 1079.1395 2921.6707 4000.8102
13 236.9067 619.8458 381.5476 122.8949 61.1950 923.4134 2444.8428 3368.2562
14 245.0913 645.3309 391.9764 133.8559 66.2545 959.4665 2557.2866 3516.7532
15 244.8648 645.2341 392.1936 133.9605 66.2530 958.4643 2556.8576 3515.3219
16 246.9909 654.3519 396.6148 140.3776 68.3352 967.8821 2597.3376 3565.2197
17 261.9011 694.9214 412.3682 157.8612 77.0519 1034.5640 2779.0654 3813.6294
18 281.1182 758.6118 436.9817 184.5065 91.2182 1122.1468 3069.6736 4191.8205
19 256.2512 680.9558 409.6527 157.9542 74.8139 1009.1655 2716.2104 37253759
20 240.2744 640.9730 387.8577 147.1544 66.2595 938.2075 2537.9853 3476.1929
21 227.6424 598.6478 373.1062 128.8671 58.2635 883.0083 2352.1059 32351142
22 206.3906 534.4238 345.1361 111.3851 47.3356 791.9426 2075.5280 2867.4706
23 180.2835 457.5829 315.6748 81.8380 353792 683.1626 1753.2876 2436.4501
24 164.4228 405.3908 294.6726 63.9661 28.4523 618.7401 1539.8021 2158.5422
Table 8: Hourly hydro thermal generation schedule and power loss obtained from genetic algorithm

Thermal generation Hydro generation

Hours P, (MW) P, (MW) Py (MW) Py (MW) Loss (MW) F1 ($h) F2 ($h) Ft ($'h)

1 1491377 366.4161 275.6650 31.0812 22.3000 557.8458 1383.2234 1941.0691
2 141.4647 340.5243 265.7296 21.8158 19.5344 527.7177 1280.5481 1808.2658
3 133.2488 317.0635 254.6081 12.0385 16.9589 495.7843 1188.4393 1684.2236
4 133.2269 316.9557 254.6660 12.1096 16.9588 495.6996 1188.0181 1683.7177
5 133.1172 316.7523 254.8776 12.2113 16.9584 495.2755 1187.2234 1682.4990
6 141.1182 340.2956 265.9563 22.1628 19.5329 526.3641 1279.6459 1806.0100
7 148.9783 366.2095 275.8455 31.2661 22.2994 557.2169 1382.3998 1939.6167
8 183.8402 470.2476 315.8926 65.3918 35.3722 697.7817 1805.7481 2503.5298
9 239.7112 642.9393 385.5812 125.9755 64.2072 935.7295 2546.6904 3482.4199
10 243.2122 651.9149 390.1832 130.9456 66.2559 951.1595 2586.5051 3537.6046
11 2584798 706.0293 411.3920 151.1482 77.0493 1019.1649 2829.2815 384844064
12 267.8739 731.1036 422.2654 161.5473 82.7920 1061.5875 2943.3622 4004.9498
13 233.2832 623.3386 378.0462 126.5245 61.1923 907.5589 2460.1912 3367.7500
14 243.0513 649.3636 387.6023 136.2445 66.2617 950.4490 2575.1747 3525.6237
15 242.6979 648.5832 388.1235 136.8539 66.2585 948.8890 2571.7110 3520.6000
16 245.9637 654.1714 393.4652 144.7426 68.3429 963.3292 2596.5349 3559.8641
17 259.5523 697.5212 409.8923 160.0875 77.0533 1023.9859 2790.8007 3814.7866
18 279.4619 760.3069 437.7947 183.6474 91.2109 1114.5255 3077.4967 4192.0222
19 253.9084 683.4909 408.1237 159.2288 74.8118 998.9488 2727.5969 3726.5457
20 239.8322 642.1165 389.3057 144.9978 66.2522 936.2618 2543.0470 3479.3087
21 225.5682 600.0524 371.8717 130.7687 58.2610 874.0208 2358.2285 3232.2492
22 204.6546 535.4057 346.6037 110.6628 47.3268 784.6035 2079.7068 2864.3103
23 178.6635 460.3584 314.8918 81.4562 35.3699 676.5248 1764.7625 2441.2873
24 162.7397 406.1174 294.3961 65.1935 28.4467 611.9776 1542.7442 2154.7218

parameters selected for the solution are given m Table 6.
The program is run 50 times for each algorithm and the
best among the 50 runs are taken as the final solutions.
The optimal power schedule of thermal and hydro power
plants that meets the required load demand and the
transmission line losses obtained from the PSO method is
shown in Table 7 while Table 8 shows the optimal
hydrothermal generation schedule along with demand for

24 h including the transmission line losses obtamned from
the GA. Table 9 gives the hourly water discharge rate of
hydro power units and the variations of water head in two
reservoirs obtamed from PSO algorithm and Table 10
presents the hourly optimal water discharge rate of hydro
units and the variations of water head in each of the two
hydro reservoirs obtained from the GA. Table 11 shows
the comparison of total fuel cost and computation time
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Table 9: Hourly hydro plant discharge and variation of water head of the two
reservoirs obtained from CFPSO technique

Table 11: Comparison of total filel cost and computation time between GA
and CFPSO techniques

