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Abstract: Complex systems are usually represented by
structurally invariant models acquiring their characteristic
properties in simulations. This approach assumes and
infers idealized simplifications to models these systems.
We consider this standard approach as omitting crucial
features of phenomenological interaction mechanisms
related to processes of emergence of such complex
systems. We consider, as the main feature, the quasiness
of the structural dynamics that generate complex systems.
Generation achieved through prevalently coherent
sequences and combinations of interactions. Quasiness
(dynamics of loss and recovery, in homogeneity,
multiplicity, non-regularity, and partiality) represents the
incompleteness of the interaction mechanisms. Complex
systems possess local coherences corresponding to the
phenomenological complexity. Complex systems are
considered quasi-systems, not always systems, not always
the same system, and not only systems. We address
problems of representing the quasiness of coherence
(quasi-coherence) such as the ability to recover and
tolerate temporary levels of incoherence. The main results
of the study focus on modelling quasi-coherence through
the changing of rules in models of emergence. This is in
contrast to models of fixed structural rules allowing only
parametrical variations. We present a version of standard
analytical approach compatible with quasiness of systemic
emergence and related mathematical issues. The same
approach is considered for networks, artificial neural
networks and we introduce the concept of quasification
for fixed models. Finally, we assert that suitable
representations of structural dynamics and its quasiness
are needed to model, simulate, and adopt effective
interventions on emergence of complex systems. In direct
contrast to standard methods that only consider their
properties.
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INTRODUCTION

The purpose of this study is to consider approaches
that model complex systems. This includes collective
systems, intended as generated, emergent through
designed, detected or inferred multiple interaction
mechanisms (combinations of interactions). The approach
detailed here considers quasiness, defined as generic
specification, attribute the acquisition of emergent
properties and processes (as interaction mechanisms).
This includes in homogeneity, multiplicity,
non-regularity, partial synchronizations and partially
different combinations. Quasiness is considered a feature
of interaction mechanisms (idealized or inferred) and
structural dynamics (the processes of change over time).
Is the predominant aspect of quasiness, indeterminacy and
incompleteness (given, for instance by incomplete
occurring of a process terminated early; incomplete initial
conditions; incomplete iterations; partial consideration of
the values of variables and their combinations)
characterizing real phenomenological interactions of
emergence? Determination and completeness are ideal
simplifications for modelling essential aspects of
phenomena. Idealized modelling, considered reliable
since it captures crucial properties, fails to consider
quasiness.

In this study, we consider such quasiness as
predominant property in modelling phenomena and
mechanisms of emergence of complex systems when the
purpose is to act on them, e.g., induce, orient, vary,
deactivate and merge them.

At this regard we mention how previous research
investigates the theoretical incompleteness of emergence
phenomena[1]. Quasiness of complex systems emergent
from multiple interaction mechanisms is characterized by
quasi-coherence (quasiness of coherence, intended, in
short as long-range correlation and scale freeness, see
Section 4.1). Understood as dynamic sequences or
combinations of coherences of variable ranges, their loss
and recovery, in homogeneity and irregularity. The
dynamics of local, possibly globally temporal, coherences
in processes of emergence[2] is related to the countless
instantaneously equivalent configurations of elements. For
example, flock of birds, equivalent with regard to the
different combinations of interacting entities. More
precisely, quasi-coherence is a property of the nonlinear
changing of rules constituting multiple interaction
mechanisms generating emergence. This is in contrast to
fixed or equivalent structural rules that allow stable
configurations with only parametric change.

Multiple changing rules of the interaction
mechanisms represent phenomenological structural
dynamics that are only partially considered in fixed
parametric models. Simulations focus on properties rather
than  on  their  processes  of  acquisition  and  of
emergence.

We introduce examples of mathematical approaches
useful for ideal modelling of quasiness of complex
structures and multiply emergent systems. In Section 2,
we briefly define some introductory concepts useful for
the following topics: interaction mechanism, structural
dynamics, self-organization, emergence, grey systems,
fuzzy systems, multiple systems, quasiness, complex
systems and theoretical incompleteness. In Section 3, we
present a concise overview of approaches to modelling
complex systems.

In Section 4, we deal with analytical and network
modelling of quasiness and introduce the quasification of
fixed models. In particular, in Section 4.1, we consider
consolidated approaches to modelling, representing
coherence, dealing with Synchronized Multiple
Synchronizations, Local Couplings, Covariance,
Correlation and Cross-correlation. In Section 4.2, we
present mathematical proposals for analytic and network
modelling of quasiness. In subsection 4.2.1, we consider
classic models based on fixed rules. In subsection 4.2.2,
we introduce approaches to modelling based on variable
rules. This proposal is an analytical approach to modelling
the quasiness of the structural dynamics of
phenomenological interaction mechanisms supporting
emergence. In subsection 4.2.3, we   consider how this
approach may be also implemented with networks having
changing linkage. In subsection 4.2.4, we consider the
possibility to quasify models based on fixed rules. What
is introduced in the three previous subsections is a
theoretical background for modelling the quasiness of
complexity. In subsection 4.2.5, we present a general
view on the novelties introduced.

In Section 5, we present a final summary. Finally, in
Section 6, we introduce issues for further research.
Briefly, the original contributions of the article are as
follows:

When simulating a complex system, it is insufficient
to generate an artificial system that possesses certain
properties characteristic of that system. It is necessary to
properly simulate interaction mechanisms, allowing
suitable reactions to structural interventions.  For
example, models of complex systems showing correlation,
scale-freeness, and power laws may adequately recreate
features insufficient to model the interaction mechanisms
supporting emergence and reactions to external
interventions. In particular, we recall that correlations do
not imply causality[3]. It is also a matter of recognition of
the inadequacy of pursuing unique, optimum, complete
models of complex systems constructed of
time-dependent variables instead of modelling with time-
dependent rules. This is related to the general quasiness of
complex  systems.  That  is,  their  being  not  always
systems  and  not  always  the  same  systems.  The
model’s properties change over time, even through
multiple coherences are present when scale-freeness
endures.
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Modelling complex systems is focused on the
theoretical incompleteness of quasiness of their detected,
inferred, ideally modelled or represented
phenomenological interaction mechanisms generative of
the emergent characterizing properties. Not on their
characteristic properties alone. Such models are here,
however even if at different levels and modalities,
constituted of time-dependent rule sets, for example,
systems of differential equations or network linkages.
These represent quasiness of structural dynamics of
complex systems. Modelling in this manner is assumed to
be suitable to simulate not just complex systems
behaviours and their acquisitions of properties (rather than
acquired properties) but also the proper reactions to
external interventions in their entirety and not only in
reference to specific properties.  

The variability of rules charactering models of
quasiness of complexity. In Section 4.2, we introduce
examples of related mathematical approaches, both
analytical and based on the science of networks. We also
introduce  the  concept  of  quasification  for  fixed
models.

This is the fundamental conceptual innovation
proposed in this study. We conclude by stressing that
understanding how complexity can be generated and
represented by structural dynamics in the context of the
quasiness, rather than assuming invariable representations
very far from the dynamics and multiplicity of reality,
enables the design of more suitable and realistic models
of the system.

