edWe]l

oOnlline

© Medwell Onlme, 2006

International Journal of Soft Computing 1(3): 181-183, 2006

Mechanisms to Map Correct Occam3 Constructs in Ada World

Nekkache, M., M. Aliouat and 'I.. Frecon
Département Département Informatique Université Ferhat Abbas
SETIF DZ-19000 Setif Algerie
'"Laboratoire d'Etude et d' Analyse de la Cognition et des
Modeles Lyon France

Abstract: To obtain a broad viewbroad view of parallelism, and fill a gap between wired systems exhibiting
natural parallelism and sophisticated theory about high-level language parallel programming, we are building
a compiler translating occam3 to Ada95. This study deals with mechanisms elaborated to map correctly Occam3
occam constructs in Ada95 Ada world. This differential study point out effects of those two approaches of
parallelism. Trials and comparisons with others parallel systems will bring practical insight about procedures

to make parallelism safe effective and usual.

Key words: Ada, communication, CSP occam, parallelism, synchromsation, communication, CSP

INTRODUCTION
Occam is built upon concepts founded by Tony
Hoare in CSP and was intended as a low-level assembly
language for the Transputer™ and was developed with a
minimalist approach that avoids unnecessary duplication
of language constructs. occam? later extended the occam
language with the mtroduction of data types. occam
can be used to program a single Transputer or a
network of transputers.
programming language enables an application to be
described as a collection of concurrent processes. Writing
concurrent application is so difficult perhaps we have not

The occam2 and occam3

the same view like in sequential programming, so we need
to have tools for specifying and developing concurrent
processes. We suggest that occam seems a good one. In
this study we present how occam may be translated to
Ada. Similar work was presented by Martin Stuart Mamo
for translating occam? to modula3™. Remaki and al®
present schemata to translating Grafcet to occam?2. Occam
may then be a bridge for translating Grafcet to Ada which
use a derived mechanism of CSP. The Concept of CSP
nterest more specialists i language development. Branch
Hansen extend pascal with procedure call and channel, in
super pascal®The Southampton portable occam
compiler translate occam2 to ANSI C and Peter Welch
implement CSP model in JCSP™. In an attempt to
enlighten analogies and differences, our implementation
is done in Ada.

REPRESENTATION OF CHANNELS
AND PROCESS

We are interested only by concurrency of the
language at this time. And we present occam under this
cormner,

Ooccam 1 ConcurentConcurrent
Programming language Occam 18 built onto twoonto
two fundamental structures: PROCESS, CHANEL.
Implementing those structures depend upon disposable
environment. Excepting the Transputer, we must choose
between languages exhibiting cocurrencyconcurrency, or
Sequential Languages mterfacing the operating systems.
Our implementation is done in Ada95 in an attempt to

enlighten analogies and differences.

low-level
[2.8]

Channels: A channel is a symmetric unbuffered two-
pointstwo-point link, allowing two processes to
communicate, it may be represented in Ada by an entry as
a rendezvous for two communicating tasks™ an entry is a
derived form of DPPL

Processes: In oOccam, the second corner-stone is the
process. A processs is an action or a set of actions,
executed sequentially or parallel, or by selecting one
among several waiting alternatives. The corresponding
entity 1s the Task.

Synchronization and communication: synchronization
Synchronization and communication in both languages
are derived from CSP™.

Corresponding Author: Nckkache, M., Département Département Informatique Umiversité Ferhat Abbas SETIF DZ-19000

Setif Algerie

Intl J. Soft Comput., 1(3): 181-183, 2006

Input/Qutput primitives: In occam,
primitives operations
ssynchromzation and communication.

Input/Output

are basic

Tnput from a channel: For a process P, awaiting a value
from channel C is denoted by local command
CP=<variable=;
a corresponding Ada construct 1s given by an ACCEPT
on an entry point C for a task P denoted by
accept C(<parameter=),

Qutput to channel: For a process P, sending a value to a
process Q via a charmmel C is denoted by a local Command
c! <expression=,;

A corresponding Ada construct 1s given by Q asking
a rendezvous on the entry pomt C of the task P, denoted
by P.C(<expressiomn>)

Process Construct:

SEQ Construct comrespond to Ada block, each
process component correspond to an action.

PAR construct correspond to an adaAda block, each
process component correspond to a task .task.

ALT comnstruct correspond to a select statement for
accept.

WHILE Construct correspond to while statement

IF construct comrespond to IF endlF ENDIF
statement.

Channel multiplexing: Occam enables to input a value
from one channel among several ones, selecting the first
disposable. Such a set of channels may be defined as an
array or vector of channels.

In Ada, we may use an array of entries, being
awreaware of the following differences. Occam allows
sharing of vector of channels by several processes,
communicating two by two via a shared element. But Ada
assigns a family of entries to one task accepting a
rendezvous on oa sole entry at a time.

So Implementing Vector of channels by a family of
Entries may be straightforward, but forbids equivalence of
parallel schemata.

PRINCIPLES OF IMPLEMENTATION

Input/output and channels: Each element of vector of
Channels should correspond to an entry. Each entry is
defined in a different task.

Contrary to Ada, occam does not ask for the receiver
at an omitted value, the channel being alone named in
output command. However, Ada demands might be
fulfilled, by associating receiving process to each
channel. These associations are built statically by textual

realizing both

182

analysis. But difficulties arise for multiplexed channels,
when a channel is indexedx by a dynamic expression. In
such a case | static determination of the used channel(s)
1s not possible, hence the naming of receiving process.
This solution is rejected.

