MedWe]‘l

Online

International Journal of Soft Computing 1(4): 247-254, 2006
© Medwell Onlme, 2006

An Efficient and Reliable Parameterizable Recovery
Approach for Distributed Applications

M. Aliouat, M. Nekkache and Z. Aliouat
Department of Computing Science Ferhat Abbes University,
Setif Route de Bejaia Séuf 19000 Algeria

Abstract: Designing fault tolerant distributed systems, particularly when taking into account both hardware
and software faults, is a challenge requiring extra endeavor. In this effect, backward error recovery approach
is enough general to be used to recover a failing distributed application. In this study, we have to deal with the
fastidious problem of interprocess rollbacks propagation during recovery operation. The control of this
undesirable situation, so called domino effect problem, with its qualitative and quantitative aspects, has been
well addressed in the past and has led to many proposal schemes for its total prevention or minimization.
Among these schemes, we focus attention to Randell’s conversation and Kim’s Programmer Transparent
Coordination of recovering concurrent processes (PTC). In this study, we present a variant of PTC approach
aiming to make recovery operation more trustworthy and efficient. This improvement is reached towards new
concepts namely: S-propagation, accusation limit, definite invocation and 2 by 2 reliability. The definite
invocation and 2 by 2 reliability are used to avoid the domino-effect qualitative aspect, while the Accusation
limit should prevent the domino effect quantitative aspect and should ensure also that the S-propagation will
be stopped at a satisfactory reliability level. Therefore, we deduce a parameter noted Accusation limit Level
which controls the maximum number of accused recovery regions per any process involved in rollback. Our
variant is as flexible and efficient as PTC but more reliable. Furthermore, the computation validity obtained

through the acceptance tests, is ensured by a number of tests greater than in the conversation scheme.

Key words: Fault tolerant distributed systems, trustworthy and efficient recovery, domino effect

INTRODUCTION

Due to the constant increase of complexity in
software applications design and to the important growth
i integration size of hardware components and the size of
high performance computers from hundreds to tens of
thousands of processors’!, the mean time to failure in
these situations is becoming significantly shorter than the
execution time of many current high performance
computing application. Then the rate of fault occurrences
(hardware transient faults and software faults) becomes
more and more worrying. In order to face this problematic
situation, many approaches coping with these faults
(essentially software faults) have been put forward in the
past. In distributed systems environment, two of these
approaches are particularly investigated like conversation
scheme™” and Programmer Transparent Coordination
(PTC) scheme™. The two schemes are based on the
recovery blocks concept.

The main problem in taking into account the fault
tolerance attribute in distributed computing systems is the

control of domino-effect situation. This tricky problem is
characterized by an avalanche of process rollbacks
involved in recovery which should incur an unacceptable
time and space overhead Generally, to deal with issue,
1t has been proposed two types of approaches:

s+ Approach based on programmed coordination of
Recovery Blocks (RB).

¢+ Approach based on automatic coordination of
Recovery Points (RP).

The conversation scheme'® represents the first type
while the PTC scheme™ fits the second one.

The conversation structure requires that: The
interactive application processes should have to be
synchronized at the exit from the conversation and, the
basic rules defining its semantic might be stated. The
closure of the conversation ensures a high degree of
reliability and may guarantee a confinement of the
damages caused by an error. So, no error propagation out
of the conversation members takes place. The domino

Corresponding Author: M. Aliouat, Department of Computing Science

Bejaia Setif 19000 Algeria

Ferhat Abbes University, Setif Route de

Intl J. Soft Comput., 1(4): 247-254, 2006

effect is then controlled. This positive aspect is obtained
to the detriment of the synchronization constraint!® which
may raise deadlock problem. The stringent programmer
endeavor to coordinate the recovery blocks gives
conversation a lack m flexibility and 1s programmer error
prone. The efficient use of the conversation needs
adecuate languages, probably executable specification
languages in order to relevantly verify its rules.

