M@dWell International Journal of Soft Computing 2 (1): 199-207, 2007

Onllne

© Medwell Journals, 2007

Un-match: Object-Oriented Software Design Method and Visual Programming

'Bill Yu-Fan Cheng, *Jonathan Jiin-Tian Chyou and *Jung-Jung Liu
"Department of Information Management, Hsiuping Institute of Technology, Taiwan
*Department of Management Information Systems, National Chengchi University, Taiwan

*Department of Computer Science and Information Technelogy,
National Taichung Institute of Technology

Abstract: Software development methods (SDMs) are valuable but not a panacea. If selected and used
correctly, they can provide great benefits; if regarded as magic solutions or otherwise misused, they can prove

to be an expensive failure. Recently in software engineering practice, a systematic mismatch phenomenon
between Object-oniented Software Design Method (OOSDM) and Visual Programming (VP) has been observed,
but this mismatch phenomenon has been strangely neglected by academia. Therefore, this paper focuses on
the suitability of OOSDM, while its purpose is to argue the un-match between OOSDM and VP from the
viewpoint that "a blueprint must be followable." Moreover, this paper also presents a series of in-depth
mterviews conducted to validate the correctness of the proposed arguments.

Key words: Contingent software development, mismatch phenomenon, suitability of software development

method, object-oriented software design method, visual programming

INTRODUCTION

Software Development Methods (SDMs) consist,
at least in principle, of both a development process
and a set of software models. The development
process 13 SDMSs' suggestion on what steps to take in
undertaking analysis, design, implementation and
testing. The software models are the tools that developers
use to express requirements, designs and test cases. It
has been established that the proper use of a SDM
appropriate to a problem can sigmficantly increase
productivity and quality" .

SDMs are valuable but not a panacea. If selected and
used correctly, they can provide great benefits; if
regarded as magic solutions or otherwise misused, they
can prove to be an expensive failure™. Selection of
SDMs requires study of SDMs' suitability with the
software development project's features. Unfortunately,
most SDMs today lack clear descriptions of suitable
situations and as developers must often choose which
one to use with little or no information it 1s not surprising
that many misuses of SDMs have occurred™ %,

Related works: Given its importance in software
engineering, the problem of misuse of SDMs has been
brought to the attention of the software engineering
community. Over the past few decades a great deal of

research effort has been expended on making the right
selection of SDMs and can be classified into four areas:

The first is research on SDMSs’ suitability, such
as!"'¥. This type of research clarifies specific SDMs’
suitable situations. Take Land's research™ for example.
Land examines the relationship between the development
process and organizational environment. He found that
both the waterfall process and spiral process fit in stable
organizations, but the prototyping process fits in
changeable orgamzations.

The second area is research on SDMs' selection
factors, such as that conducted by Alexander and
Davis!'?; DeLone and McLean!"; Doke and Swanson''™;
Hardgrave''”; Havelka and Lee"™, Siau'®. This type of
research identifies critical factors that determine either the
selection of SDMs or the adoption of specific SDMs.
Hardgrave's research!'”, for example, identifies eighteen
factors that determine whether to adopt a prototyping
process.

The third is research on selection supporting tools,
such as!"™ This type of research develops tools to
assist m determining either the selection of SDMs or the
adoption of specific SDMs. Take the research of
Hardgrave et al.™ for example. Based on eighteen factors
found by Hardgrave™, the research develops a decision
supporting tool to aid determine whether to adopt a
prototyping process.

Corresponding Author:

Bill Yu-Fan Cheng, Department of Information Management, Hsiuping Institute of Technology,

No. 30, Lane 674, Sec. 1, Changnan Rd., Nantou City 54056, Taiwan

Intl. J. Soft Comput., 2 (1): 199-207, 2007

Finally, is the research of meta-methods, such
as™ % This type of research assumes that a customized
SDM should be constructed to meet a particular software
development project's needs. Accordingly, the authors
propose systematic methods to guide the development
of SDMs. Tolvanen's research™, for example, proposes an
experience- based incremental meta-method.

[

Research question: Within a very short period of time,
both Object-Oriented (OO) Software Design Method
(OOSDM) and Visual Programming (VP) have become
more widely used in practice. Additionally, in recent years
a systematic mismatch phenomenon between OOSDM
and VP has been noted n software engineering practice,
but this mismatch phenomenon has been strangely
neglected by academia. As a result, this paper focuses on
the suitability of OOSDM, while its purpose is to argue
the un-match between OOSDM and VP from the
viewpoint that "a blueprint must be followable."

