MedWe]I

Cnline

International Journal of Soft Computing 1(4): 261-270, 2006
© Medwell Onlme, 2006

Adaptive Streams-C Design Methodology for SoRC Based on Modern FPGA

L\ tibaa, A., A, Shoui and *E. Bourennane
"BEcole Nationale d’Ingénieurs de Monastir, Avenue Ibn Ellazzar 5019 Monastir Tunisie
H.aboratoire EmE de la FS Monastir, Avenue de I"environnement- 5019 Monastir Tunisie
*Laboratoire LE2i, CNRS UMR 3158, BP 47870 Université de Bourgogne, Dijon France

Abstract: Tn recent years, the use of FPGA "Field Programmed Gate Arrays” as the main suitable circuit for SoC
"System on Chip" prototyping has launched an ever-increasing FPGA capacity mass production. FPGA based
systems offer the programmability of software, allowing various applications to be mapped to them. Those
circuits, specially the modern FPGAs, witch actually containing one or more embedded processor cores (both
hard and soft cores) are quickly becoming a mainstream architecture for high performance application. Hoverer
the lack of co-design tools witch fully support those new architectures has introduced the so-called Design
Productivity Crisis. To remedy this gap, a great effort has laumched in researching of an CAD "Computer Aid
design" tool that is oriented towards hardware rather than software development with a reasonable abstraction
level, witch established standards industry-wide and/or the efficient interface synthesis tools making the
mtegration of IPs "Intellectual Property" from different provider and/or technologies m the same SoC will be
more easy. [n this study we aim to extend the Streams-C design and synthesis environment in order to support

those new challenges.

Key words: FPGA, SoC, SoRC, IP, streams-C, powerPC, corecormect

INTRODUCTION

Great influence has been added to area and speed
SoC designs by On Chip Commumication Architectures
OCCA. This influence 1s expected to be even more
pronounced on System on Reconfigurable Chip SoRC. To
date, little researches has been analysed the OCCA
suitability of SeC for SoRCHM., We describe in this
document our contribution to mmplement a flexible
communication module extracted from Streams-C
component interface witch based on FIFO blocs and
evaluate the mterconnection structures performances in
comparison to conventional buses.

We describe in the first part, the Streams-C
programming model, the second part interest in an
adaptive Streams-C design methodology mn order to
support the latest challenges witch occurred n FPGA's
embedded resources and the programmable logic

evolution’™

1. the third part give a solution to adapt
Streams-C hardware component witch targeted to Virtex
and Virtex E to Virtex II Pro FPGA.

In this study, we aim to extend the Streams-C tool
methodology in order to support the the latest FPGA

SoR.C architectures.

STREAMS-C PROGRAMMING MODEL AND
RELATIONSHIP TO OTHER ON-CHIPINTERFACE

The Streams-C langage have an intermediate level
{(between the lugh level and the low level design tools).
This language consists in a set of library functions
callable from a C language program™.

The Streams-C compiler synthesizes the hardware
part of the application architecture for multiples Virtex-E
FPGA based board and the software part like a
multithreaded software program for host computer control
processor. Our platform architecture 1z based on
" Annapolis Microsystem FireBird ™ PCI board" which
has the following block diagram (Fig. 1). The specification
of the behavior architecture is done with high level
constructions or compenents which permit to model the
application like a set of competitor processes. Those
communicate between them using tubes of data called
Stream. The Stream components are based on producer-
consumer non blocking protocol. The processing model
used in Streams-C 1s inspired from CSP (Communicating
Sequential Processes) formalism like a parallel
programming model®*.

Its implementation 13 a combination of annotations
and library functions callable from C. Thus 1s for pragmatic

Corresponding Author: Mtibaa, A., Ecole Nationale d’Ingénieurs de Monastir, Avenue Tbn ElJazzar 5019 Monastit Tunisie

Intl J. Soft Comput., 1(4): 261-270, 2006

Streams-C
specification
=)
Phin Compilation c;g
meﬁlmfe SW architecture
P part

RTL VHDL

description Firebird PCI B

maped to Stz procl:.lmsw in

firebird board communication SED

FPGA circuits IPACeceS0N

Fig. 2: Streams-C compilation phase

reasons as streams-C builds on several yvears of compiler
development within the SUIF C-processing framework "),

This model i1s mainly based on three distinguished
objects, processes, streams and signals. A process is an
independently executing object with a process body that
is given by C subroutine. A process can run on the host
processor or on an FPGA chip. For an FPGA process, the
process body accesses only local data and is written in a
subset of C supported by the Streams-C compiler. In
Addition, intrinsic functions to perform stream or signal
operations may be referenced. All declared processes are
initiated when the program begins and run until their
subroutine bodies complete.