Aiming to alleviate the application programmer from
the burden of coordinating the conversation recovery
blocks (preventing additional errors source), the PTC
scheme has been proposed in™*. The aimed goal is to
render efficient and easy the cooperation of recovery
activities among concurrent processes, so the PTC
scheme allows: 1. Independent design and uncoordinated
recovery capabilities of distributed processes such that:
Every process say P1(1 <1 < N) 1s liable for damage that
itmay cause (l.e., P11s responsible for detection and error
recovery). This principle leads to exclude the S-
propagation (see definition D4) from consideration in
recovery mechamsms. This type of recovery propagation
means a propagation of states restoration to senders
(processes) of application messages. The complementary
and natural notion of the S-propagation is the R-
propagation (states restoration of contamined receiver
processes).

¢ Automatic rtecovery points setting before some
message receptions.

The PTC scheme efficiency is essentially due to:

¢+ Mimmization of undoing computation amount during
recovery actions, therefore lessening or preventing
domino effect,

¢ Stating formal rules for managing recovery activities,

* Transparency in complete automation of recovery
capabilities, so, no programmer involving is required

The PTC scheme has also some weaknesses such as:

* Woeak trustworthiness in achieving reliable recovery

¢ (Overhead in time and space,

+ Exhausted Importer (EI) problem™, where a sender
process which provides erroneous messages, cannot
correct them before all alternative's recovery blocks
of receiving process (es) have been exhausted.

¢ Prohibiting S-propagation in the scheme, certainly
makes easier cooperative backward error recovery,
but may generate EI problem and can lead to domino
effect situation. This may also raise the problem of
trustworthiness in consumed messages and in

delivered services. So, in this sense, the conversation

scheme is more trustworthy.

The main drawback of the original PTC is the
wnsufficient reliability which may be expected from a
recovery operation to be achieved. Indeed, making a
process responsible for detecting and correcting its own
errors 1s very difficult to realize (indeed mmpossible). So,
any comimunicating process P1 may be either messages
producer or messages receiver one. Then, if process Pi
fails, it is fair to consider two possible cases:

» The error 13 originated from Pi and P11s m charge for
error detection and recovery (PTC principle)

¢ The error is exported from any other process Pj via
sent messages, then P1 1s a victim and may accuse Pj
to be an error source, this later case 1s not handled in
PTC scheme. Therefore, the only way allowing Pi to
recover correctly isi-to trigger Pj rollback via
S-propagatior.-to 1mtiate its own rollback and-
eventually to force, towards R-propagation, every Pk
rollback (The process Pk has consumed Pi’s
messages).

Although mteresting, both schemes, as conversation
as PTC, have some limitations either in reliability or
efficiency, implementation capabilities
(complexity). So, it i1s to be expected that a "good"
backward error recovery approach 1s one which can
particularly provide following criteria:

either m

» A high reliability in cooperative error detection and
backward error recovery. This means allowing the
two types of propagation (S and R-propagation),

» Mimmization of undoing computation amount
(notably, preventing domino effect situation),

» Efficiency in taking maximal advantage of processes
concurrency,

¢ Transparency by complete automation of recovery
capabilities,

* Easmess in implementation as a recovery mechanism
free from domino effect.

To meet most of the previous criteria by a novel
approach, that 1s, to improve existing recovery schemes
(conversation and PTC), we propose a novel view of PTC
(PTC-based Variant) providing an enhancement in
recovery capabilities in following manner:

¢ Making PTC more reliable in placing more reliance on
1t recovery ability

* To give application programmer a choice to privilege
either the reliability degree of a critical application or

Intl J. Soft Comput., 1(4): 247-254, 2006

the real-time application response time or making a
trade-off between the two extremes.

DEFINITIONS AND NOTATIONS

Notations: Let P1, [1 < I < N] be a process, RBE[P1.x]
denotes the recovery block execution of process P1, with
a recovery point x. (P1.x) denotes the recovery pomnt x
inPi (Px.a) denotes a Pseudo Recovery Point (PRP) in
RBE [Px].

AT: an Acceptance Test;

BRP: Base Recovery Pomt, set at the beginmng of a
Recovery Block (RB).

Definitions: Before PTC-V presentation, some preliminary
definitions are needed to lighten some concepts. Let Pi, Pj
and Pk be three communicating processes.