Paper organization: The paper is organized into six
sections. Section two and three explain separately the
essential features of OOSDM and VP which serves as
evidence of the argument. Based on thus evidence, section
four argues the un-match between OOSDM and VP. The
fifth section presents a series of mn-depth interviews
conducted to validate the correctness of the proposed
arguments. The final section concludes this study and
proposes some research directions.

MATERIALS AND METHODS

Software design methods are special SDMs that
focus on design activities and OOSDMSs are one type of
widely used software design methods that employs the
object viewpoint. From the object viewpomt, the software
is viewed as a collection of cooperative objects. These
objects must be responsible for themselves and must
collaborate with one another so as to realize each and
every software function Further, these objects can be
classified by their similarities and differences, whilst all
objects that are classified mto a particular class, have the
same attributes and methods, are said to be instances of
that class. Based on the object viewpomt, the processes
of QOSDMs can be defined briefly as procedures to
identify and design objects in the software, built to meet
the requirement specifications.

Although all OOSDMs fit this brief process defimtion
and were very similar, they contained a number of
differences among them. For this reason, this paper limits
the following discussion to the most popular function-
driven OOSDMs that are now called use-case-driven
OOSDMs, such as OQOSE, OOTC, OPF and RUP.

200

Design process: For each software function, the
developers should develop some usage scenarios. This

design activity can help developers to understand.

What objects are parts of a software function.

Their attributes and methods.

Static relationships among them.

How they realize the software function through their
interaction.

Once the developers have developed all of the usage
scenarlos, that 1s to say all objects of software have been
identified and designed, the developers should unify and
classify these objects so as to form an ideal blueprint.
Finally, the developers should adapt the ideal blueprint to
the non-assumed unplementation environments, methods,
techniques and tools such as relational database
management systems (RDBMS), non-C0O programming
languages and existing class libraries.

Design models: Good, clear software models play an
essential part in developmg software. Such software
models have several important functions that include.

Acting as an aid to clear thinking

Acting as an aid to externalize design 1deas.
Allowing precise communication between members
of the development team.

Encouraging end users to sketch their needs clearly.
Acting as an aid in testing

Acting an aid in maintenance.”"* For these reascns,
most SDMs are model-centric methods and OOSDMs
are not exception. The following are the function-
driven OOSDMs most commonly used as design-
focused software models (design models)***,

Class diagram, used to illustrate the classes in the
software, attributes of the classes, methods on the
classes and the various kinds of static relationships
that exist among these classes.

Object interaction diagram, used to show a number of
objects and the messages that are passed between
these objects within a particular software function.
State diagram, used to display all the possible states
that a particular class can get into and how the class'
state changes as a result of events that reach the
class.

Activity diagram, used to explain the process logic of
a particular class method.

Pseudo code, a substitute for activity diagram, is also
used to describe the process logic of a particular
class method.

Decision table, used to clarify the decision logic of a
particular class method.

Intl. J. Soft Comput., 2 (1): 199-207, 2007

Visual programming: The very first programmers had to
work at the lowest possible level, writing programs as
sequences of bits. Since then the development of
programming techniques has aimed to malke the
programming task easier so that people with less traimng
should be able to produce programs which work correctly,
as quickly as possible. VP is one current aspect of that
development™.

VP is a programming method that allows developers
to graphically construct software. Compared with
traditional textual programming methods, VP provides a
more efficient and easier way of producing software.
Several VP paradigms already exist and the features
provided by different VP paradigms may vary greatly. The
Visual Basic-like VP paradigm is supported by many
popular software development tools, such as Microsoft
Visual Studio, Borland Delphi, Borland JBuilder and
Sybase Power Builder. In fact, the Visual Basic-like VP
paradigm is widely used in data-centric business software
that includes point of sales systems and accounting
information systems. In this study, the Visual Basic-like
VP (VP) paradigm will be the focus.

VP reveals six distingumishing characteristics. Firstly,
VP supports primarily the development of client/server,
data-centric business software. The database mns on top
of a shrink-wrapped RDBMS package. In contrast, the
client programs (programs) are either custom-built window
programs or ASPNET-style web programs, both
developed using VP.