Introductory concepts: To aid the reader, in this section,
we briefly summarize some conceptual aspects in this
research area. Namely, characteristics of complex systems
and related concepts. In the literature, these concepts are
widely elaborated. Here, we review the concepts of
interaction mechanism, structural dynamics, self-
organization, emergence, grey systems, fuzzy systems,
multiple systems, quasiness, complex systems and
theoretical incompleteness. Citations are abridged from
the available literature to those useful later in the article. 

Interaction mechanism: The elementary understanding
of ‘interaction’ occurring between pairs, is that “one’s
behaviour depends on another’s behaviour”. On the
concept of interaction, Von Bertalanffy wrote[4]:
“Application of the analytical procedure depends on two
conditions. The first is that interactions between ‘parts’ be
nonexistent or weak enough to be neglected for certain
research purposes. Only under this condition, can the
parts be ‘worked out’, actually, logically, and
mathematically, and then be ‘put together.’ The second
condition is that the relations describing the behavior of
parts be linear; only then is the condition of summativity

given, i.e., an equation describing the behavior of the
tota1 is of the same form as the equations describing the
behavior of the parts; partial processes can be
superimposed to obtain the total process, etc. These
conditions are not fulfilled in the entities called systems,
i.e., consisting of parts ‘in interaction.’ The prototype of
their description is a set of simultaneous differential
equations which are nonlinear in the general case. A
system or ‘organized complexity’ may be circumscribed
by the existence of ‘strong interactions’ or interactions
which are ‘nontrivial’non-trivial’, i.e., nonlinear.” (See
the system of simultaneous differential equations (1)
reported in section 3.2).

An interaction mechanism is given by multiple
combinations of interactions. An example of generic
interaction mechanism is given by the irregular
combinations of single interactions in Brownian-like
motions and gasses. Interaction mechanisms of interest
here are those that support acquisitions of coherences and
processes of emergence. Dealing with simulated flocks of
boids, beside elementary assumptions and constraints
(such as imposing collision avoidance, cohesion rules,
alignment rules as in Reynold’s modelling, see subsection
4.2.4), we consider anisotropic flocking where a case of
interaction mechanism is given by the occurrence of
interaction rules applied by sequences of boids chosen in
any way such as the elementary: if the speed of the closer
boid is greater, less or equal to k, then correspondingly
keep, increase or reduce of a suitable parameter w the
speed.

We may have countless variations of such rules. For
instance by context-sensitive computing k, the rule may
apply only to specific boids having speed greater or less
than h; considering the average speed of the n-closer
boids; replacing metrical closeness, for instance with
topological closeness; replacing speed with altitude or
replacing speed with direction, and their possible
combinations, to be applied generally or depending on
parametric values, etc.

Interaction mechanisms may be considered in a
phenomenological context of applied organizations
constituting structured configurations and rules. We may
have hierarchical, horizontal, functional, matrix and
reticular organizations. There are plenty of examples such
as the military complex, corporate entities and
commercial institutions where rules may apply in different
context-sensitive ways. That is, for example, commercial
rules may be applied in different ways depending on the
products produced and how they are marketed. Other
examples include organized games such as artificial
intelligence games considered by the game theory[5-7]. In
these games, formalization is possible and permits
simulation of properties.
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Another approach to understanding interaction
mechanisms is allowing for self-organizing processes.
These constitute partial regular sequences of varied,
contextually applied configurations of interaction rules.
For instance, partially repeated and synchronized
processes. Some examples include self-constitution of
patterns in Cellular Automata and the establishment of
whirlpools in liquids and air   (hurricanes). Again,
formalization is possible and allows behavioural
simulations.

Yet another approach to interaction mechanisms
considers the emergent processes as constituted by
coherent sequences of partial, combined, varied, lost and
recovered configurations of interaction rules. The multiple
interaction mechanisms of emergence of collective
systems refer to the occurrence of interactions. For
example:

C Variable over time
C Multiple interactions between the same and different

elements
C Between multiple elements (clusters)
C In combinations
C At different intensities
C With different and time-varying, start and duration

times

However, sufficient to keep significant subsequent
levels of coherence. The interaction mechanisms of
emergence can have properties such as their regular or
partial recurrence; also including their evolution and
mutation, combination and ability to generate levels of
coherence and multiple local coherences. Such properties
may characterize specific processes of emergence, as is
the case with flock, swarm-like behaviours and biological
life.

Formalization is more difficult and only possible for
specific properties, for example, for artificial life. The
multiplicity of interaction mechanisms of emergence may
be modelled by considering dominant aspects such as
correlations and self-similarity. Here we consider the
dominant aspect of quasiness in structural dynamics and
in the occurrence of multiple interaction mechanisms.
Quasiness in models, as in quasiness of correlations and
self-similarity, are expected to make these mechanisms
less ideal but more effective and realistic. Furthermore,
quasiness is expected to increases the understanding of
collective phenomena in addition to facilitating structural
modifying interventions on collective phenomena. The
three cases considered above are not precisely separated
and may occur in variable combinations.

Structural dynamics: The introductory concept of
structural dynamics is considered in different ways,

including sequential structural changes of cytoskeletons[8].
Different modes of interaction assumed by individual
agents in collective behaviours, complex systems intended
as cascades and sequences of phase-transition-like
changes[9, 10]. In general, structural dynamics is considered
a constituent of acquisitions, changes, losses, and
combinations of structures and interaction mechanisms.
These occur, for instance, through phase transitions and
networks properties[8].

Self-organization: Self-organization is assumed to occur
when a population of interacting entities acquires
collective sequences of propert ies  in a
phase-transition-like manner. Having regularities and
stabilities such as dominant repetitiveness and
synchronicity. The occurrence of interaction mechanisms
has some regularities such as partial but predominant,
iterations in a context of quasiness. Examples include the
behavioural patterns of mosquitoes swarming around a
fixed light and whirlpools[8, 11-14].

Emergence: A population of collectively interacting
entities is assumed to establish processes of emergence
when acquiring sequences of properties in coherent ways,
they generate long-range correlations. The process of
emergence may be understood as the occurrence of
possibly multiple simultaneous sequences of processes of
self-organization when the corresponding acquired
dynamic structures are coherent (a case is given by the
theory of ‘dual evolution’ for adaptive systems,
introduced by Paperin et al.[15], see also[8]. Emergence may
be understood as a generalization of self-organization in
which partial regularities, synchronization and stabilities
are substituted by coherences. The multiple sequences of
interaction mechanisms of emergence generating and
supporting complex systems have quasiness as main
feature. That is, their non-regular recurrence,
inhomogeneous applications, partially occurring,
evolution and mutation. Furthermore, this includes
combinations and the ability to generate levels of
coherence, and multiple local coherences. Examples
include collective emergent systems such as anthills,
cities, flocks, the internet, markets, networks, social
systems and swarms. Emergent systems keep their
coherences and are robust to perturbations[2, 8, 16-20]. 