D1: If Piis exporter (sender) of an application message
M and Pj 1s importer (receiver) of that M (M flows from P1
to Pj), then when Pi fails to pass its AT, Pi has to revoke
M so, Pi is said to be a Direct Revocator (DR) of Pj.
Conversely, Pj is called a Direct Dependent (DD) of Pi.
The same DR and DD notion may be also applied to RBE's
of processes.

D2: When [Pi.y] becomes DR of an RBE[P] x] at reception
(in Pj) of amessage M andif [Pi.y] had a DR [Pk.z] before
sending M, then [Pk.z] is said an Indirect Revocator (TR)
of [Py.x] if [Pk.z] was not previously DR of P1. Every IR of
[P1y] 1s an IR of [P).x] if it was not DR of P1.

Recursively, if Pj imports information message M
from Pi, then every DR of Pi, before sending M, becomes
DR of Pj. Every RBE is DR of its own process and every
DR of an RBE is also a DR of the including RBE (in case
of nested RB's).

For example: RBE [P2.a], m Fig. 1, is a DR of RBE
[P4.a] and RBE [P0.a] is an IR of RBE [P4.a].

¢ TIf[Pix] is a DD of Pj, after message reception M in Pj,
then every DD of [Pi.x] acquired before reception of
M 15 called Indirect Dependent (ID) of Pj. Every ID of
Pj1s also ID of its every DR.

Example: In Fig. 1, [P5.a] is an ID of [P2.a]

Note that: The DR's of a PRP are those acquired at its
establishment. The DR's of an RB are: Ttself plus the DR's
union of every PRP included in this RB. The DR's of a
process Pi are the DR's union of every RB in P1. A Direct
Revocator Set (DRS) 1s the DR's set of PRP's and RB's, (or
process’s DR’s).

The Revocator Set (RS) of a RBE[Pi.x] is: RS=DRuUIR

D3: If RBE [Pj.y] receives application message M from
RBE[P1x] then [P;.y] 1s said Direct Accusator (DA) of

Po P1 P2 P3 P4 PS5
ml n
v m2
>
m3
m4 ms
»
mt!
¥y ¥y ¥y vy v V¥

Fig. 1: Definite invocation

[P1.x]. Conversely, [P1.x] 1s called Accused of [Py.y]. Every
DA of [P).y] is DA of all its accused’s. For example, in
Fig. 1, [P4.a] is a DA of [P2.a] and [P2.a] is an accused.

¢+ When [P].y] is DA of [Pi.x], then every DA of [P).v]
acquired before reception of message M becomes
Indirect Accuser (IA) of [P1x]. Every IA of [P].y] s
also IA its accused’s. In Fig. 1, [P4.a] 1s [A of [PO.a].

The Accuser’s Set (AS) of a RBE[Pj.y] is: AS=DAUTA

» IF RBE[Pk z]1s a DA of [P1y] and [Pj.y] 15 a DR of
[P1x] then, if [Pix] and [Pk.z] have no relation
between them, then [P1.x] and [Pk.z] are mutually IR.

Note that: The relation “is accuser of” is a sub-
relation of ‘is a revocator of”; the former one 1s used for
mnvocation with accusation, while the latter 13 used for
invocation with revocation. The relation “is revocator of”
1s assoclated to the RBE’s and their accuseds, but the
relation “is a revocator of” corresponds to processes and
their DR’s. The DA Set (DAS) of every RBE in process Pj
is a subset of DD Set of Pj.

D4: Let P1, Pj, Pk (i# J # k) be three communicating
processes such that Pk imports Pj’s messages and Pj
imports Pi’s messages, we said S-propagation of
rollbacks issued from Pj to reach every partner process
Pi such that Pj is accuser of Pi. Conversely, an
R-propagation 13 a rollback propagation issued from any
process Pj to reach every process Pk such that Pjis
a DR of Pk.

PTC-V BASIC CONCEPTS

The system model for which our recovery approach
has been developed may have the following
characteristics:

¢ The system is distributed over nodes and for the
sake of simplicity, we assume that each node
performs a single application process.

¢ The computation trustworthiness of processes is
ensured by recovery blocks which may be
overlapped.