Secondly, VP-developed programs consist of form
modules, each form comprising COTS (Commercial-Of-
The-Shelf) components. Moreover, there are five very
common types of forms: splash form, main form, about
form, function-specific primary form and function-specific
secondary form. Typically, a VP-developed program is
almost completely made up of these common forms.

Thirdly, the heart of VP consists of component
libraries and code generators. Through the reuse of COTS
components, VP enables developers to dramatically
reduce the amount of time and code required to write a
program. In addition, VP provides WYSIWYG code
generators such as form editor and report editor, where
the developers merely fill in forms, drag and drop icons, or
click buttons to automatically generate most codes
(structured codes) and thus developers only need to
hand-write some codes (unstructured codes).

Fourthly, a component library designed especially for
VP is a special QO class library that follows a certain
component specification, such as OMG CCM component
specification, Microsoft. NET component specification
and Borland VCI. component specification. Any
component library must be installed on a VP tool and the
mstalled components will appear on the component
palette systematically. Of course, developers are not

201

limited to using the components that ship with a VP tool.
In fact, developers always add certain customized or third-
party components to the VP tool for some reasons.
Currently, Microsoft. Net Framework Class Library and
Borland VCL Library are the most popular component
libraries. Both libraries provide components and
functionality that allow developers to build forms, to make
reports and to access databases.

Fifthly, VP supports unstructured codes through the
event-driven writing method. Tn event-driven writing the
developers identify the events (such as a user action or a
change in focus) that the program must handle and write
event-handlers to respond to the events.

Finally, in VP the developers always write some non-
event-handling codes. Typical reasons given include
reducing code redundancy, simplifying complex event-
handlers, decreasing memory requirements, simplifying
data passing between forms and facilitating code reuse in
the future.

It should be concluded, based on the characteristics
outlined above that: (a) VP is a form- oriented, COTS
components-based and event-driven programming
method; (b) VP 1s an iterative and incremental process that
is organized around five primary activities.

Creating a new form.

Adding a component to a form.

Setting a component property.

Writing an event-handler.

Writing some non-event-handling codes.

Arguing the un-match between OOSDM and VP:
Argument Viewpoint: The design activities specify the
best solution to a problem and produce a blueprint to
describe how it is to be organized. Implementation follows
design. The implementation activities realize a system in
accordance with the blueprint™. If the blueprint does not
exist or if it 15 of poor quality, it should be no surprise
when a less-than-acceptable system is produced. Such a
system often is poorly organized and becomes a
nightmare to support later. On the other hand, a good
blueprint can improve system readability and reliability,
reduce system complexity and cost and increase job
satisfaction for developersi*™.

Obviously, the blueprint is the most important input
of the implementation activities and the blueprint must be
followable by all. In other words, all design mformation
required by the implementation activities must be
specified in the blueprint and all design information
specified in the blueprint must be used by at least one
implementation activity. From this viewpoint, we can
examine the followability of an OO software blueprint
(OO0 blueprint) with VP and then determine that OOSDM
either matches or un-matches with VP.

Intl. J. Soft Comput., 2 (1): 199-207, 2007

Why OOSDM does not match VP: The OOSDM is
rooted m both building from scratch and o ne-line-at-
a-time coding. Contrary to the OOSDM, VP is rooted in
visually assembling from existing components. Taken
this Light, OOSDM does not match VP. In the
following, we discuss the unmatched reasons in more
detail.

Reason one: A class is not always a component. In
VP, a component is a special class but a class is not
always a component. There are three differences between
a component and common class. First, component
developers need to follow additional restrictions. Take the
VCL components for example™.

n

A component must derive directly or indirectly from
the TComponent class.

A component must function m any situation, without
preconditions.

A component as well as its component editors and
property editors all have to be registered and
installed

A component has to support the visual operations of
software developers at the design-time.

Secondly, in addition to the name, attributes,
methods, states and relationships such as are standard
parts of a class that are specified m the OO blueprint, a
component involves additional parts that are used to
support the visual operations of software developers at
the design-time. Such additional parts of components
mnclude

One 1dentity 1con.

Several properties.

Several events.

Several property editors.
Several component editors.
One on-line help.

Finally, a component needs to be carefully
generalized to enable use in a variety of contexts. In order
to maximize the reusability, a component 1s completely
different from common class. The design of a component
must be based on the requirements of the specific
application domain (a work product of domain analysis)
rather than the requirements of specific software (a work
product of software analysis). For the differences
mentioned above there is no doubt that the design
information of classes that are specified in the OO
blueprint, are valueless in the development of VP's
components.