This study is well adapted to the parallelization of
image processing and signal algorithms®™.

Those can be expressed like a succession of
mdependent processing modules. Each module use like
input data the results produced by one or several
previous modules. This communication model allows that
every of processing module can be described like a task
which communicate in one side with process and the one
with the following stage. Tn Streams-C tool, the parallelism
(in task level) 13 explicitly done by the designer and it
appears in the competition between the processes forming

262

the program. During the compilation phase of C language
based specification, every task 1s transformed to an
autonomous hardware entity synthesizable architecture
(associated to hardware processes) m RTL VHDL level, or
being compiled to be executed like a simple set of
processes on the host processor which commumcate with
our reconfigurable resource FireBird board (Fig. 2).

The management of communication between the
different tasks forming the application is taked place by
means of flux on which the elementary input/output
operations are possible. This flux can be seen like a
tampon file or buffer with sequential access, in which the
producer process writes its results and the consumer
reads its data. Streams-C materializes this flux by a FIFO
type structure.

The streams-C hardware libraries: It was written in
synthesizable RTL-level VHDL with heavy use of
generics. Depending on the context of use, the compiler
instantiates specific modules from these libraries. Its
stream library consists of approximately 30 modules. Each
stream module uses a standard interface to communicate
with the process on one side and the I/O port on the other
side. The modules make use of the various "Firebird"
channel mapping such as nears test neighbor, Crossbar,
FIFOs, or intra-FPGA communication. Two protocols,
Valid Tag and buffered, have been implemented. The valid
Tag Protocol delivers a data item accompanied by a
one-bit tag every clock cycle. The tag indicates whether
the data item 1s valid. The Buffered protocol fills a buffer
on stream write and then empties the buffer on stream
read. If the buffer nears full, the stream read module sends
a signal to the stream write module to stall, which the
stream write module propagates to the pipeline controller
and instruction sequencer of the producing process.

The streams-C software libraries: Which use the POSIX
threads package Pthreads to simulate (at functional level)
software processes and streams commumications in
software application architecture part.

PROPOSED BASED INTERFACE
METHODOLOGY

In the early stages of SoRC design, cores were
designed with many different
communication protocols™.

Integrating such cores in a SoRC often required

interfaces and

suboptimal glue logic to be mserted. In order to avoid thus
problem, standards for on-chip bus structures were
developed. Currently there are a few publicly available
bus architectures from leading manufactures, such as the

Inti. J. Saff Comput., 1(4): 261-270, 2006

FPGA's

B

PoweelC 405 core(s)
R

STH] Joaumadeura) qTd

AV —

Xilinx virte x-Il Pro FPGA

bardware
task hlocks

SCC: StreameC Component
8CC IFC; Streama Interfice Component
PSCCB: Private StreamsC Component Bus

Fig. 3: SoC bazed on Hw/Sw streams-c component

w
HW architecture Bus architecture
part part
Streama-C hardware
FIFQ/PC Host
Streams-C hardware
CPB_wrapper PowerPC
{Virtex [1 Pro)

Fig. 4: Streams C adaptive architecture

The cores are predesigned and preverified to work with
the CoreConnect bus architecture and protocols, thus
allowing for reuse from chip to chip.

Our methodology™ consist in the substitution of the
software part of our application which is a set of
processes executed in the host computer to a set of
hardware processes executed in PowerPC processor core
into the FPGA circuit for a final issue to create a full
Hw/Sw embedded system as a SoRC prototype (Fig. 3).

The hardware component of Streams-C compiler is
targeted for Virtex E FPGA, so we must take the
technologic and architectural constraints before move our
design to Virtex IT Pro FPGA family (Fig. 4).

Our work is targeted to XUP Virtex II Pro
Development system board which contains one Virtex IT
Pro FPGA with two embedded PowerPC processor corel'™
(Fig. 5).