Intl J. Soft Comput., 1(4): 247-254, 2006

¢ The interprocess communication system is assumed
to be reliable, i.e., the messages cannot be altered

neither lost.

Basic concepts: The approach we propose to improve
some insufficiency of previously mentioned schemes is
based on some concepts like:

Definite invocation

Definition: A Definite Invocation (DI) initiated by a
process Pi®? is an invocation for a recovery where a
called process Pj must roll back (one for all) to a recovery
point supplied in the invocation message.

The aim of definite invocation is to avoid the
qualitative aspect of the domino effect (preventing cyclic
state restorations may be generated from progressive roll-
back). This DI concept may be used in order to get an
optimization in time and space overhead, since every
process involved in cooperative recovery operation has
to do one and only one rollback. Tn other words, a failing
process is the only one which has to propagate state
restoration to its partners. The failure of process Pi in
recovery region (interval between two recovery points)
implies revocation of all previously sent messages and
therefore, each process received at least one message of
those (potentially) corrupted messages has to be invoked,
by revocation , to roll back. Every message received in a
recovery region may be error prone then, any process
originating of those messages may be invoked, by
accusation, to roll back. So, to give traditional PTC
scheme more reliability and making it more realistic, PTC-V
take into account the two types of recovery propagation
previously defined (see D4). The systematic use of S-
propagation in concurrent systems, where recovery
blocks are not well coordinated, may raise the quantitative
aspect of domino effect (intolerable undoing computation
amount). As to prevent this fastidious and costly
situation, we introduce two additional new concepts like:
2 by 2 reliability and accusation limit:

2 by 2 reliability

Definition: A 2 by 2 reliability is the trustworthiness
granted to an information message which has been
validated by two correlated acceptance tests.

This concept relies on the trust conferred to an
information message which has been validated by an
acceptance test in sending recovery block (in message
producer) and in the corresponding receiving one (in
message consumer). This principle ensures that any
message M, issued from a RB[Pi] such that: RB[P1] is
invoked (for rolling back by accusation) from RB[P]] and
M is not suspected to be erroneous by any other RB[Pk],
M is not resent to RB[Pk] during roll back. This may
contribute to detect possible message alteration during
transmission.

250

PO P1 ;PZ P3
5 Pa a
Ta 0T _/ a
% 1
-

E b b
\ b T -1T-
1 ' C " C
C L gt
VC v v A J

Fig. 2: Accusation limit

From 2 by 2 reliability concept, an invoked process by
accusation, must reproduce only messages for which it
has been accused. So, during recovery operation, a
subset of received messages must be (locally)
compensated mstead of recreated. Like this, the message
compensation operation is achieved according to saving
and deleting formal rules. The situation depicted in Fig. 1
llustrates this principle. For example, when P2 fails at its
acceptance test in RBE[P2.a], according to 2 by 2
reliability concept, we may have:

Due to message ml, which may be erroneous, PO is
invoked by accusation,

While message m3 and m5 may be corrupted, process
P4 and P5 are invoked by revocation.

Process Pl is not concerned with recovery, since
neither RBE[P1.a] nor RBE[P0O.a] has to revoke
message m4. PO agrees with P1 about correctness of
message m4, since their acceptance tests have been
successfully passed.

With definite invocation, Processes PO, P4 and P5 are
invoked by P2 to roll back respectively from, [PO.a], [P4.a],
[P5.a]. With message compensation mechanism, process
P4 has only to read message m6 without triggering P3 to
roll back for reproducing it. This may be used for the
benefit of stopping systematic S-propagation.

Accusation Limit

Definition: Let Pi be a process involved in a recovery
operation, if . is a number of accused Recovery Blocks
belonging to Pi, then L 18 said: level of accusation fimit.

By means of accusation limit, the S-propagation may
stops at a level which may be considered as reaching an
acceptable degree of reliability. It may be used efficiently
to take into account the error detection latency. The
example depicted in Fig. 2 shows:

If P2 fails at acceptance test associated to [P2.¢], then
by accusation, the states restoration will be propagated
until the initial system state is reached ie. the state
defined by the recovery line {[PO.a], [P1.a], [P2.a], [P3.a].
When accusation limit principle is used and if for instance
L is set to 2 (L. = 2), then the recovery line will be {[P2.b],
[P1.b], [PO.b], [P3.a]}.