202

Reason two: To buy a component rather than to build
a component. Today, a new type of division of labor in
the software industry has emerged-a new division
between the development of components and software.
The component providers develop and market a set of
components m a particular application domain The
software developers, on the other hand, assemble
software with COTS components. VP 13 a COTS
components-based, form-oriented and event-driven
programming method, as we stated earlier. In fact, VP 1s no
other than the most widely used software assembly
method. In VP, generally speaking, the developers are
willing to buy COTS components from the component
market (ship with the VP tool or obtained from third-party
vendors) rather than custom build components from
scratch. Viewed in this light.

The design mformation of components (classes) that
are specified in the OO blueprint are unnecessary.
The custom components- (classes-) based design
information of software that are specified in the OO
blueprint are valueless to the development of COTS
components-based software (the programs of
client/server business software).

Reason three: A relational database i1s not an OO
database. The relational database is a table-oriented
database and 13 viewed as a collection of normalized
tables. The RDBMS enables users to define, manipulate
and maintam the relational database, providing controlled
access to this relational database. Although Object-
Oriented Database Management Systems (OODBMSs)
are now available, time has proved that relational
databases still excel for many application domains and
data-centric business software is not an exception. A
relational database 1s not an OO database, thus does not
support the following six kinds of OO concepts.

The object identifier.

The complex attribute.

The class method.

The many-to-many relationship.
The aggregation relationship.
The mheritance relationship.

Consequently, the design mformation of persistent
classes that are specified in the OO blueprint, are only
partially valuable to the development of a relational
database. Further, they cannot be directly implemented
in the relational database, but rather have to adapt to
the needs and constraints of the relational database. For
these reasons, we have no reason to develop an OO
design for a relational database.

Intl. J. Soft Comput., 2 (1): 199-207, 2007

Reason four: None that is needed is there. In the
three reasons stated above, we argue the un-match
between OOSDM and VP based on the content of the OO
blueprint. Now, we tumn to argue the un-match between
00SDM and VP based on the design information
requirements of VP. According to the characteristics of VP
stated earlier, we can recogmze ten kinds of design
mnformation which are valuable to VP:

The form-oriented functional decomposition: The
information about how a software function 1is
partitoned mto form modules.

The form flows: The information
focus-shifts that exist among forms.
The form structure: The information about the
components that assemble the form and the instance
relationships that exist among these components.
The form states: The information about the states
that a form may get mnto and the events and actions
that can cause the form change to a new state.

The form layout: The information about the actual
appearance of form that the end-users will see during
the operation of the software.

The report structure: The information about the
components that assemble the report and the
instance relationships that exist among these
componernts.

The report layout: The mnformation about the actual
appearance of the report that the end-users will see
during the operation of the software.

The property setting: The information about the
component properties that need to be set and the
values that should be set in these component
properties.

The specification of the event-handler: The
information about the design of the event-handler,
such as the process logic and the decision logic.

The specification of non-event-handling codes: The
mformation about the design of non-event-handling
codes, such as the process logic and the decision
logic.

about the

Tt is obvious that none of such design information
appeared in the OO blueprint. That is to say, the QO
blueprint is also valueless to VP, from the perspective of
the design information requirements of VP.

As we said earlier, the VP-developed software
consists database"
"programs”. The relational database runs on top of a
RDBMS. The programs, in contrast, are visually
assembled from "components”. Furthermore, the reasons
mentioned above also clearly indicated.

of a '"relational and several

203

The OO blueprint is only partially valuable to the
development of a relational database.

The OO blueprint is valueless to the development of
components and programs.

The OO blueprint lacks all of the design information
that 1s valuable to VP.

We therefore conclude that the OO blueprint is
unfollowable (all that is there is unnecessary) and
incomplete (none that is needed 1s there) for the VP,
namely, OOSDM does not match VP.

Why mapping strategy is unworkable: JTacobson et al.
stated, "The implementation 15 straightforward in the
chosen programming language. An object-oriented
language 1s preferable since all important concepts used
in OOSE are directly mapped onto these languages. If the
language 15 not object-oriented, some deviations must be
made. However, an object-oriented structure is entirely
possible even for systems implemented in non-oo
languages"™'. (p. 257)

Rumbaugh et al. stated, "Object-oriented concepts
provide an excellent basis for modeling hierarchical,
network, relational and object-oriented DBMS. Object
models permit developers to think about a problem at a
high, abstract level and yet rest assured that the resulting
design can be easily and practically implemented. The
following simple rules enable designers to convert an
object model to relational DBMS tables"™. (p. 388-389).