Grey systems: Grey systems are characterized by
incompleteness and uncertainty in measurements,
information about composing elements, structures,
boundaries, interaction mechanisms, and the system’s
behaviours[21, 22]. Their incompleteness is not theoretical as
it can be completed (see point 2.10).

Fuzzy systems: Fuzzy variables are those whose value is
specified as an allowable range rather than a single value.
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For example, 0<x<1 instead of x = 0 or x = 1[23-26].
Fuzziness deals with properties of values under the
assumptions of stability and invariability of the structural
representations of the phenomena. Not about the
variability of structures and their properties as in the case
of multiple interaction mechanisms. It may be a matter of
changing the fuzziness level of interacting agents. Fuzzy
systems use fuzzy values and dealing with incomplete
information. Examples include incomplete or partially
incorrect words for search engines, and uncertain
measurements. 

Multiple systems: A multiple system is considered to be
a set of systems whose components simultaneously
belong to more than one system[8]. For example, when
multiple networks are constituted by the same nodes
belonging to different and simultaneous networks[27].
When multiple states of belonging occur, some multiple
systems can be fuzzy.

Quasiness: The following instances are examples of the
concept of quasi in the scientific literature. Quasicrystals
take a particular solid form where atoms are arranged in
a structure that is deterministic. They are not periodic or
repetitive as can be observed in normal crystals. There are
patterns where the local arrangement of the material is
regular and stable but not periodic throughout the
material. The characterizing property is incompletely
respected in multiple possible ways[28]. In
thermodynamics, quasistatic processes occur slowly
enough to allow the system to remain in internal
thermodynamic equilibrium. That is, the volume changes
so slowly that the pressure remains uniform. In physics,
quasiparticles possess traditional particle properties with
the exception of localization[29]. In mathematics,
quasiperiodicity relates to recurrences whose periodicity
has components that are irregular or unpredictable.

Quasiness attributes specifically to the generic
dynamics of the occurrence of incompleteness in
phenomena of emergence. This is particularly the case in
collective phenomena where countless equivalences
occur. For example, in the behavioural multiplicity of
global and local patterns of spatial positions assumed by
single interacting agents (such as boids in flocks),
densities, distributions, acquired patterns. It is the
assumption of local dynamic configurations that makes
dispositions that had lost their coherence become
temporary coherent again[8, 2]. As we will see at the end of
this subsection, this is   the case for components of a
collective behaviour acquiring ergodicity as an
involuntary consequence of their movement[30].
Components of populations are intended to assume
ergodic behaviours if their behaviour is such that when, at
any moment in time, x% of the population is in a

particular state, then each component of the population
spends x% of time in such state. Ergodicity is a recurrent
property of statistical systems. However, this is a formal
and absolute definition of ergodicity. In real cases, we
consider percentages that establish significant levels of
ergodicity when components assume percentages of same
roles at different times, and simultaneous different roles,
but with the same percentages establishing
quasi-ergodicity.

In the multiple dynamics of emergent phenomena, as
in collective behaviours, large varieties of instantaneous
configurations of elements (e.g., boids in flocks) are
equivalent. For a flock, there are countless equivalent
configurations of the same flock. Basically, the quasiness
specifies the separation from simplified, ideal
representations used for fixed models, from the
phenomenological processes. Such differences are usually
neglected by idealized models as irrelevant. Here it is
considered as predominant in modelling phenomena and
mechanisms of emergence of complex systems. The
quasiness is related in several ways and levels by which
collective phenomena, may globally, partially and locally
assume, lose, recover and reassume levels of coherences.
The ability to recover and tolerate temporary levels of
incoherence occurring in predominant or non-predominant
properties of collective systems, where the occurring of
tolerance may be measured in terms of percentages, their
variations, periodicity, and other regularities. This is
different from considering tolerance thresholds. This is a
matter of robustness and resilience of collective
behaviours.

In processes of emergence, quasiness represents the
possibility of the structural dynamics of their interaction
mechanisms to recover, acquire and temporarily gain
inhomogeneous local coherences[8]. The attribution of
quasiness may be conceptually generalized to various
properties in correspondence with their non-complete,
non- regular, specific and inhomogeneous occurrences.
This includes indefinite combinations of
phenomenological events and processes. Ideal models
focus on the essential characterizing properties of a
phenomenon, such as the scale freeness of a collective
behaviour. In contrast, we focus on how these properties
are achieved and maintained. We are not interested in
averages only but on properties of the distributions
leading to such      average. In addition to the convergence
point, we also consider the convergence process. For
instance, we may consider a variable x with the constraint
0<x<1. How constraints are respected is as important as
the constraint itself. That is, sequences of values of the
variable x close to the end points or having regular
fluctuations between them or fluctuations around the
mean. In the following, we consider the cases of
quasi-systems and quasi-coherence and other concepts
introduced later.
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Quasi systems (for which there is quasiness in being
systems) are intended as sequences (be they coherent,
temporarily incoherent, resuming the same or different
coherence) of different (possibly fuzzy), inhomogeneous
versions of the same system[8]. Quasi systems can involve
any level of fuzzy belonging and be locally or
temporarily, not systems nor the same systems.
Furthermore, quasiness can occur when the same system
may operate in both fuzzy and non-fuzzy ways. Fuzziness
in a quasi system can take the form of indeterminate
numerical parameters describing its state in the class of
systems. In contrast, the quasiness of systems is
structurally specified by not always being systems, not
always the same system and not only systems by their
incomplete processes of resumption and recovering of
properties. As is the case for coherence, multiple
structural dynamics and multiple interaction mechanisms
in collective systems. Fuzziness, on the other hand, deals
with indeterminacy in numerical indices of state.
Quasiness is concerned with the specification of processes
(here, interaction mechanisms supporting emergence). A
system is not ‘quasi’ when its multiplicity is reduced to
one or very few systems. However, in some special cases
a quasi system may be approximated by a single or few
systems. Quasi systems are very realistic and require
suitable approaches, considering and not neglecting their
quasiness as it is used in simplified modelling. In the
subsection 4.2.2 we present possible approaches.

Quasi-coherence (having quasiness in coherence) is
characterized by dynamic coherences of local or variable
range, coherence loss and recovery processes,
combinations of coherences and coherences as with
long-range correlations. The latter can be represented by
a graphical example of a stylized flock as quasi-coherent
quasi system having quasiness of multiple complex
behaviours, (Fig. 1). Modelling phenomena of quasi-
coherence may include those of remote synchronization
based on indirect information transfer. This occurs when
non-adjacent pairs of entities become substantially
synchronized despite there being no direct structural
connections between them[31-33]. We may consider   the
case when the coherence of an emergent collective
behaviour is given (locally, partially, temporarily) by the
occurrence of ergodicity (see, for instance[8, 34, 35]. The
same system, or parts thereof, can be both ergodic and
non-ergodic depending upon the time scale of the
observer. For example, polymers or even temporarily
ergodic systems. As in the concept of quasi-ergodicity as
related to degrees or indices of ergodicity[8] recognized as
another example of quasi-coherence.