Intl J. Soft Comput., 1(4): 247-254, 2006

The level L is tightly dependent on the application
constraints, particularly:
* Reliability Degree (RD) to be wished for the runming
application,
Desirable Response Tine (RT) for this application.

Since 1. represents the maximum number of accused
RB's in each involved process, 1. isthen proportional
to RD and RT. An estimation of the function giving
L may be:

F, = C1*RD + (1/C2)*RT, where C1 is the detection
coverage factor (Cl=1 => perfect acceptance test) and
C2 1s the deadline factor (when C2 = - => RT has no
effect). The justification of F_ is application dependent,
since RD and RT may not be strictly satisfied m the same
time. According to the application requirements, we may
privilege RD over RT (and vice versa) and as may be the
case, the value of I. must be consequent. Tt is noteworthy
that F-_ may be significantly used to estimate the strategy
effect on the application behavior (to appreciate incurred
time/space overhead).

PTC-V OPERATIONAL PRINCIPLES

To take decision concerning recovery activities,
PTC-V uses the dependency relationships between
processes. This concerns automatic setting of new RP's,
discarding unusable ones and identifying the processes
which are involved in a recovery operation.

Basic recovery points rules

RO: Insertion rule of Pseudo Recovery Point (PRP): A
PRP is set in process P1 whenever P imports application
messages from any exporter process Pj and there exists at
least one Direct Revocator of Pj which is not included in
DR set of Pi.

R1: Pseudo Recovery Point discarding rule: Any PRP
(P.x.a) may be discarded if all members of (P.x.a) Revocator
Set and (P x.a) Accusator Set are partially validated.

R2: BRP destruction rule: Any BRP [P.x] may be
discarded if:

The acceptance test associated to [P.x] 1s
successfully passed and

All members of R3([P.x]) are partially validated and

All members of AS([P.x]) are partially validated.

R3: Accusation limit rule: Let L be the accusation limit
level, when getting a new DR[Pj.y], any RBE[P1.x] (such
that: 1 # j, P1 and P; are linked with accusation relation)
must keep only the L accused RB belonging to the same
process Pj. These RB’s are the most recent ones.

251

Coordination of RBE states: In order to correctly
determine its state, any RBE must keep information
concerning the states of RS and AS components. For this,
the following actions have to be performed, like:
Transmitting the states of RBE's and handling the related
information.

Communication of RBE states: For states communication
between RBE's, state messages have been defined:

Invocation message (IM): When a RBE fails to pass its
acceptance test, a defnite mvocation message 1s sent.
The IM 1s piggybacked by the set of direct accuser’s and
direct dependents of the failing RBE. This information
forms the valid Recovery Line.

Application message (AM): This type of message is
considered as a state message because it carries the DR
set of emitting process with information message 1ssued
from application process. This enables to keep trace of
new DR's and to maintain the revocation relation in every
node of the system.

Dependency message (DM): This type of message 1s sent
from an RBE[P.x] when an AM is received. The DM
contains the DR set (previously received in AM) and the
DA of RBE[P.x]. The DM 1s essential to maintain the
accusation relation.

Validation message (VM): It is sent when an RBE passes
successfully its acceptance test. Tts aim is to validate the
RBE state. The VM contains all DRS and DAS elements
(having already passed their tests) with their recent
states. The VM is useful for maintaining the TR and TA
relationships.

Messages compensation principle: The main aim of
message compensation is to avoid re-creating some
indispensable messages for rolling back processes, since
these messages are not revoked and have been locally
saved during first reception. So, although a process Pi1 15
linked to another failing one Pj via AD relation, the Pj’s
rollback may leave the process Pi not concermed. For this
purpose, a lot of computation may be saved, resulting
particularly i

The number of RB alternates to be performed during
recovery may be less than in ordinary computation;
the probability of new error occurrences (notably
transient hardware faults) is lowered, so greater is the
likelihood of recovery success.