These two quotations come from OO literature,
clearly showing us that an underlying belief behind the
OOSDM 15 that the OO blueprint 1s easy to implement in
every implementation method. Even if the implementation
method is not OO, the OO blueprint still can be indirectly
implementable by the use of mapping strategy. The said
mapping consists of applying a systematic procedure to
adapt (restructure, augment, reduce or otherwise) the OO
blueprint to the needs and constramts of the target
implementation method.

In fact, the decision of whether to develop an OO
blueprint for the software that must be implemented using
a non-O0 implementation method requires study of the
possibility of mapping with the implementation method's
features. Here and now, several non-O0 implementation
methods have obtained their mapping procedures, such
as RDBMS and non-O0 programming language. However,
unfortunately today we lack the systematic procedure to
adapt the OO blueprint to VP.

In addition, even if the mapping strategy is workable
m VP, it will also be the same as other non-OC
implementation methods in that a great quantity of
unnecessary design effort will prohibit us from using the
OOSDM.

Intl. J. Soft Comput., 2 (1): 199-207, 2007

Why method framework strategy is unworkable:
Tacobson et al. stated, "First, it [RUP] 1s a framework. It
has to be tailored to a number of variables: the size of the
system in work, the domain in which that system 1s to
function, the complexity of the system and the experience,
skall, or process level of the project organization and its
people"Cd. (p. 416)

Kruchten (2000) stated, "You will have to configure
and implement it. To configure the Rational Unified
Process means to adapt the process product to the needs
and constraints of the adopting organization. To
implement the Rational Unified Process in a software
development orgamzation means to change the
organmization's practice so that 1t routinely and
successfully uses the Rational Umfied Process in whole
or in part"™. (p. 249)

These two quotations come from OO literature and
point out that:

In order to improve suitability, new generation
OOSDMs, such as OPF and RUP, leave method and
turn to method framework.

Method framework is a parent method that can be
tailored to derive a project-specific method.

Method framework is very difficult to understand
and use. In other words, method framework 1s of lngh
suttability but low usability.

New generation OOSDMs recognize that no single
method 15 appropriate for all situations, however
method framework imples itself as a umversal
solution and can be adapted to every and any
development project.

For the sake of heightening the level of suitability, a
method framework must do its utmost to generalize its
process and maximize its software models. However, such
suitability improvement activities will lower the level of
usability. That 18 to say, swtability conflicts with
usability. It 1s impossible to have no limits 1n heightening
the level of suitability of the method framework, thus it
must try to maintain the equilibrium of suitability and
usability.

Current OO method frameworks, such as OPF and
RUP, are not generalized to take leave of the OO paradigm.
A project-specific method that is derived from an OO
method framework will also be the same as a traditional
0OO0SDM, providing both an OO design process that is
used to identify, design and use objects, as well as a set
of OO design models that are use to express design. For
this reasory like all traditienal OOSDMs, OO methed
frameworks do not match VP.

204

Choosing between OOSDM and VP: Engineering
development tasks are of several kinds. One of the most
significant distinctions separates routine from mmnovative
development. Routine development mvolves solving
familiar problems, reusing large portions of prior
solutions. Innovative development, on the other hand,
involves finding novel soluticns to unfamiliar problems™.
Compared with development,
development provides a more efficient and easy way of
producing an artifact.

Today, business information processing is the single
largest software application area. The software in this area
restructures existing data in away that facilitates business

innovative routine

operations or management decision making. Such data-
centric business software has made considerable progress
towards routine development Well-designed VP tools
and a very large set of lugh-quality COTS components
have been developed. These assistants enable developers
to create igh-quality and low-cost software within very
short time periods.

For data-centric business software, it 15 true that
developers can always opt to use QOSDM to custom
build from scratch rather than use VP to visually assemble
with existing components. In most cases however, the
arguments from quality, cost and time weigh against this
alternative. Instead, the only option presented to
developers 1s to choose which VP tool and COTS
componernts to use.