We propose in this adaptive methodology to
implement a wrapper component called OPB_Wrap as a
CoreConnect OPB side embedded architecture bus. This
OPB_Wrap is generated like a Streams-C hardware
component and based on an existent Xilinx soft IP called

263

Fig. 5: XUP Virtex I Pro development system board™

We propose in this adaptive methodology to implement
a wrapper component called OPB_Wrap as a CoreConnect
OPB side embedded architecture bus. This OPB_Wrap is
generated like a Streams-C hardware component and
based on an existent Xilinx soft IP called OPB_IPIF™ with
its pseudo full configuration (Fig. 6). This soft IP is
supported by both the Virtex-E and the Virtex-II Pro FPGA
circuit families.

OPB WRAPPER COMPONENTS
SPECIFICATIONS

The block diagram of Streams-C OPB Wrapper
Sc_OPB_Wrap" iz showed in the Fig. 7.
The principal features of the "OPB_wrap" are resumed as
follow:

Intl J. Soft Comput., 1(4): 261-270, 2006

TP Interconnect
To INTC 1
Interrupt |+
controller
Reset -P
External
L SRAMTF | [qpd >
Slave N
4| attachment PIC Register IF IF
0 and Xilinx P >
P M "Glue" Address " ar
g sttechment decoder custom IP
B core
Writc FIFO @]
4.._
Read FIFO [l
Master [F |<"
——{Control DMA
—— Data path &
ghather
S
DT h'd
-
Device
Fig. 6: OPB IPIF block diagram
Streams-C OPB_wrap FIFO data
transaction IF
<-4----7 Scheduler Read/Write
€-----X transaction | data transfert
component [| processes
1T
¥ " : Rend/Write s
transaction ke
SRAM IF [;
OPB |r __)l control signals SC-HW
IPIF Register IF | component
1
1
i Address [Master/Slave
< ’I decoder L config, IF FINEN
|
| |
Control - - - T Reset [-===f-%
Data = !
I
L___> Interrupt &= -~
—_— controller

Fig. 7: OPB _Wrap Component block diagram

The FIFO data transaction 1s a module that contains .

Read/ Write hardware processes specified in
Streams-C with 1its controls signals interfaces
between the Streams-C hardware component
(8¢ Hw_ Comp) and the Xilinx Scheduler Transaction
Component (Sch Tr Comp);

264

The interrupt controller is a module which receives
interruptions from S¢ Hw_ Comp and send interrupt
packet to Sch. Tr Comp, this packet contain the
class Scheduler c: public sc_hw_process {

public:

(const char™* process name,

Intl J. Soft Comput., 1(4): 261-270, 2006

unsigned int new_id,

sc_system™ sys,

processor* pe)

:s¢_hw_process(process name, new_id, sys, pe)
d

}
void* run() {};
IR

Fig. 8: Streams-C void process class

/// PROCESS_FUN ReadWrite FIFO run
HIN

1: Process declaration
/1 PROCESS FUN Read 8¢ Hw Comp FIFO

2: Streams (%) declaration
/ff IN_STREAM sc_uint8 [256] IP_To_Sch_FifoInStream
/ff IN_STREAM sc_uint8[256] OPBIPIF_To_S8ch_FifolnStream

/ff OUT_STREAM sc_uint8[256] Sch_To IP_FifoInStream
/{f OUT_STREAM sc_uint8[256] Sch_To OPBIPIF_FifoInStream

3: Signal(s) declaration

TN STGNAL sc uint32 OPBIPIF To Sch _Enable Sig
I OUTvRIGNAL sc_uint32 8ch To TP _Enable Sig

/if OUT_SIGNAL
fff OUT_SIGNAL

sc_uint32 Sch To OPRIPTF Ready Sig
sc_uint32 Sch_To IP Ready_Sig

fff OUT_SIGNAL
fff OUT_SIGNAL

sc_uint32 Sch_To OPBIPIF Full Sig
sc_uint32 Sch_To OPIPIF_Empty_Sig

/1 OUTvSIGNAL
/# OUT_SIGNAL

sc_uint32 Sch To OPBIPIF WriteEnable Sig
sc_uint32 8ch_To OPIPIF ReadEnable Sig

//f PROCESS FUN BODY
C subroutine code

/f/ PROCESS_FUN_END

Fig. 9: Streams-C Hw process declaration

source 1interrupt, the current operation defined in

Sc Hw Comp status registers and the destination of the

mterruption. This interrupt packet (Int Pack) 1s processed
by Sch Tr Comp which according to the nature of