Complex systems: Complex systems are systems
generated by and in which multiple processes of
emergence occur. Complex systems are therefore quasi-

Fig. 1: Graphical example of a stylized flock having
quasiness of multiple complex behaviours

systems having predominant, multiple coherences. In
contrast to non-complex systems, they do not acquire the
same systemic property over time. They implement
continuous processes that establish coherent structural
changes in acquiring properties and behaviours. Multiple
irregularities of quasiness can be recognized as belonging
to multiple processes of temporary loss, recovery, or
partial coherences. That is, acquisition of properties that
adapt and restore forms of coherence to values that had
become incoherent. Examples of acquired properties are
belonging to the basin of an attractor, correlation (long
range), network properties, polarization and global
ordering, power laws, remote synchronizations, scale
invariance, and self- similarity. Examples of complex
systems include climate systems, dissipative structures,
double pendulums, flocks, swarms and social systems.
They have multiple properties that vary in value such as
long-range correlations and scale invariance[36-39].

Theoretical incompleteness: Incompleteness occurs as
a phenomenologically and consequently theoretically
necessary condition of the models, even if it is not
sufficient for the assumption of coherences and multiple
emergences, in the emergence of complex systems.

Emergence complex systems are intended as
theoretically incomplete since a single model is not
sufficient for their representation; the system variables
(degrees of freedom) are variable in number and
continuously acquired; non-equivalent properties are
continuously acquired.

The emergence of complex systems requires such
theoretical incompleteness. The generic concept of
theoretical incompleteness[1, 40-42] can suitably specify the
one of quasiness. Theoretical incompleteness is a property
of phenomena that is incomplete enough to permit
emergence of complex systems. Their multiple structural
dynamics and dynamical coherences are in the context of
equivalences. Completeness is an ‘enemy’ of emergence
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as it produces single emergence without leaving a role to
equivalences[43]. Theoretical  incompleteness as
theoretical non-completability can be ascribed, for
instance, to:

The Uncertainty Principle in quantum mechanics by
which accuracy in measuring one variable is at the
expense of another. Complementarity in theoretical
physics, for example, between wave and particle natures.
Partial acquisitions, loses and recovery of properties in
processes of emergence in dynamics of equivalences.

The incompleteness theorems introduced by Gödel in
1962. Partial or non-decidability. Non-computable
uncertainty when considering that probabilities must
relate to variable configurations of events and not to
improbable isolated abstract events[44, 45].
Non-complete, non-explicit, non-univocal and
non-equivalent modelling. Such as the DYnamic uSAge
of Models (DYSAM) based on the Bayesian method,
statistical approaches of ‘continuous exploration’ of
events and ensemble learning as in[8, 46].                 

Modelling complex systems: We now present a concise
overview of approaches to model complex systems. We
mention the following approaches: a) Considering ideal
models that generate data and assume properties have
significant similarities with the real phenomena[47-50]. This
is especially true for simulations. For instance, properties
of non-deterministic chaos are studied mainly through
simulations. b) Considering real data related to spatial
positions of entities interacting in 3D. For instance, when
interacting entities are equipped with a Global Positioning
System (GPS). As used in cars, when tracking animals in
herds, economic values (for instance prices and share
values). This includes their macroscopic properties such
as density and acquired properties such as scale
invariance. We consider ideal models that work with real
data and are interpolated to model behaviours[51-54]. The
models here are considered simply as ‘models of the
system’. c) We consider ideal models consisting of
inferred constraints by the possible interaction
mechanisms and derived rules of interaction[55-60]. The
models are considered to represent the real generative
interaction mechanisms of the system and be suitable for
simulations. d) The high level of dispersion, (global)
single low interpolation and the suitability of multiple
interpolations of real data, indicate phenomenological
intense structural dynamics. In addition to multiple
processes of emergence. This requires the use of
sequences of non- equivalent, different ideal
(characterized by a top-down structure and based on
general principles assumed to be universally valid) and
non-ideal (for instance, data-driven -statistical-, properties
of interpolations, based on artificial learning and
combinations of general principles -optimization- and

specific choices requiring computer simulations) models.
This is the research issue dealt with in this article. The
ideal and non-ideal models are considered as having
significant correspondence with the real generative
interaction mechanisms of the system and share their
essential, possibly necessary but not always sufficient,
features of quasiness.

We mainly focus on multiple modelling and little on
increasing   and optimizing the levels of approximation
and behavioural simulation (cases a and b). The
interaction mechanisms and their crucial feature of
theoretical incompleteness are represented by quasiness.
This allows for simulations of realistic reactions to
structural changes, external influences and adoption of
adequate approaches to act on the phenomenon (cases c
and d). Currently, this is conducted by acting on
parameters of fixed models (cases a and b). They are
considered reductionist and inappropriate to represent the
real phenomenon and its interaction mechanisms

In this study, we focus on cases c) and d) as
approaches to be considered when actions are to be
implemented on complex systems. Such as economic,
environmental, medical and social systems and where
appropriate modelling is necessary.

Approaches to model coherence, structural dynamics
and quasiness
Quasification: In Section 4.1, we consider consolidated
approaches to model and represent coherence in the cases
of Synchronized Multiple Synchronizations, Local
Couplings, Covariance, Correlation, and Cross-
Correlation. On the other hand, Section 4.2, presents
mathematical proposals for analytic and network
modelling of quasiness. Such proposals are analytical
approaches developed to model the multiplicity and
quasiness of multiple interaction mechanisms, and their
variable but predominant coherences in processes of
emergence.

System data value coherence: Global, local, and
multiple coherences are detectable. For instance, in
scale-free correlations among quantitative and measured
properties of system components. This is without
considering or needing to know how the interaction
mechanisms are modelled or their structural dynamics.

The detection of coherences is very important. They
are significant clues to the existence of consistent
interaction mechanisms of emergence. Which, in turn, are
important to hypothesize about and implement
interventions on the phenomenon. Usually, the approach
is to use a single model that is either assumed to
correspond to a single fixed idealized interaction
mechanism or sufficient to approximate. This averages the
effects of more than one interaction mechanisms. We
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consider such an approximation as a matter of
reductionism, since, it neglects structural dynamics of the
interaction mechanisms. Such reductionism may be
acceptable in the simplest cases but not generalizable to
highly complex systems. For these systems the level of
complexity is given, for instance, by the number and
dynamics of the processes of emergence occurring, the
acquired properties and the quasiness.

Approaches to  detect coherence are neither
descriptive nor prescriptive of the interaction modalities
of the components. In our view, the occurrence of
multiple quasicoherences is to be understood not in terms
of liability or approximations that may possibly be refined
but as corresponding to multiple composed and
superimposed phenomenological interaction mechanisms.

As considered in Section 3.3, the research challenge
is to realize suitable approaches to model generative
interaction mechanisms and their dominant properties
such as quasiness. This should fit phenomenological data
rather than trying artificially generate data usually
achieved  through  simulations  that  approximate  effects
and properties of the phenomena (cases a and b, in
Section 2).