Research validation: Software development 1s a complex
activity involving human thinking and interpersonal
communication. The human thinking is impossible to
observe in any direct empirical way and the interpersonal
communication is difficult to perform experimental
manipulation on. Therefore, in software engineering the
validation of research results is often an inherently
difficult activity. Several empirical researchers™* have
found that most software engineering research lacks
rigorous validation of their results.

An in-depth mterview 1s a qualitative research
strategy that allows person-to-person discussion. It can
lead to mereased insight mto people’s thoughts, feelings
and experlences on important 1ssues. Thus, we conducted
face-to-face unstructured, in-depth interviews to collect
experiences from VP professionals, so as to validate the
correctness of the research results.

Participants: The participants in this validation were
thirty-seven senior software engineers from nine small- to
mid-size comparies in Taiwan. All were famihiar with
OOSDM and all have five or more years usage experience

Intl. J. Soft Comput., 2 (1): 199-207, 2007

in VP. All were college graduates and major in information
systems or computer science. Twenty-six have bachelor's
degree and eleven have master's degree. Nine of the
thirty- seven were womarn.

Instrument: A validation instrument was developed
drawmmg on an OO blueprint that appeared in OO
literature™. The blueprint specified all the design
information of a particular software system: the video
store administration system for a chain of video rental
stores. There were three reasons to use the blueprint.

As the blueprint comes from OO literature, doubt
about the correctness of it can be reduced.

The software described in the blueprint was a typical
data-centric business software system.

The blueprint was an uncommonly detailed OO
blueprint in OO literature.

The instrument is involved in six organizational
functions that include circulation management, purchase
management, inventory control, customer management,
human resources management and decision analysis.
Further, the instrument consists of following design
models.

One use case diagram (the only analysis model for
explammng the requirements).

Several object interaction diagrams.

One class diagram.

Several state diagrams.

Several class specifications.

One screen flow diagram.

several screen layouts.

Process: First, under the interviewers' guidance, the
participants were asked to read and understand the
validation nstrument (an OO blueprnt). Then, the
interviewers encouraged the participants to talk at length
about the following topics:

The usage experiences of VP.

The usage experiences of OOSDM.

Which aspects of the design information contained
m the OO blueprint are valuable to VP?

Whether any design information valuable to VP did
not appear in the OO blueprint.

Furthermore, we analyzed the data to obtain the
results. Finally, the results were reviewed and corrected
by the participants.

205

RESULTS

Many qualitative analysis techniques have been
developed, but analyzing qualitative data 1s still a difficult
activity™. In quantitative analysis, numbers and what
they stand for are the material of analysis. By contrast,
qualitative analysis deals in words and is guided by fewer
umiversal rules and standardized procedures than
statistical analysis"'?. We study the data and lock for
themes, commonalities and patterns to try to make sense
of the data. The following results (some tentative
1nsights) were obtained:

First, VP is a practical method to implement software.
All participants believed the type of data-centric business
software, such as the software described in the
nstrument, can be implemented using purely VP and
RDBMS.

Secondly, generally VP 1s purely an existing
component-based implementation method. All
participants disclosed that when they were the beginning
users of a certain VP tool, they developed some
components to enhance the component libraries that ship
with the VP tool. However, as time went on, the number of
new components bemng developed became fewer and
fewer and the component development activities stopped
in a short time. Additionally, two participants said that,
their companies develop and maintain in-house
compoenent libraries and that their companies develop new
software based purely on those libraries.

Thirdly, an OO blueprint 1s partially valuable to the
development of a relational database. All participants
indicated that each persistent class in class diagram can
be mapped to a RDBMS table. Twenty-one participants
point out that a data-related state diagram illustrates all
the possible states that a particular persistent class can
get into, so this kind of state diagrams 1s valuable to the
development of relational databases. Nevertheless, all
participants asserted no reason to develop an OO design
for a relational database.

Fourthly, an OO blueprint 1s valueless to VP. All
participants indicated that the design models within the
instrument provide two kinds of design mformation.

The design information of the custom classes.

The design information of the software based on
those custom classes. Such design information 1s not
valuable to the existing purely component-based VP.

Finally, an OO blueprint lacks much of the design
information that i1s valuable to VP. The participants
pointed out several aspects of design information that
did not appear n the instrument and which are valuable to
VP. Such design information include.

Intl. J. Soft Comput., 2 (1): 199-207, 2007

¢ The form-oriented functional decomposition.

¢ The form structure.

* The form states.

* The property setting.