Intl J. Soft Comput., 1(4): 247-254, 2006

¢+ Decrease in messages communication may advan-
tageously alleviate the transmission system load.
Another resulting advantage 1s the possibility of
stopping S-propagation roll back, since a process
may not be constrained to rollback for merely
reproducing (to a demander one) an indispensable
message.

R4: Compensation rule: During a rollback of a process Pi,
any message M will be compensated if:

¢ M is not produced by a Process Pj invoked (to roll
back) by revocation 1.e. Pj 1s neither a failing process
nor a DD of a failing one.

* M is sent by a process Pj mvoked by accusation, but
M does not belong to the set of messages for which
Pj is accused.

RS: Rule of message savings to be compensated: If a
process Pi acquires a new DR subsequently to reception
of message M, then Pi has to set a PRP (Pix.a) and M
must be saved in compensation list of (Pix.a). If Pi
receives M without new DR, then M will be saved 1n
compensation list of PRP established when the sender of
M is acquired as a DR.

R6: Rule of deleting compensation list: A compensation
list associated to a PRP(pi.x.a) belonging to an RBE [Pix]
of Pi may be deleted if:

* P1 has successfully passed its acceptance test
associated to [P1.x] and

* All AS elements related to [P1.x] are partially validated
and

+ All PRP set before (P1.x.a) are deleted,

The condition 3 above ensures that if Pi is invoked
by revocation, then the rollback will takes place from
(P1x.a) or from a PRP subsequent to (P1.x.a). In this, after
having deleted, a compensation list is no longer needed.
Note that: The compensation list is updated when one of
the two state messages IM or AM is received (According
to rule R6, the compensation lists associated to PRP's of
an RB, are discarded one by one; but if the time factor 1s
critical, deletion of those lists may be done only during
BRP discarding).

Recovery algorithm: When an RBE[P1.x] € P1 fails, P1 has
to broadcast a defimte Invocation Message to roll back.
Any process, say P), receiving such a message may be
one of the following cases:

s Pjis an accused of [Pix],
» Pjis a Direct Dependent of [P1.x].
» P has no relation with [P1.x].

Thereafter, Py has to perform the following actions:

» Determine its situation: If concerned, P updates the
states of RBE’s contained in RS and AS lists.

¢« If Pj is an accused, then Pj has to roll back if TM
contains a RBE[Pi.x] such that: RBE[Pi.x] is direct
accuser of RB[P].y]

¢ If Pjis a direct dependent then, Pj has to determine,
according to RBE supplied in IM, the PRP from which
the roll back will be performed.

Any process Pj having identified its roll back point
from IM message has to perform a single state restoration.
So, Pj initiates a new recovery block alternate if it is
accused but re-executes only the current RB alternate if it
is a direct dependent.

» If Pj has no relation with [P1.x], then two cases may be
considered:

¢ There exists a least a process Pk which is in
dependency relation with Pj such that Pk is invoked
to roll back so, Pj must update the RBE’s states
contained m RS and AS sets.

* Pj has no relation with any invoked process then, the
IM message 13 merely ignored.

Three types of failures may be occurred:

» Single failure corresponding to a single failing
process,

*+ Concurrent failures corresponding to several failing
processes

¢ Cumulative failures related to one or many processes
failed during recovery operation.

PTC-V ensures a recovery operation exempted from
dommo effect for the precedent failure cases; this is done
according to: - A single rollback per process involved in
this operation according to definite invocation,

* A mimimization of undoing computations via PRP
msertion for revoked processes and accusation limit
for accused ones.

PTC-V PROPERTIES VALIDATION

In tlis section, we present some lemma related to
some properties which are used to prove:-The high
reliability and efficiency improvement of PTC-V,-the
efficient maintaimng of dependency relationships and

Intl J. Soft Comput., 1(4): 247-254, 2006

complete coordination of interprocess recovery activities.
The preliminary comparison study of conversation and
PTC schemes [8] has revealed that conversation is more
reliable than PTC.

Lemma 1: PTC-V i3 more reliable than conversation and
PTC protocols.