Let us now turn to well-represented cases of
coherence[61]. In the conceptual framework of theoretical
incompleteness, quasi-coherence may be understood to be
represented as the irregular occurrence of dominant
coherences and in their combination. Related research
approaches concentrate on detection of such quasi-
coherence and infer crucial characteristics of the
corresponding possible interaction mechanisms. These
approaches focus on the interaction mechanisms and their
properties instead of confusing simulation of their effects.
This confusion occurs between the generating
mechanisms and their effects. For example, by
considering the geometrician of cobwebs made by spiders
intended as pursued on purpose having some
geometrical-like abilities instead of behavioural effects.
This is also the case for bees that build
space-occupation-optimized hexagonal cells in their hives,
or the birds that build certain kinds of nests. Even animals
that establish particular kinds of colonies. The effort to
artificially recreate the outcomes of this behaviour ignores
the interaction mechanisms generating such behaviour. 

Synchronized multiple synchronizations: The
phenomenon by which various kinds of synchronizations
are established which in turn become synchronized, has
been observed in the human nervous system and for
populations of chaotic systems[11, 38, 62-64]. If the
higher-level synchronization of multiple local
instantaneous synchronizations is maintained, then it can
be considered as a form of coherence[62]. An example of
a model of these phenomena is given by considering

ensembles of globally coupled chaotic maps (see, for
instance[65]. The coherence of their dynamics is described
by laws of the form:

(1)
N

j j j
j 1N

x (n 1) (1 )f (x (n)) f (x (n))
=

+ = − ε + ε 

where, N is the number of chaotic maps, i = 1, ..., N is a
space index, x(n) denotes the value of the ith map in
correspondence to the discrete time n = 0,1,.... The
function f(x) is given by f(x) = ax(1-x) (logistic map)
where: a denotes the non-linearity parameter of the
logistic map and g denotes the coupling parameter.

Local couplings: We may consider more complicated
systems in which the couplings are local rather than
global. This is the case for chains of coupled limit-cycle
oscillators, see[66], described by equations having a
generic form of the kind:

(2)n n n n 1 n n 1 nF( ) d(sin( ) sin( ))+ −ϕ = ω + ϕ + ϕ − ϕ + ϕ − ϕ

Where:
nn = The phase of the nth oscillator
ωn = Natural frequency
d = Suitable parameter
F(nn) = A nonlinear function responsible for the

non-uniformity of rotations of the considered
oscillator

Bravais-Pearson coefficient: It is generally possible to
use measures of correlation by applying the linear
approach of the so-called Bravais-Pearson coefficient[67],
see[68] for a review. This quantity measures the linear
correlation between two sets of data. Namely, the
covariance of two variables being divided by the product
of their standard deviations. Considering that covariance
determines the extent to which two random variables,
denoted by X and Y, covary. That is, the way they change
in the same way[69]. The Bravais-Pearson coefficient is
essentially its normalized measurement (with values
between -1 and 1). This coefficient, as covariance itself,
measures only linear correlations and neglects other types
of  relationships[70-72].  Given  a  pair  of  random 
variables (X, Y), in a population, Pearson’s correlation
coefficient ρ is given by:

(3)Cov(X,Y)(X,Y)
X Y

ρ =
σ σ

Where:
Cov = The covariance
σX = The standard deviation of X
σY = The standard deviation of Y
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Covariance is given by:

(4)(x x)(y y)Cov(X,Y)
n

=  

Where:
x and y = The means of the data series
n = The size of the considered sample

Cross-correlation function: The Bravais-Pearson
approach is generalized by other linear measures,
including the cross-correlation function. Let us consider
two time series of length N whose normalized values are
denoted by xn and yn with zero mean and unitary
variance. The cross-correlation function CXY (τ) depends
on time lag t and varies within the range from -(N-1) to
N-1 according to the following law:

(5)
N1

XY n n
n 1

XY

C ( ) N x y if 0

C ( ) if 0

τ

τ =τ
=

τ = τ ≥

τ τ<






Cross-correlation values can run from 1 (maximal
synchronization) to -1 (anti-phase signals). In conceptual
agreement with the issues discussed above, we may
consider quasi-coherences as partially occurring in the
cases mentioned above. They are varying locally and
valid over time in all possible combinations.

Analytical and network modelling of quasiness
Quasification: In this section, we consider two classic
mathematical approaches considered suitable to model
structural dynamics and quasiness. This includes systems
of differential equations and networks. The problem is to
consider idealized approaches to model multiple,
different, inhomogeneous, local or long-range, continuous
or temporary changes of the interaction mechanisms
occurring in emergent complex systems.

Fixed rules: In classical approaches to complex systems,
components are assumed to be in fixed numbers and to
interact continuously in the same nonlinear way. The
exception being parametric variation. Moreover, acquired
systemic properties are assumed to be generated by fixed
models. The classical approach utilizes techniques to
interpolate, model by considering data properties, preform
conceptual simulations and employ idealistic fitting
models. This approach almost inevitably ignores the real
processes and their properties. It is considered to be
approximated by ideal assumptions and abstractions
validity of abstract long-range unexplained correlation,
chaotic behaviours, power laws and polarization[43]. The
real generative interaction mechanisms and their
properties such as quasiness are rarely inferred and most

often remain unknown and neglected. They are assumed
to be suitably represented by fixed models and the
properties of models from data[2].

Conversely, in this study, we consider (see subsection
4.2.2) representations and properties of changes in the
compositions of the applied interaction mechanisms. Such
representations and properties are indispensable and
predominant characteristics of phenomenological
interaction processes leading to constituent emergence.
This approach is supposed to allow realistic simulations
in the presence of environmental changes and external
perturbations. This also enables more of a systemic
structural understanding that is needed to design
interventions on complex systems.

An example of the first case (fixed rules) is given by
the classic analytical definition of a system, denoted by S,
as mentioned in paragraph 2.1. Consisting of n interacting
elements pi for which there exist some measurements Qi
(i = 1, 2, ..., n). In the simplest case such as the occurrence
of a finite and stable number of elements, S may be
ideally identified by instantaneous Qn values and by their
time evolution. This is represented by a system of
coupled, first-order, ordinary differential equations[4]:

(6)

1 1 1 2 n

2 2 1 2 n

n n 1 2 n

dQ / dt f (Q ,Q ,...Q )
dQ / dt f (Q ,Q ,...Q )
dQ / dt f (Q ,Q ,...Q )

=
 =
 =


The assumption is that model (1) identically and
generally applies to modelling systems. The interaction
mechanism is also considered coinciding with system (1).
It is supposed to model the phenomenological structural
dynamics in a simplified and reduced way and therefore,
its effects on properties of pi are directly related to Qn.
Among the many possible examples, we mention the
well-known Lotka-Volterra equations[73]. This models a
system of interacting prey and predators:

(7)
dx/dt ax xcy)
dy/dt bx cxy

= −
 = − +

where, x is the density of prey individuals, y the density
of predators, α is the intrinsic rate of prey-population
increase, β denotes the predation rate coefficient, γ the
predator mortality rate and δ the reproduction rate of
predators per eaten prey.