¢ The specification of event-handler.

¢ The specification of non-event-handling codes.

The results must be treated with caution because the
validation was exploratory in nature and because of the
small sample size. Nevertheless, the results suggest
enough weighted evidence to support the correctness of
the proposed arguments.

CONCLUSION

The purpose of this paper 1s to argue the un-match
between OOSDM and VP from the viewpoint that "a
blueprint must be followable." In the first place, we
explained separately the essential features of OOSDM and
VP which serves as evidence of the argument. Next, we
inferred four reasons from the evidence to argue the un-
match between OOSDM and VP. Additionally, we
continued to argue that the mapping strategy and the
method framework strategy are unworkable in VP. Fmally,
we presented the empirical validation of research results.

An argumentative research involves advocacy or
persuasion. The researchers take a stand on an 1ssue and
defend it against opposing points of view. In such
research, if the evidence is adequate and the reasoning is
valid, then the conclusion is reliable!***?. This research
has all such elements of a good argumentative research
and moreover, the results of the empirical validation also
support the research results. Therefore the argument that
OOSDM un-match VP 1s reliable.

While VP poses unique challenges to software
engineering, it does not require that we revisit each and
every precept of theory and practice. To be sure, some
outdated notions of development process need to be
revised substantially and certain software engineering
practices need to be adjusted. Further research may
include a large-scale survey of software engineering
requirements of VP. In addition, traditional software
engineering techmques also have to adapt to VP. Such
techmques mclude design processes, modeling tools,
testing techmques, measurement methods and so on.

REFERENCES

1. Boehm, BW., MH. Penedo, ED. Stuckle, R.D.
Williams and AB. Pyster, 1984 A
development env ironment for
productivity. IEEE Computer, 17: 30-44.

software
unproving

206

2.

10.

11.

12.

13.

14.

15.

Dorfman, M., 1990. System and Software
Requirements Engineering. In R. Thayer and M.
Dofrman (Eds.), Tutorial: System and Software
Requirements Engineering, Los Alamitos, CA: IEEE
Computer Society Press, pp: 4-16.

Fitzgerald, B., 1996. Formalised systems development
methodologies: A critical perspective. Inform. Sys. T.,
6: 3-23,

Sommerville, ., 2001. Software engineering. Boston:
Addison-Wesley.

Avison, D.E. and G. Fitzgerald, 2003. Where now for
development methodologies? Commumications of the
ACM, 46, 79-82.

Tolvanen, J.P., 1998. Incremental method engineering
with modeling tools: Theoretical principles and
empirical evidence. Unpublished doctoral
dissertation, University of Jyvaskyla, Tyvaskyla,
Fmland.

Agarwal, R., AP. Sinha and M. Tamiru, 1996.
Cognitive fit m requirements modeling: A study of
object and process methodologies. J. Management
Inform. Sys., 13: 137-162.

Cooprider, I1.G. and JT.C. Henderson, 1991.
Technology-process fit: Perspectives on achieving
prototyping effectiveness. Journal of Management
Information Systems, 7: 67-87.

Howard, G.S., T. Bodnovich, T. JTanicki, . Liegle, S.
Klem, P. Albert and D. Cannon, 1999. The efficacy of
matching information systems development
methodologies with application characteristics: An
empirical study. J. Sys. Software, 45: 177-195.
Land, F., 1998. A contingency based approach to
requirements elicitation and systems development.
I. Sys. Software, 40: 3-6.

Perez, GG., K. El Emam and N.H. Madhavji, 1996.
Evaluating the congruence of a software process
model in a given environment. Proceedings of the 4th
International Conference on the Software Process,
Brighton, UK., pp: 49-62.

Van Slooten, K.V. and B. Schoonhoven, 1996.
Contingent information systems development. J. Sys.
Software, 33: 153-161.

Alexander, L..C. and AM. Davis, 1991. Criteria for
selecting software process models. Proceedings of
the 15th Annual Tnternational Computer Software and
Applications Conference, Tokyo, pp: 521-528.
DeLone, W. and ER. McLean 1992. Information
systems success: The quest for the dependent
variable. Information Systems Research, 3: 60-95.
Doke, ER. and N.E. Swanson, 1995. Decision
variables for selecting prototyping in information
systems development A delplu study of MIS
managers. Information and Management, 29: 173-182.

16.

17.

18.

19.

20.

21.

22,

23.