Sc_Hw Comp
priority defined by the user
specification, this last send interrupt events to the OPB

TPIFCA,

current operation and its interruption
i Sch Tr Comp

265

The SRAM interface (respectively Register IF) is
targeted for TP which support this type of transfer, in
our case this interface consist in FPGA local RAM
bocks which 1s shared between the OPB IPIF and the
Sch Tr Comp. The register interface consist in few
register (point address) decodes, read/write request
and acknowledge signals. The SRAM mterface
consist in a address range with its address block
decode, address bits and transaction control signal.
The scheduler transaction component is the main
module in S¢ OPB Wrap, this block schedule the
different data operations (FIFO commumcation
between OPB IPIF and the S¢ Hw Comp, SRAM
communication between Sc¢ OPB Wrap and OPB
IPIF), configuration signals (via the Master/Slave
Config IF), interrupt events and reset signal. The
scheduler module is parameterized by the user like
the different operation priorities, the master slave
S¢_Hw_ Comp configuration, The size or /fand depth
of different FIFO, SRAM and Registers.

S¢_ OPB_Wrap specification: As we mentioned
previously that an process may be either a host process
or an FPGA process. Host process can do file I/O and use
the full C language. FPGA processes must adhere to the
supported C language subset!™'"],

The compiler can synthesize logic for operations
using unsigned integers of arbitrary bit length and arrays
of mtegers. The programs structured
programming constructs. In lining of function calls 1s
currently being mmplemented.

must use

Preprocessing for hardware side of synthesis: On the
hardware side, the app.sc file is processed and translated
into one file called app.cf before being processed by the
synthesis compiler. It includes:

The architecture definition of the hardware (in
pragmas);

Include files, such as macros for the hardware
compiler and other things;

Extern declarations of functions that are running in
software and their pragmas;

Defimtions of functions rumning in hardware and

their pragmas;
» Pragmas for each process declared in ///PROCESS,
» Pragmas for each comection declared in
/HCONNECT,

Function headers have void return values and take
processes and parameters as arguments.

Intl J. Soft Comput., 1(4): 261-270, 2006

External

memory

-

Memory Signal

interface coniroller

>

I
e e [e e ey e i
Stream bT Stream pr Stream
module F ;pelme m“q module ipeline contro module

Instruction Instruction

decode decode

Datapath module Datapath module

Instruciion Instruction
sequencer sequencer

Process 1 Process 2

Processing element
Fig. 10: Processing element structure
App.sc P Streams-C pre-processor
Runtime . : . Sim
library Sythesis Simulation \ library
[App Syn.ccp] App.cf

App.all.vhd

Fig. 11: Streams-C compiler organization

Preprocessing for simulation: The app.sc file is
processed and translated into app sim.cpp. This 1s done
m a similar manner to preprocessing for the software
side of synthesis, however every process is a derived
class of sc_sw_process. All connections are represented
and all run functions are mcluded. There are, however, no

Pe0.x86 bit
stream.

266

register assignments or startup/shutdown of processors.
In our example the Sch Tr Comp 1s modelled by a set of
vold class declaration (Fig. 8 and Fig. 9) contaiming
hardware processes. This component contains mainly
three processes; one for FIFO data transaction; one for
SRAM mterfacing and the last for memories

Intl J. Soft Comput., 1(4): 261-270, 2006

FSM: process (State, RdEn, WrEn,
Mem64 Ak,
Mem64 High Data Valid,
Mem64 Low Data Valid)

Begin -- process FSM

Mem64 Req <="0,
Mem64 Write <="0";
Mem64 Low Enable <="'1";
Mem64 High Enable <='1";
Stall <="0Q";
case State is
when STO =>
NextState <= STO;
if (RdEn = "1")
then
Mem64 Req <='1"
NextState <= ST1;
end if;
when ST1 =>
if{(Mem64 Low Data Valid="'1")
and (Mem64 High Data Valid ='1"))
then
Stall <="1";
NextState <= STO,
else
Stall <="1";
NextState <= ST1;
end if;
end case;
END process FFSM,

Fig. 12: Generated FSM for control flow

mitializations (Register interface can be modelled as a
FIFO transaction).

Every hardware process 1s an independent executing
entity (PE) (Fig. 10) which contamn Stream(s) or/and
signal(s) declarations and C subroutine body. Among
these main processes for "Sch Tr Comp" m Streams-C
specification is shown in Fig. 9. In this declaration (FIFO
Hw process m "read" mode), this one of these three
processes which have been declared with their own
stream and signals names.