Another well-known example is given by the so-
called Lorenz equations[74] that model the occurrence of
deterministic chaos. That is, sensitive dependence on
initial conditions is the essence of deterministic chaotic
systems. We have:
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(8)

d x(t) (y x)
dt
d y(t) rx y xz
dt
d z(t) xy b
dt

 = σ −

 = − −



= −


where r, b and σ are control parameters. The above is
included in the conceptual framework adopted by various
models of collective behaviours. For example, flocks,
swarms, fish schooling simulators, see[47, 50, 51, 53, 75-80]. Our
approach is to focus and identify high- representative
macroscopic laws that are assumed appropriate to
approximate the phenomenological interaction
mechanisms leading to microscopic behaviours of pi.

Often such high-representative laws (correlations,
power laws, scale invariance and self-similarity and
statistical distributions) are assumed first as models of the
generative interaction mechanisms. They are then
considered as the structural dynamics of the phenomena.
This may be acceptable for a certain type of simulations
where the approximation is sufficient for studying. This
is the case for evolutionary phenomena, and special cases
such as strange attractors, distribution and convergence.
On the other hand, it is misleading when used to act by
using such laws, understood as models of the generative
interaction mechanisms. This can lead to confusion over
the acquired properties, processes of acquisition of
properties  and  properties  of  the  interaction
mechanisms.

Variable rules: At this point we consider possible
approaches representing structural variations, for instance
when in Eq. 6 fn changes in fn,t as in the system of Eq. 9:

(9)

1 1,t 1 2 n

2 2,t 1 2 n

n n,t 1 2 n

dQ / dt f (Q ,Q ,...Q )
dQ / dt f (Q ,Q ,...Q )
dQ / dt f (Q ,Q ,...Q )

=
 =
 =


The crucial aspect is that the temporal systemic
interdependence between fn,t, the mutual definition in
terms of each other of dQn/dt, preserves their coherence.
In an ideal system (Eq. 9), the structural significance of
time is related to the selection of valid fn,t or of the
transient non-applicability of any of them or the usage of
new nonequivalent but admissible ones. This, for
example, is the case in non-smooth transitions.
Consequently, we may determine in time t the variables
Qn. This includes the related variables of fn,t and the
possible transient non-involvement in fn,t of some
Qk(0#k#n). We may consider Qk = 0 until the complete
non-involvement when k = n leads to the situation as
represented in the system of equations (Eq. 10) when

momentary new variables Qn+1 and fn+1,t are considered.
Such dynamics in representations is considered to be
corresponding to processes of structural dynamics.

However, due to the dynamics, variability and
fuzziness of the phenomenological multiple interaction
mechanisms we face a situation which is analytically
intractable. The variability, the sequences of fn,t
analytically represent the quasiness of the multiple
interaction mechanisms. In modelling the quasiness of
phenomenological dynamics of quasicoherent collective
phenomena, specific variable sets of dominant interaction
rules are considered. In this way, quasiness is modelled by
considering such sets of rules. We select mechanisms
depending on their ability to represent the real
phenomenon.   Realistically, by implementing simulations
with available data, we can consider context-sensitive
processes from combinations of previously used fn,t. For
example, this can be achieved using optimization criteria,
and artificial learning processes, through Recurrent
Neural Networks (RNN)[81]. It is possible to figure out the
possibility of identify generic approaches with effective
simulations. This can then be used to anticipate
characteristic behavioural aspects of specific categories of
complex systems. Furthermore, in the inferring or
selection of fn,t occurring on real data, we may  consider
cases in which sequences of data available are locally
interpolated.

By using appropriate approaches, we may consider
local sequences with significant interpolation and infer or
select suitable local and partial fn,t. It is one thing to
interpolate the global evolutionary path of the system (for
example of the variables Qn) but it is quite another to
identify the fn,t that model partial sequences of the system.
They should correspond to the occurrences of different
interaction mechanisms. Where there are multiple and
partial  interpolations,  their  coherence is
phenomenological. The challenge is to suitably represent
this situation. This is the case when local  polynomial 
interpolation  fits  many polynomials  within  specified 
overlapping neighbourhoods. These  solutions  may be
optimized by using suitable algorithms. This finally leads
to a possible formalization of structural variability as in
the ideal system of equations (Eq. 10):

(10)

n

2 2,t 1 2 n 2

2,t 1 1 2 n 1

3 3,t 1 2 n

2 

n n,t

Q )
(regular involvement at time t)

dQ / dt f (Q ,Q ,...Q ) dQ /
dt f (Q ,Q ,...Q )

(state of  invariability)
dQ / dt f (Q ,Q ,...Q )

(regular involvement at time t exceptthat Q  0)
dQ / dt f (Q

− +

→
= ≡

=
→

=
→ =

= 1 2 n 1

n 1

n 1 n 1,t 1 2 n 1

,Q ,...Q )
(involvement at time t of  new

possibly transient, variables Q ,  ,)
dQ / dt  f  (Q , Q ,  , Q )

+

+

+ + +
















→
 …
 = …
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(involvement at time t of new, possibly transient,
variables Qn+1, …) dQn+1/dt = fn+1,t (Q1, Q2, ..., Qn+1)
(involvement at time t of new, possibly transient,
variables Qn+1 and fn+1,t. However, fn+1,t may be introduced
without the introduction of new variable Qn+1 and be
applied to previous ones (Q1, Q2, ..., Qn), replacing or
combining with one or some of the previous fn,t. We deal
with multiple crossing interpolations and corresponding
fn,t, considering, for instance, new structural
non-equivalent aspects having different natures such as
trigonometric, exponential and fuzziness). Therefore, the
same complex system may be modelled by different
versions of the systems of ordinary differential equation
of type (Eq. 10). In this case, we have multiple and
simultaneous, possibly overlapping, models that when
taken together constitute effective modelling over time.

Modelling emergence of highly complex systems
using (Eq. 10) correspond to the multiplicity of the
generating interaction mechanisms having quasiness as
main feature. That is, their non-regular recurrence,
inhomogeneous applications, partial occurring and
possible combinations. Coherence is given by the
constraint of being in a system of equations. Moreover,
the variety of models of the type (Eq. 10) may not apply
to the whole system homogeneously. This depends on the
real phenomenology and areas of the system which are
modelled according to variants of the model. Some
examples of zones include the boundary and central parts
of the system as in the dynamics of flocks or swarms. 

Networks:  The  analytical  representations  depicted  by
Eq. 10 have an interesting conceptual correspondence to
network representations of complex systems. The Science
of Networks[82-85] represents systems as networks and
systemic properties as network properties. The quasi and
irregular roles of the equations in Eq. 10 corresponds to
situations when the linkages between nodes over time are
not static. That is, irregular, context-sensitive, non-linear
and weighted. This situation may occur in a variety of
ways, for instance, when networks are scale-free. That is,
having a high number of nodes with few links or a small
number of nodes with a high number of links. If the
small-world property holds, then most distant nodes can
be reached from every other node via a small number of
intermediate links. This situation depicts the occurrence
of quasi-networks: networks having variable cluster
coefficients, degree distributions and fitness. The
quasiness of networks is introduced in[86].