PTC-V vs traditional PTC: When naturally and
systematically allowed, the S-propagation and R-
propagation provide more reliability in PTC-V, since in
PTC only R-propagation is triggered. Indeed, let P1 and P;
be two commumnicating processes, when Pj fails after
having received (consumed) messages fro Pi, 1t 1s logical
to consider that the error source may be either Pi or Pj
itself. The only way to recover efficiently with maximum of
trustworthiness is to restore Pj state (at error free one) and
propagate this decision to Pi for doing the same
operation. Since PTC-V, contrary to classical PTC scheme,
uses both types of propagation, it is obvious that a
recovery action 1s more trustworthy (reliable) in PTC-V
protocol.

PTC-V vs conversation: Let P1, 1 €[1, N] be a set of
communicating processes involved in a recovery
operation and L 13 the level accusation limit. Let C be a
conversation enclosing the N processes. In C, each
process Pi is represented by a recovery block so, when a
process P} m C fails, N acceptance tests should be
performed to cooperate for validating the computation
mside C, while in PTC-V this computation should be
validated by N*L acceptance tests at least (L = 1).

Furthermore, the recomputation of the current
recovery block alternate of a revoked process may be
sufficient to discard error effects which have been
propagated to it via received messages. This may be used
in knowledge when practically the current alternate is
designed to be more efficient than the next one.

Note that: As it is known, the efficiency of RB
their
chronological order, so the re-execution of the current
alternate may grant to PTC-V more efficiency (contrary to

alternatives is inversely proportional to

systematically executing the next altemate as in

conversation scheme).

Lemma 2: According to rule R3, the number of accusers
and accuseds managed for each process is minimized. If
L 1s the accusation lumit level N is the number of
interacting processes and A is the accused number of an
RBE, then A 1s such that: A=N*L.

253

Proof: Every RBE [Pi.x] may have a number X of DR
belonging to a process Pj, X will increase with interactions
between Pj and [P.x]. If L 1s the accusation limit level, then
[Pi.x] will keep at most, 1. accuseds belonging to Pj. Then,
at any time, the RBE [P1.x] will maimntamn no more than L*N
accuseds. This number represents the accuseds number
transmitted by process Pi to its Direct Dependent.

Any RBE[P1.x] having acquired X (X = L) accuseds,
after receiving a message from a process Pj, keeps no
more than T. accuseds of Pj ([Pi.x] will be a DA of Pj). For
the remainder of accused RBE's (i.e. X - L), [Pix] is only a
DD for them. They can revoke it but [P1.x] cannot accuse
them (in comsequence of accusation limit). So, if A
represents the total number of accuseds maintained in
each node, then A is such that: A=N*L.

Lemma 3: Comparatively to PTC and according to BRP
deleting rule and accusation limit, PTC-V manages a
minimal number of BRP per process.

Proof: According to BRP deleting Rule (R2), only the
needed BRPs for an invocation by revocation or
accusation are maintained. With the accusation limit,
every Direct Accuser [P1.x] of a process Pj, may accuse no
more than L recent recovery blocks of Py; the rest of RB's
of Pj cannot be accused by [Pix] and its DA. So, the
destruction of their BRP is not delayed until partial
validation of [P1.x] and its DA will take place. The BRP
destruction 1s then anticipated, since it s based on the RS
and AS sets which are reduced by the rule R3.

SPECIFICATION OF PTC-V SCHEME

In order to validate the behavioral properties of
PTC-V, a formal specification 1s needed. For this purpose,
the temporal logic and algebraic data types formalisms
have been used to both specifying the functional aspect
and temporal constraints.

The Abstract modules"™", combining together
temporal logic and algebraic data types in same modules,
was the formal specification tool we used.

The target fault tolerant system has then been
specified via an abstract system formed by a set of
modules namely: Application, PTC-V, network, operating
system, which cooperate for achieving recovery
capabilities.

The basic recovery module of this system 15 PTC-V
which uses a set of cooperative sub-modules such:
Invecation, Validation, Interaction and Dependency™.

The intra and extra mteractions modules have been
specified with temporal logic comnectors expressing:
priorities, authorization conditions, etc.