The process body which 1s a sort of C subroutine
and in this declaration it uses the streams and signals of
the two other processes and in the same time wait an
Int Pack data from the interrupt controller, in our
testbensch example, the IP Sc Hw_Comp 1s configured as
slave, with 32x256 FIFO buffer, with lugh priority FIFO
transaction mode.

267

The S¢ Hw Comp send three sort of interruption
(read, write and initialization); In any case of those
wnterruptions, the Sch Tr Comp the
correspondent operation from Int Pack and route it for
OPBIPIF the
CoreConnect bus.

extract

to destination component in

SCHEDULER TRANSACTION
COMPONENT SYNTHESIS

The Streams-C compiler (Fig. 11) builds on the
infrastructure build for the NAPA C compiler!” which is
based on SUIF (Standford University Intermediate
Format)'? compiler infrastructure and the Malleable
Architecture Generator "MARGE" data path generator.
The Streams-¢ compiler includes extraction and
scheduling of data path blocks from the Abstract Syntax
Tree AST™, pipeling of For and while loops and
generation of a control program to sequence the
generated hardware blocks.

The Streams-C compiler coverts the process body (C
code) into three maimn parts (Fig. 10); a basic block, a data
path and a control flow part. The basic block is a straight
line section of code without branches. The pipeline block
appears like an imner loop body of a leop with
independent iterations (do-all loop) than can be pipelined
by the compiler. The control flow part is targeted for loops
that cannot be pipelined by the compiler. From this part,
Streams-C generates an FSM to sequence the basic and
the pipeline blocks of the data path.

The compiler generates a complete VHDL
architecture for each chip. The structure of the generated
entities is illustrated in Fig. 12. Each chip contains zero or
more processes and zero or more sltream. A process
contains the instruction sequencer and the data path
module. Within a data path module 13 an instruction
decoder, zero or more pipeline controllers and the data
path circuits. The stream module is specific to the size of
the stream payload, the type of resource used by the
stream (FIFO, Crossbar, Inter-PE bus) and the
synchronisation protocol (valid tag, buffered). The
compiler also generates a multi-threaded control program.
Before initialling host processes, the control program
loads the FPGA configuration bit files and initializes local
memories. Then processes also communicate via streams.
When a stream connects "Host processes”, the same
library is used as for simulation.

When a stream connects an FPGA process with any
other process, driver calls are issued to read or write the
Firebird hardware FIFOs.

Intl J. Soft Comput., 1(4): 261-270, 2006

From decoded instruction
Interval Flush Heration
Y Y Y
IntervalCnt FlushCnt RerationCnt
B g
¥
Start > Shifl bit >
Stall —p| Controllogic 1084] pipe enable
To pipeline instruction
in data path

Fig. 13: Pipeline controller structure

The Streams-c¢ compiler builds on the infrastructure
built for NAPA C compiler"'”. The processor module
comwverts the amnotations and the SC macro calls mto
pragmas that are parsed by Streams-C compiler. This
architecture, based on the SUIF compiler infrastructure
and the "MARGE" data path generator includes extraction
and scheduling of data path blocks from the Abstract
Syntax Tree AST, pipelining of For loops and generation
of a control program to sequence the generated
hardware blocks.

The new version of Streams-C compiler include
semantic validation of process and Streams pragmas,
pipelining and control of while loops, state machine
generation for on board sequencing and an efficient
stream communication hardware library, components of
which are instantiated by the compiler to effect the
desired stream communications.

Pipeline control: A pipeline controller 1s instantiated
whenever there 1s a pipeline mstruction m the data path.
There are two types of pipeline controller: definite
iteration, where the number of iterations is fixed at loop
entry and indefinite iteration, where 1t 1s not.

There 18 an enable register with one bit for each level
of the pipeline. The pipeline control module sets the
appropriate bits in this shift register to control data path
operations at each level. A pipeline controller must first be
mutialized with: the nmumber of pipeline stages, the pipeline
initialization interval; the number of flush cycles and the
number of iterations (for definite iteration controller).
Then the pipeline instruction is 1ssued by the sequencing
state machine. The imtiation mterval determines the
number of pipeline stages that are active at the same time.
The pipeline enable register is a shift register, with a 'l

268

being shifted in every "initiation interval” clock cycles.
Since some of the operations occurring withing a pipeline
level might stall, the pipeline controller 1s also stallable.
On a stall signal, the enable register 1s set to '0's. When
the stall ends, the original contents of the enable register
are restored. Fig. 13 shows the pipeline control structure.
The iteration Cnt register 1s used for definite iterations
and the Terminate signal is used for indefinite iterations.
The PipeMaster is used to restore the PipeEnable register
after a stall.