An alternative solution creates a serving task for
each element in each vector of channels, as illustrated by
the following example.

Task type TCANAL 1s
Entry LECTURE (Y in out ELEM);
Entry ECRITURE (X: in out ELEM)
End TCANAL,;
Task body TCANAL 1s
Begin
Loop
Accept
LECTURE (Y: in out ELEM)
Do accept
ECRITURE (X: in out ELEM)
Do Y: =X End ECRITURE;
End LECTURE
End loop;
End TCANAL,

For the sake of regularity, this solution 1s extended to
simple charmels.

Hence a channel declaration in occam is translataed
mnto a task declaration m Ada. These Tasks will be
activated bust before running the body of their
englobingenclosing process.

B processes: Translating occam processes mto ada Ada
tasks 1s straightforward, except for the alternation ATLT.
ALT

Guardl
Guarded process];
Guard2
Guarded process2
Examples:
occam Ada
CHAN Al B Tache A:amray(0..9) of TCANAL;

Tache B:TCANATL,;

--receiving process
Alexp]?x
-- emitting process

Tache Alexp) LECTURE®);
Tache_A(exp). ECRITURE(3*2+c¢);

Alexp]! 3%2+¢

B¥ Tache B.LECTURE(Y);
B! result Tache B.EcritureECRITURE(result);
Fig. 1. This rule covers all constructs axceptexcept the alternation ALT

Intl J. Soft Comput., 1(3): 181-183, 2006

occam _ Ada

-- exemple -- Code
Task type tache_mere is
Entry rv_alt;
Entry rv_alt2;
Alt Entry rv_alt3;
k=5 & B e
procl End tache_mere;
Bx Task body tache mere is
Proc2; s
k=5 & wait t Declare
Proc3 Tache_altl:talt_input;altl;
Wait t-1
Procd BRegin
K=3 &SKIP Select
Procs Wwhen k>5=>=>

acceptrv_altl 1;
Ddo procl end;;
Or tache B.LECTURE(x);
Proc2;
Or when k=5=>
acceptrv_altl_2
Do proc3 end; End
select;
End;

End tache_mere;
Task type talt 1;
Task body taltl_input is
Begin
select
Tache BLECTURE(X),
Tache mererv altl 1;

Or delayt; Tache mererv_altl_2

Or --skip avoid Ttache mererv altl 3
End select;

End;

Fig. 2: Code generated for ALT construct

whereWhere “guard owned 3 conditionnalconditional
cases:
conditionCoendition & mput
conditionCondition & wait
conditionCondition and SKIP
Here is an occam example
occarn
ALT
k=5 & B
procl
k<5 & C%
Proc2
When we apply the rule Fig. 1 on this example we
obtain
Select
When k=5 == tache B.lecture(x);
Or when k<5 tache Clecture(x)
End select;

-k=>5& B%
--1=2 & wait t
-a=2 & SKIP;

But when k=5 => tache B.lecture(x) is an illegal
construct in Ada, in, in this context (select accepts).

So a supplementary task 1s needed to circumvent this
restriction. In 1987 we may suggested a task for each
alternation"'?. But now we propose a better proposal is

183

only one task for the entire ALT construct. Because at
any time only one alternation will be satisfied, the select
statement warranties that by choosing a unique
alternation. That 13 using a select statement; we decrease
the number of tasks generated and then execution time

(less task switch) Translation schemata for these
conditional alternations Fig. 2.
CONCLUSION

Translating occam parallelism nto Ada parallelism
seems very expensive if correct. A reason may be that a
micro- parallelism between operations/operators tightly-
coupled as in occam has no clear-cut image into the
macro-parallelism exhibited by Ada, more oriented
towards heavy processes loosely coupled.

REFERENCES

Hoare, C.AR., 1978, Communicating Sequential
Processes, Commumecation of the ACM.
Formal Defmition of Occam, 1983.
informatique, Globule 4, pp: 167-181.
Reference manual for the Ada programming
language, 1983. Umited states department Of defence,
ANSIMIL-STD-1815A.

Mamo, M.S., 1995, An occam2 To Modula-3
Translator, Diploma In Computer Sci., Magdalene.
Remaki, Z., J.F. Ponsignon and M. Nekkache, 1994.
Schéma de traduction Grafcet/occam?2, third
Maghrebian Conference,Engenering on Software and
Artificial Intelligence, MCSEAT 94, Rabat 11-14 Avri.
Brinch-Hansen, P., 1994, The programming language
super Pascal Software Practice and Experience,
24: 467-484.

Welch, P. and I M. R. Martin, 2000. A CSP model for
JAVA thread and vice-versa, Logic and semantic
seminar, CU computer Laboratory.

Barrett, G., 1992, Occam3 reference manual, Technical
report, INMOS Limited, Bristol, BS12 430, England.
Hansen, B., 1978. Distributed processes: a concurrent
programming concept, communication of the ACM,
Hoare, C.AR., 1984. Programming manual, INMOS
limited, Prentice Hill intemational, series in computer
science, C.A R Hoare series Editor.

Neklache, M., 1987. Systéme de programmation
paralléle occam/Ada, Thése de Docteur Ingénieur,
Tnsa de Lyon, 17 juille.

Nekkache, M., Y. Martinez and L. Frecon, 1987.
Expression du parallélisme occam en Ada. Actes des
journées ADA AFCET/ENST le Parallélisme en Ada
Bigretglobule n®57, Paris decembre , [ISSN 0221-52).

AFCET-

10.

11.

12.