24

25.

26.

27.

28.

29.

Intl. J. Soft Comput., 2 (1):

Hardgrave, B.C., 1995. When to prototype: Decision
variables used in industry. Information and Software
Technology, 37: 113-118.

Havelka, D. and S. Lee, 2002. Critical success factors
for information requirements gathering. Information
Strategy: The Executive’s Journal, 8: 36-46.

Siau, K., 2004. Informational and computational
equivalence m comparing nformation modeling
methods. J. Database Management, 15: 73-86.
Arinze, B, 1991. A contingency model of DSS
development methodology. J. Management Infor.
Sys., 8: 149-166.

Gemino, A. and Y. Wand, 2003, Evaluating modeling
techniques based on models of learning.
Communications of the ACM, 46: 79-84.
Hardgrave, B.C., R.L. Wilson and K. Eastman, 1999.
Toward a contingency model for selecting an
information system prototyping strategy. J. Manag.
Inform. Sys., 16: 113-136.

Hughes, 1, 1998. Selection and evaluation of
information systems methodologies: The gap
between theory and practice. TEE Proceedings on
Software, 145: 100-104.

Brinkkemper, S., 1996, Method engmeering:
Engineering of information systems development
methods and tools. Information and Software
Technology, 38: 275-280.

Fitzgerald, B., N.L. Russo and T. O’Kane, 2003.
Software development method tailoring at Motorola.
Communications of the ACM, 46: 65-70.

Kinnunen, K. and M. Leppanen, 1996. O/A matrix
and a techmique for methodology engineermng. J.
Sys. Software, 33: 141-152.

Vlasblom, G., D. Rysenbrij and M. Glastra, 1995.
Flexibilization of the methodology of system
development. Inform. Software Technol., 37: 595-607.
Booch, G., 1. Jacobson and T. Rumbaugh, 1999. The
unified modeling language: User guide. Boston:
Addison-Wesley.

Martin, J. and C. Mcclure, 1988. Structured
techniques: The basis for CASE. Upper Saddle River,
NI: Prentice-Hall.

Edwards, A DN. 1988 Visual Programming
Languages: The Next Generation. ACM SIGPLAN
Notices, 23: 43-50.

207

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

199-207, 2007

Borland, 2001. Delphi Developer's Guide. Scotts
Valley, CA: Borland.

Jacobson, I, M. Christersorn, P. Jonsson and G.
Overgaard, 1995, Object-Oriented Software
Engineering: A Use Case Driven Approach. Boston:
Addison-Wesley.

Rumbaugh, J., M. Blaha, W. Premerlam, F. Eddy and
W. Lorenser, 1991. Object-Oriented Modeling and
Design. Upper Saddle River, NT: Prentice-Hall.
Tacobson, I., G. Booch and J. Rumbaugh, 1999. The
Unified Software Development Process. Boston:
Addison-Wesley.

Kruchten, P., 2000. The Rational Unified Process: An
Introduction. Boston: Addison-Wesley.

Shaw, M., 1990. Prospects for an engineering
discipline of software. IEEE Software, 7: 15-24.
Shaw, M., 2003. Writing good software engineering
research papers: Minitutorial. Proceedings of the
25th Intermnational Conference on Software
Engineering, Portland, OR, pp: 726-736.

Tichy, W.F., P. Lukowicz, I.. Prechelt and E.A. Heinz,
1995. Experimental evaluation in computer sccience:
A quantitative study. I. Sys. Software, 28: 9-18.
Zelkowitz M.V. and D.R. Wallace, 1 998. Experimental
models for validating technology. TEEE Computer,
31: 23-31.

IBM OOTC, 1997. Developing object-oriented
software: An experience-based approach. Upper
Saddle River, NJT: Prentice-Hall.

Yin, RK., 2003. Case Study Research: Design and
Methods. Thousand Oaks, CA: Sage.

Miles, M.B. and A M. Huberman, 1994. Qualitative
data analysis: An expanded sourcebook. Thousand
Oaks, CA: Sage.

Aldisert, HR.J., 1997. Logic for lawyers: A guide to
clear legal thinkang. South Bend, IN: NITA.
Missimer, C.A., 2004, Good arguments: An
ntroduction to critical thinking. Upper Saddle River,
NI: Prentice-Hall.

Toulmm, S.E., 1958 The uses of argument.
Cambridge, U.K.: Cambridge University Press.