Intl J. Soft Comput., 1(4): 247-254, 2006

FORMAL VALIDATION OF
SYSTEM PROPERTIES

The proof of properties allows the system to be
confined in its original specification ie. avoiding
divergence from the last one. The concurrent properties
are of two types:

Safety property and liveness propert
proving these properties, two methods are used:

ESEI o

* Invariants method for safety property, - Attached
assertions method for liveness property. To validate
properties, a system of formal proofs is required. For
this, the abstract module method has been extended
to include an axiomatic proof system (set of
theorems, axioms and inference rules of a classical
and temporal logic). Such a system has been used to
demonstrate safety and liveness properties of the
target distributed system adopting PTC-V scheme.
So, 1t was proved that:

* The progression of the target system 13 effective
(liveness property) 1.e. "Every request made to PTC-V
modules is eventually served",

¢+ The system is domino effect free and exempt from
deadlocks (safety property).

CONCLUSION

From scrutiny of previously proposed recovery
schemes like conversation and PTC, it results, in each
one, some weaknesses either in reliability or in efficiency.
PTC-V 18 put forward in order to cope with these lacks and
attempts to make the recovery capabilities more efficient
and reliable. This aim is feasible with new concepts such
as: Definite invocation (avoiding progressive rolls back)
and accusation limit (allowing a flexible based-application
trade off time-space overhead and reliability degree
provided). These concepts combmed with 2 by 2
trustworthiness notion may achieve a tolerable
undoing amount of computation. Even though no
restriction is imposed to the S-propagation, PTC-V is
domino effect free.

A formal specification of a liable distributed system
using this approach has been realized and a formal
validation of its essential properties has been proved. Due
to the space restriction of the paper, the specification
description and formal validation of the latter one have
been deliberately omitted.

ACKNOWLEDGMENT

The research work reported here was supported in
part by the National Agency for Research and
Development under grant B1901/58/05.

254

10.

11.

12.

13.

REFERENCES

Adiga, N.R. et al, 2002, An overview of the
BlueGene/l. supercomputer In Proceedings of the
super computing Conference (3C°2002), Baltimore
MD, USA, pp: 1-22.

Randell, B., 1975. System Struture for Software faut
Tolerance IEEE Trans. on Soft. Eng., N°2.

Tyrrell, A., 1986. Design of Reliable Software in
Distributed Systems using Conversation Scheme,
IEEE, Trans. on Soft. Eng. N*9.

Kim, K.H. and J.H. You, 1990. A Highly Decentralised

Implementation Model for the Programmer
Transparent Coordination (PTC) Scheme for
Cooperative Recovery FTC 20.

Kim, K.H. 1988 Programmer Transparent

Coordination of Recovering Concurrent processes:
Philosophy and rules for efficient implementation "
TEEE, Trans. on Soft. Eng. N°6.

Kim, KH. 1989. Performance of Look ahead
execution 1n the conversation scheme, IEEE, Trans.
on Comp. N”8.

Kim, KH, IH You and A. Abou-el-naga, 1986.
A Scheme
Independently designed Recoverable Distributed
Processes FTCS 16.

for Coordinated Execution of

Aliouat, M., 1986. Reprise de processus en
environnement distribué aprés occurrences de
pannes matérielles transitoires ou permanentes

Docteur Ingénieur Thesis IMAG/TIM3 lab., IN.P.G,
Grenoble, France.

Aliouat, M., 1992, Recovery mn Distributed Systems
from Selid Faults SAFECOMP'92, Zurich.

Kroger, F., 1987. Abstract Modules combining
algebraic and temporal logic specification means TSI,
N=6.

Kroger, F. and F. Simor, 1987. Abstract Modules: An
Approach to Specification of Concurrent systems by
means of temporal logic and ADT's prog. Specif.
Proc. Worhshop, RP N°8711.

Owicki, S. and L. Lamport, 1982. Proving Liveness
properties of Concurrent Programs ACM Trans. on
Prog. Lang. and Sist. N°3.

Kurose, I.F. and Y. Yemim, 1982. The Specification
and Verification of a Comnection Establishment
Protocole usmg Temporal Logic
Specification, Testing and Verification. Ed C.
Sunshine. North- Holland Publishing Compary.

m Protocol