Pragma processing: The purpose of pragma processing
1s first to ensure that the process and stream declarations
are consistent and the to use the information to map each
process onto the correct clhup and select the appropriate
instance of a stream commumcation module for each
stream used in the program. The compiler has no build-in
information about the target architecture. This information
15 kept externally in header and architecture defimtion
files, allowing the compiler to easily be re-targeted to
different board. The header files establish names for each
FPGA chip and for each path between chips. The names
are the link into an architecture defimtion file that
describes stream library modules. For example, for the
Wildforce architecture (our first architecture), if a process
is on P1 and writes a stream to a process on the host, the
stream uses the hardware FIFOlout connection on the
Firebird board and a stream module 1s selected for
instantiation on P1 that observes the FIFO protocol and
connects to those pins on Pl. Similarly, in the host
process, the stream read calls the Firebird driver to read
FIFO1.

Process and signal attributes: Those attributes of the
processes and streams must be defined m annotations.
There are seven stream declarations in our scheduler
transaction module. Every declaration gives the stream
name and its own type.

For synthesis, a physical path 1s specified. There
follow the bit width of the stream element, the number of
buffers, the number of readers and the first bit used. The
example also shows process specifications for read fifo,
scheduler and purge; these give the physical mput and
output streams corresponding to the logical streams used
by the process. In addition, for synthesis, the process 1s
mapped to a physical chip and the name of the process’s
subroutine body 1s given.

Functional simulation: A Streams-C program may be
simulated at the functional level (Fig. 11). Tts functional
simulator uses the Linux Pthreads package to support
concurrent processes and the stream communication. At

Intl J. Soft Comput., 1(4): 261-270, 2006

Table 1: Synthesis results for OPB_ Wrap

Sch_Tr FIFO SRAM/ Add_ Int_

comp IF IF dec cnt
Slices 432 385 341 170 150
Luts 612 517 480 229 168
Block RAM4 2 2 1 2

this level, the programmer can use conventional software
debuggers and print statement to understand the parallel
program’s concurrency behaviour. The programmer can
detect many potential deadlock and livelock conditions
and get a good approximation for buffer sizes required for
correct program executlon.

Our simulation tools use the /// annotation and the
SC macro calls to generate a C-++ program that links the
process function body with the simulation library. The
generated C++ source program 1s then linked with the
Pstreams library to produce a Linux executable that can
run on the Limux workstation.

An architecture definition file also describes
characteristics of memories accessible to the FPGAs. Read
and write latencies for each memory are used by the
pipeline scheduler, so that loops that access memory (as
well as read/write streams) are pipelined correctly.

Instruction sequencing: Withing a process body, the
compiler analyzes the AST and partitions the tree mto
data path, encompassing basic blocks and pipeline blocks
and control flow. A basic block 15 simply a straight line
section of code without branches. A pipeline block is an
inner loop body of a loop with independent iterations (do-
all loop) that can be pipelined by the Streams-C pipelining
algorithms. Control flow 1s used for loops that cannot be
pipelined. We note that "if-statements do" not usually
result i control flow, as the compiler converts "If-
statements into guards controlling execution of the
if-body.

From the AST representation of the control flow, the
compiler generates a state machine to sequence the basic
and pipeline blocks of the data path. Each block 1s called
an "instruction” in the data path. Conditional expressions
are evaluated in the data path and cause state changes in
the sequencer.

Synthesis results: Written in Streams-C, the OPB_Wrap
synthesis 18 resumed in the Table 1. Theses results are
provided by Synplify synthesis tool and for Virtex II Pro
targeted architecture. The Xilinx OPBIPIF (with its full
configuration), this last has used like resources the
following values: Slices: 567, Luts: 817, Block RAMSs: 4.