Other approaches may consider combinations of
analytical and non-analytic computational processes such
as Artificial Neural Networks (ANN). This is also the
case for networks changing levels and number of nodes,
such as RNN, (Fig. 2). This is achieved by using internal
states  to  process  sequences  of  inputs,  nature-inspired 

Fig. 2: A schema of an artificial neural network with
changing layers

computational approaches[87] and changing class in
cellular automata. We refer to the classic four classes
considered by Wolfram[88] for the evolution of Cellular
Automata characterized by: evolution towards a spatially
homogeneous equilibrium state; evolution toward stable
or periodic attractors with finite spatial extent; the
possibility of chaotic evolutions with unlimited spatial
growth of initial patterns and occurrence of localized
patterns having great complexity with the ability to grow
and contract.

Systems of the type (Eq. 10) and variable linkages in
Networks are considered to represent the dynamics of
quasiness in general and in particular, multiple interaction
mechanisms.

Quasification: At this point, we may consider the process
of quasification for the usual fixed models and
constraints. Conceptually it is a matter to replace fixed
properties with their inhomogeneity, multiplicity,
non-regularity and  partiality of different combinations.

Quasification may consist of analytical and network
models transformed into non-continuous sequences and
variable combinations of interaction rules and linkages.
The quasi nature of the system is specified by the
properties of such sequences and combinations. This
includes, partial recurrences (with non or partial
periodicity), random recurrences and inhomogeneous
occurring (interaction rules and linkages relate to variable
significant percentages of the system’s components).

Regarding varying constraints, we may consider the
behavioural constraints assumed by the well-known
Reynold’s model[54]. The interaction mechanism being an
ideal modelling of flock generations. In Reynold’s model,
the constraints of the interacting mechanisms for
individual components (birds) imply that they must:
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C Have motion pointing towards the average direction
of locally adjacent components (alignment rules)

C Avoid the crowding of locally adjacent components
(separation rules)

C Point towards the average position of locally adjacent
components (cohesion rules)

There are many varieties of modalities by which such
constraints may be respected (allowing quasiness) that
further facilitate coherence and emergence. However, this
configuration of constraints (having whatever
formalizations) may be further quasified when such
binding rules apply in different ways (generally or
differently by areas or subsets of interacting entity). For
example, with partial regularities, in variable
combinations and with different parameters. It should be
noted that quasification does not lead to increasing
generality or indefiniteness. It does, however, lead to the
specification of quasiness of properties of specific
collective behaviours.

Similarly, we may consider the occurrence of
quasi-deterministic chaotic systems and quasi Lotka-
Volterra systems applied in a specific way. In the same
way, we may quasify systems of inferred rules such as
interactive behavioural models of pedestrians, crowd
formation, vehicle traffic and shoaling fish. Of course, we
may consider the reverse processes of ‘undoing’
quasification by reducing the considered sequences of
options until they adopt a single fixed configuration. This
is in conceptual alignment with the processes that
transform a set into a fuzzy set (and vice versa).

A general view: Multiple interpolations and systems of
ordinary differential equations of type (Eq. 10)
conceptually correspond to the usage of multiple
modelling of phenomena of emergence. This is
established by multiple interaction mechanisms that are
non-completely analytically representable modellable.
Their modelling requires simultaneous multiple non-
equivalent models as considered by the DYnamic uSAge
of Models (DYSAM). For example, we mention
simulations requiring multiple usage of different ANN,
considered in[46]. Here, these models are realistic, either
DYSAM-like or not (when the number of ANN used is
just one). For the latter, the modelling is quasi-DYSAM.

In collective behaviours they are not properly
reducible but primarily not understandable when
considered being due to parametrical changes in the fixed
model of equations used as a general model of collective
behaviours (cases a and b in Section 3). While partial
simulations may be implemented with such reductions,
i.e., the use of single fixed generic models, simulations of
experimental interventions require more proper modelling
that considers not only approximate structural dynamics.

The cases mentioned for system (Eq. 10), of Section
4.2.2, are considered to be examples of models of
structural changes in the interaction mechanisms. In
collective behaviours, they are irreducible and primarily
not understandable as due to parametrical changes in the
fixed model of equations used as a general model of
collective behaviours (cases a and b, in Section 3). While
partial simulations may be implemented with such
reductions, using single fixed generic models, simulations
of experimental interventions require proper modelling
beyond approximate structural dynamics. We should use
proper modelling when considering flocks or swarms
under attack from a predator and under sudden
environmental perturbations. A tentative example
amenable to this approach is available on-line, see also[89].
This is related to a flock simulator designed on the basis
of a specific generative interaction mechanism. In this
case, the well-known Reynold’s model, (see Section
4.2.4), for implementing simulations where at each instant
all microscopic spatial information related to each single
boid is available.

Multiple systems establishing coherent collective
behaviours represent cases modelled as superimposed
quasi-simultaneous systems. As in the cases of multiple
systems of ordinary differential equations (Eq. 10), in
Section 4.2.2 and multiple linkages in networks, in
Section 4.2.3. In models of collective behaviours, we deal
with the establishment of coherence and quasi-coherences
represented by the occurrence of various phenomena. This
includes scale-free correlations among measures of
various properties that occur at similar times. Moreover,
for significant percentages of components such as
directional, metrical, topological, and mediated
information transfer[90, 48]. The conceptual symbolic case
consisting of multiple simultaneous and possibly crossing 
systems  of  ordinary  differential  equations  (Eq. 10) and
networks may have a variety of different versions. This
includes the use of sub-symbolic[9] ANN (the networked,
weighted, occurring at different levels, computational  
processing   of   ANN   is   considered  non-explicit and
non-analytically represented. For this reason, it is called
sub-symbolic whereas the ANN program is an explicit
algorithm, Fig. 2), nature-inspired[87, 91, 92] computational
approaches and their combinational change over time.
This is expected when multiplicity relates to the effective
generative interaction mechanisms. The multiple
interaction mechanisms, such as given by fn,t in systems
(Eq. 9) and (Eq. 10), (in Section 4.2.2) and their quasiness
are considered conceptually equivalent to the inferred
generative interaction mechanisms.

Ideal fixed models; ideal quasified fixed models:
non-ideal models. Ideal fixed models acquire
characterizing properties of complex systems. For
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example, attractors, behavioural, coherences, correlation
and power laws. Ideal fixed models on multiply
interpolated real data and constraints. Ideal fixed models
of inferred interaction mechanisms, constraints suitable to
simulate crucial features and properties of complex
systems. Ideal and quasified fixed models acquiring
characterizing  properties  in  quasi  ways.  That  is,
changes  in  number,  type  and  applicability  of
equations.