Hydro discharges (Mft*/h) Net head (ft) Methods Total fuel cost ($) CPU time (sec)
CFPSO 69801.292 12.47
Hours Qu Q2 h, hy GA 69801.482 22.63
1 88.8889 36.4658 300.0000 250.0000
2 84.9160 27.0139 2099111 249.9088
3 81.0244 17.3945 2090.8262 249.8412
4 81.0331 17.4825 209.7452 249.7977
5 81.0640 17.5509 299.6642 249.7540
6 84.8818 27.0920 209.5832 249.7101
7 89.0209 35.6686 2094983 249.6423
8 1069077 65.6421 209.4093 249.5531
9 136.1367 129.3266 209.3024 249.3889 --/’-\‘.-—-—--"'/\\'
10 1382892 134.3803 209.1663 249.0656 / \
11 147.2761 156.3206 209.0280 248.7296 ST T T T
12 152.0401 167.8355 208.8808 248.3388 - :_:_____‘::'__—:'____,;:_:_-- -
13 132.9933 127.2299 208.7287 247.9191 e —
14 137.3543 139.0605 208.5958 247.6010 0 i 4'_ é é 1[') 1'2 1"1_ 1I6 1;1 2'0 2'2 2'4
15 137.3842 138.9460 208.4584 247.2533 Time (h)
16 139.2066 145.7954 208.3211 246.9059
17 145.9174 165.0288 298.1819 65414 Fig 4: Optimal power generation schedule using CFPSO
18 156.6189 194.9985 208.0360 246.1288 .
19 144.5978 164.4288 207.8794 245.6413 technique
20 135.2176 152.1052 207.7348 2452302 200-
21 1289619 131.8373 207.59%9 244.8499 ——u
22 117.3957 112.8934 207.4707 2445202 — %
23 105.5559 81.8817 207.3533 244.2380
24 97.314 63.6210 207.2477 244.0332
Table 10: Hourly hydro plant discharge and variation of water head of the
two reservoirs obtained from genetic algorithm
Hydro discharges (Mft*/h) Net head (ft)
Hours Qs [8)%] hy hy
1 90.8690 31.9811 300.0000 250.0000 -
2 87.0608 22,7636 2999002 249.9200 he i 4'_ é 8' l(I) li 14'_ 1& 18I 2('] 22; 2:‘
3 82.8502 13.1517 2098221 249.8631 Time (h)
4 82.8492 13.2191 2997393 249.8302
5 82.9053 13.3164 2996564 249.7971 . . . . .
p 70493 23,0894 209 5736 Y & |- X Hydrq plant discharge trajectories using CFPSO
7 90.7827 32,1209 2994865 249.7060 technlque
8 106.3596 66,8107 2093958 249.6256
9 134.94%6 131.5606 200.2804 2494586 .
10 136.8450 136.8467 209.1545 249.1296 3107 — Reservoir 1
11 145.8987 159.1980 299.0177 2487875 3004 Reservoir 2
12 150.5669 170.6736 2988718 2483895
13 131.5150 131.2294 2987212 247.9627 g 290+
14 1354927 141.7211 298 5897 247.6346
15 135.6529 142.1555 2984543 247.2803 E 2801
16 137.8619 150.6503 2983186 246.9249 :E 2704
17 144.8457 167.5399 2981808 246.5482
18 1569787 194.0100 2980360 2461293 2601
19 143.9381 165.8591 297.8790 245.6443
20 135.8306 149.7235 297.7351 245.2206 250 e
21 1284471 133.9025 2975993 244.8552 2401 . r . . r r . r . -I-“-_-I
22 117.9923 112.1266 297.4708 2445204 2 4 6 8 10 12 14 16 18 20 22 24
23 105.2469 81.4901 297.3529 244.2401 Time (h)
24 97.2116 &4, 8594 297.2476 244.0363

between the two proposed methods. From Table 11, 1t is
observed that the CFPSO algorithm give the same
solution as obtamed by GA. Figure 4 shows the optimal
power generation schedule of hydrothermal test system
using CFPSO algorithm. The howrly hydro plant discharge
trajectories by using CFPSO method is given inFig. 5
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Fig. 6: Water head variations of two reservoirs using
CFPSO technique

while Fig. 6 presents the variations of water head of the
two reservorrs by using CEPSO technique. Figure 7 gives
the optimal power generation schedule during day hours
by using genetic algorithm, Fig. 8 shows the hourly hydro
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Fig. 7. Optimal power generation schedule using genetic

algorithm
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Fig. 8 Hydro plant discharge trajectories using genetic
algorithm
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Fig. 9: Water head variations of two reservoirs using
genetic algorithm

plant discharge trajectories by using GA and Fig. ©
presents the variations of water head of the two reservoirs
by using GA:

0.140 0010 0.015 0.015

0.010 0060 0010 0.013
B, =10" Mw (24)
: 0015 0010 0.068 0.065

0.015 0.013 0.065 0.070
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CONCLUSION

In this study, particle swarm optimization technique
with comstriction factor and genetic algomthm are
proposed for solving short term wvariable head
hydrothermal scheduling problem. To demonstrate the
performance efficiency of the proposed algorithms, they
has been applied on hydrothermal system consists of two
thermal units and two hydro power plants. In this study,
the transmission line losses are taken into account. The
results obtamed from the constriction factor based
particle swarm optimization techmque are compared with
the simulation results obtained from the genetic algorithm
to verify the feasibility of the proposed methods. The
numerical results show that the particle
optimization with constriction factor gives the same
results as obtained by the genetic algorithm. From the
tabulated results, it is clear that the genetic algorithm
require more computation time than the constriction factor
based particle swarm optimization techmque. Thus, the
CFPSO approach can converge to the minimum fuel cost
faster than the GA.

SWarin
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