DISCUSSION

Current methods of interfacing TP cores to system
buses have their own problems. The Xilinx TPTF module

269

only supports Xilinx platforms and OPB/PLB bus
standards. An mterface methodology has been proposed
aiming to ease the interface process and resolve some of
these problems. The interface methodology attempts to
separate the interface and the function of the TP, in order
to eliminate the complex interfacing process for custom
and third-party TP cores onto SoC integration platforms.
The methodology particularly addresses reconfigurable
System-on-Chip. The interface adaptor logic provides an
automated mterconnection between the IP core and
different communication architectures. In the future, once
this methodology has been investigated and proven, it
can be incorporated into a more automated CAD tool.
This CAD tool will allow designers to mix-and-match
different IP core functions with the most appropriate
system intercommection structure.

There are still significant issues to be resolved
concermng the methodology. An Interface Adaptor Logic
and a generic IP core will take longer to develop then an
ordinary TP core with interface incorporated. If a
communication protocol has been updated, the adaptor
module will need to be modified.

CONCLUSION

This study has proposed a new methodology that
will improve the reusability of TP cores and promote more
complete explorations of the most appropriate system
interconnection architectures for individual chips. There
are several SoRC integration platforms that are available
on the market today, each with their unique architecture
and each with their own system-bus protocol. Interfacing
IP cores to a particular bus protocol has often been a
difficult process, requiring significant time to understand
the complex bus protocol. Platform vendors recognise this
problem and supply system tools to ease the mterfacing
process. These tools however only support their own
platform system bus protocol.

This new study, of a more general set of wrappers
has been proposed to address this situation.

A preliminary Wrapper specification has been
proposed m this study. The next major task 1s to
implement our first version of the Wrapper generator
software. We plan to update thus specification and have
a small set of those generators and generic TP cores
available in the near future.

REFERENCES

Reinaldo, A. Bergamaschil and R. Lee. William
Designing Systems-on-Chip Using Cores. TBM T. T.
Watson Research Center, Yorktown Heights, NY,
IBM Microelectronics, Raleigh, NC.

Intl J. Soft Comput., 1(4): 261-270, 2006

Maya, G. Streams-C compilator. Los Alamos National
Laboratory.

Kilinx, 2005, XUP Virtex T Pro Development system
board. Hardware Reference Manual.

Maya Gokhale and Tan stone. Stream-Oriented FPGA
Computing 1n the Streams-C High level Language.
Los Alamos lab Publications.

Hoare, C.AR., 1978 Communication Sequential
processes. Communnication of the ACM, pp: 666-677.
Ben, A. Abdelali and A. Mtbaa, 2005. Toward
hardware implementation of the Compact Color
Descriptor for real time video indexing. Advances in
Engineering Software 1., 36: 475-486, Elsevier
Publishers.

Tien-Lung N. Leeand W. Bergmann, 2003. An
Interface Methodology for Retargettable FPGA
Peripherals. School of ITEE, The University of
Queensland, Brisbane Australia.

Andy S. Lee and Neil W. Bergmann. On Chip
commumication architecture for reconfigurable
system on chip. School of ITEE, The University of
Queensland, Brisbane Australia.

IBM, 1999 The CoreConnect TM Bus
Architecture. http: /fwww.chips.ibm.com/product/co
reconnect/docs/creon. wp.pdf.

270

10.

11.

12.

13.

14.

15.

16.

17.

ARM. AMBA Specification Overview.
http://www.arm.com/Pro+Peripherals/AMBA.
IBM. Blue Logic Technology.

http://www.chips.ibm.com/bluelogic.

Sbow, A., 2006. Study of the commurnication between
embedded processors in the Virtex-II Pro FPGA and
the synthesized components by the StreamsC tool.
NTSID: Master degree of ENIS High School,
Electrical, sfax-Tunisia.

Xilinx, 2003. OPB IPIF Architecture.
http: /A xilinx. com/ipcenter/catalog/logicore/do
csfopb_ipif.pdf.

Armout, G., 2000. SystemC Standard. Proceedings of
the ASPDAC.

Flake, P. and S. Davidmarm, 2000. Superlog, a Umfied
Design Language for System-on-Chip. Proceedings
of the ASP-DAC.

Maya Gokhale and Jan stone, 1988. Napa C:
Compiling for hybrid Risc/fpga
Proceeding of TEEE symposium on FPGA as
computing machines.

Standford University, 1988. Standford University
Intermediate Format: The National Compiler
Infrastructure Project, http:/suif. Stanford /eduw/suif/.

architecture.