This occurs in multiple, simultaneous, possibly
overlapping systems of ordinary differential Eq. 9 and in
a sequence of partial networks. Changing the rules, their
domain of application and succeeding each other is
considered to correspond to the structural dynamics and
quasiness of the phenomenological generative interaction
mechanisms. An example is the quasification of
simulation models, e.g., agent-based models. Ideal  and
quasified fixed models on interpolations of real data;
designed, detected, inferred constraints. It is a matter of
ideal models of the generative interaction mechanisms
where the focus is on the designed, detected or inferred
multiple interaction mechanisms and constraints.
Non-ideal models as a mixture of general principles and
of specific choices. For instance data-driven and based on
artificial learning, properties of interpolations, Big Data
approaches and constraints to the interaction mechanisms
detected from real data of different nature. Examples are
found in 3D data collected using GPS, stereo-metric and
computer-vision applications and economic datasets.
Typical examples are profiles, behavioural standards,
models as formalisations of phenomenological constraints
to the interaction mechanisms (inferred rules of
interaction for vehicular traffic) and shoaling fish. Such
non-ideal models are characterized by quasiness
representing their structural, phenomenological and
(irregularly) coherent dynamics

Final summary: Standard research and simulation
approaches aim to identify the better fitting interpolative
model. Generating the acquired properties that are
supposed to approximate to the best the
phenomenological real mechanism. Under certain
conditions, the phenomena of quasiness and
quasicoherence, if applicable are assumed to be negligible
as microscopically irrelevant on the macroscopic best-
fitting model. These conditions apply when dealing with
populations of generative interaction mechanisms that are
intractable by their inhomogeneity, limited period of
validity, irregularities and non-repeatability in the
application. This situation corresponds to the microscopic
intractability of components when suitable strategies are
designed to look for statistical properties. (Such as
molecules of a gas, for which statistical thermodynamics

considers only systems of very large numbers of
molecules  and  neglects  details  of  individual
behaviours).

We assume such omissions are admissible when
considering microscopic data values for components and
their acquired properties. This approach, nevertheless,
hides the structural dynamics of fundamental importance
to the design and execution of interventions to modify an
emergent complex system hence, permitting the
interpretation of structural interventions on the interaction
mechanisms. While reductionist assumptions, such as the
admissibility of separability, completeness and finiteness
may be contextually effective, they cannot be generalized,
thus, making emergent properties and mechanisms of
emergence theoretically invisible[8].

In the absence of hypothesis about or knowledge of,
the structural dynamics phenomena modifying
interventions are reduced to non-structural, symptomatic,
interventions on properties of the components and on the
parameters of the interpolative models. It is also a matter
of reducing complex systems to non-complex systems and
assuming a suitable simplified approach, which is often
self-defeating[93]. This coincides with the inability to
represent and manage complex phenomena such as those
that occur in economic, environment (e.g., climate and
territorial safety), medical (e.g., pandemics and migratory
capacity and resistance in collective aggregations of
tumour cells leading to metastases) and social (e.g.,
criminality) settings.

Other approaches consist of collecting data from real
phenomena such as using stereo-metric digital
photogrammetry data related to real flocks[48], data
provided by GPS systems, data from ad hoc electronic
devices of coupled oscillators generating emergence[94, 95]

and data of different natures, such as collective
phenomena in economics and of signals. Such data are
usually interpolated and their collective properties are
assumed to be validating properties of the interpolative
models. Real, phenomenological interactive mechanisms,
such as for living beings[96, 97] are not intrinsically,
formally, representable and analytically intractable if not
simplified and idealized. However, the non-explicit
phenomenological interaction mechanisms may be
represented by some of their supposed dominant critical
features. In this regard, we considered approaches such as
systems of differential equations as in (Eq. 10) and
quasi-networks that can represent the quasiness of
structural dynamics, supposed as critical systemic feature
of phenomenological interactive mechanisms supporting
emergence of collective systems. This approach may be
applied in reverse to quasify phenomenological
interactions. We considered here the property of quasiness
as systems of inferred analytical models of critical feature,
as item of an ideal list to be extended by future research
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since phenomenological coherence remains a matter of
research, because: “Whatever the origin of the scale-free
behaviour is, ..., the fact that the correlation is almost not
decaying with the distance is by far the most surprising
and  exotic  feature  of  bird  flocks.  How  starlings
achieve  such  a  strong  correlation  remains  a  mystery
to us.”[48].

Further research: Research should focus on developing
approaches for multiple modelling using multiple crossed
systems of type (Eq. 10) integrated with other
sub-symbolic approaches. This includes ANN with
variable, hidden layers, number of neurons, networks with
variable linkage and nature-inspired computations. We
have introduced conceptual approaches and lines of
research to be implemented by corresponding models and
simulations for experimentation. It may be fruitful to
consider approaches based on identifying explicit and
equivalent possible functions fn,t, based on
machine-learning techniques, game theory, optimization
techniques, analogue processing and clustering techniques
allowing to consider clusters[8] rather than microscopic
entities. The challenge is to develop suitable approaches
to model generative interaction mechanisms that fit the
quasiness of phenomenological data. Such methods
facilitate appropriate structural interventions on   complex
systems. The focus should be on ideal or inferred models
of effective generative interaction mechanisms and their
quasiness. However, it might possibly also proceed by
identifying categories of phenomenological interaction
mechanisms of complex systems. Furthermore, as has
happens in physics, a long-term research perspective
might be to reconceptualize systems as fields rather than
as interacting entities[8]. The problems considered here
would then be completely redefined.

CONCLUSION

Highly complex systems in which multiple processes
of emergence occur, acquiring coherent properties over
time, should not be modelled by adopting the same
approaches used for other systems that possess stable
temporal properties. Consequently, in modelling complex
systems, it is not sufficient just modelling some crucial
properties. Rather, we should focus on their acquisition
processes and their features. Giving up, the search for the
unique and optimal model constituted of fixed and iterated
rules such as equations and structures of networks.
Dealing with complex systems, modelling and simulation
of specific properties does not correspond to the
simulation of the underlying structural dynamics of the
system and its quasiness. The quasiness, the opportune
incompleteness allowing compatibility with processes of
emergence of the models is intended to constitute the

crucial feature of multiple phenomenological interaction
mechanisms. They are applied in an irregular and
inhomogeneous way in the dynamics of loss, recovery and
acquisition of properties. This occurs in variable ways, for
which a complex system is not always a system, the same
system and not just a system. In this study, we have
introduced mathematical approaches to represent such
theoretical incompleteness. The quasiness of ideal and
non-ideal models for detected, inferred or represented
phenomenological interaction mechanisms generative of
emergence of complex systems. Importantly, as we have
elaborated in this study, neglecting the quasiness of
complex systems leads to the adoption of fixed,
simplified, optimized ideal models suitable for
non-complex systems or, at most, for specific properties.
This omission involves taking approaches that are, at the
very least, inadequate to act on the emergence of complex
systems. This includes:

C Changing, regulating and maintaining acquired
properties of emergent phenomena

C Recognizing phenomena as emergent
C Inducing phenomena of emergence in populations

that are collectively interacting
C Merging emergent phenomena
C Inhibiting or accelerating the establishment of

processes of emergence
C Managing the compatibility between processes of

emergence
C Varying the levels and type of quasiness

These concerns relate to the ability to represent and
manage complex phenomena that occur in examples of
climatic, economic, medical and social settings. We have
presented some possible approaches for appropriate
modelling with attention to structural dynamics. The
present research article is dedicated to the memory of
Professor Eliano Pessa with whom we were studying
these issues and to celebrate his valuable interdisciplinary
contribution and expertise in the science of complexity.
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