Onlline

M@dWe]l International Journal of Soft Computing 2 (1): 21-36, 2007
© Medwell Journals, 2007

Efficient Association Rules for Data Mining

'C.M. Velu, 'M. Ramakrishnan, °V. Somu, 'P. Loganathan and 'P. Vivekanandan
"Department of Mathematics, Anna University, Chennai-600 025, India
*Ramanujam Computing Centre, Anna University, Chennai-600 023, India

Abstract: Frequent Ttem Sets (FIS) play an essential role in many Data Mining (DM) tasks. We want to find
mteresting patterns from databases (DBs), such as Association Rules (ARs), correlations, classifiers, clusters
and many more. The motivation for searching Ars to examine customer’s buying behavior. ARs describe how
often items are dependent on each other to purchase together. For example, an AR beer 100% = chips 80%
states that four of five customers that bought beer also bought chips. Such rules can be useful for decisions
concerning product pricing, promotions, store layout and many others. Since theiwr introduction in 1993 by
Argawal et al,, the FIS and AR mimng problems have received a great deal of attention. During the past decade,
hundreds of papers have been published to solve these mining problems more efficiently. In this study, we
explain the basic FIS and compare various AR algorithms to extract required information from DBs. We describe
the main techniques used to solve these problems.

Key words: Transaction database, frequent itemet, clusters, association rules, minimal support threshold,

support monotonicity, correlation, etc.

PROBLEM DESCRIPTION

LetIbe aset of items. A set X = {1,... ,} < I1s called
an item set. A transaction over T is a couple T = (tid, T)
where tid, is the transaction identifier and I 1s an item set.
A transaction T = (tid, T) is said to support an item set(TS),
¥c T, if X c 1. A transaction database(TDB), D over I is
a set of transactions over I. The cover of anitem set
X in D consists of the set of transaction identifiers
mn D that support X: cover (X, D)= {tid | (tid,)eD,X < I}.
The support of an item set X in D is the number
of transactions n the cover of X in D: support
(3D} = |cover(2{D)|. The FIS of X 1 D 15 the probability
of X occurring n a transaction Te D: frequency (X, D):
= P(X) =support{X,D)/ |D|. Note that |D| = support({},D).
Anitem set is called frequent if its support is not less than
a given absolute minimal support threshold (MST) o,
with 0 <0, <|D|. When working with frequencies of TSs
instead of their supports, we use a relative minimal
frequency threshold(MFT), o, with 0<o, <1. Obviously,
04, =[0.4¢ |D|]. In this paper, we will only work with the
absolute MST for item sets. Table 1. shows notations
used i this study.

Definition 1: Let D be a TDB over a set of items I and a
MST, o. The cellection of FIS in D with respect to o 1s
denoted by F(D, 0) := {X < [| support(X,D) 2}, if D,0 and
v are clear from the context.

Table 1: Notation used in this study

Symbol Description

D Transaction database

1 Set of items appearing in D

K Length of an items set, of algorithm step counter
m Size of I, i.e. number of distinct items in D
Iy, Number of distinct items at step k

n Number of transactions

I Number of transactions at step k

t A genetic transaction

5 Minirmum support threshold

F.F, Setoft frequent item sets, of length k

C, G Set of candidate item sets, of length k

o Minirmum threshold

a, vt Confidence thresholds

Bd{F) Negative bolder

Problem 1: Given a set of items I, a transaction DB, D
over [and MST, o, find F(D,0). An AR 1s an expression of
the form X=Y, where X and Y are item sets and XnY = {}.
Such a rule expresses the association that if a transaction
contains all items in X, then that transaction also contains
all items m Y. X 15 called the body and Y is called the
head. The support of an AR X = Y m D, 1s the
support of XUY in D and similarly, the frequency of the
rule 18 the frequency of XUY. The confidence of an
AR X=Y in D is the conditional probability of having
Y contamed m a transactior, given that X is contained in
that transaction: confidence (X=Y,D) := P(Y|X) =support
(uY. D)support(X,1D). The rule is called confident if P
(Y|X) exceeds a given MCT v, with 0<Y<1.

Corresponding Author: C.M. Velu, Department of Mathematics, Anna University, Chennai-600 025, India

Intl. J. Soft Comput., 2 (1): 21-36, 2007

Definition:2 Let D be a TDB over a set of items I, a MST
and a MCT o. The collection of frequent and confident
ARsw.r.t oandis denoted by : R (D,0,y)={X=Y | X, Yc
LXnY = {}, X uYe F(D, 0), confidence(X=Y D) = 1}, or
simply R if D, o and are clear from the context.

Problem 2: (ARM) : Given a set of items I, a TDB D over
I and MST and confidence thresholds ¢ and Y, find R
(D,0,1). Besides the set of all ARs, we are also interested
in the support and confidence of each of these rules. Tf we
are given the support and confidence thresholds o and T,
then every frequent item set X also represents the trivial
rule X = {} which holds with 100% confidence. Also note
that for every FIST, all rules X=Y, with XUY =1, hold with
at least 0., confidence. Hence, the MCT must be higher
than the MFT to be of any effect.

Example 1: Consider the DB shown Table 2.

Table 1: An example TDB D. Table 3 shows all FIS m D
with respect to a MST of 1. Table 4 shows all frequent and
confident ARs with a support threshold of 1 and a
confidence threshold of 50%.

Ttem set mining (ISM): The taslk of discovering all FISs is
quite challenging, because, DBs could be massive,
containing millions of transactions, that the task of
support counting is a tough problem.

Search space (SS8): The S5 of all item sets contains
exactly 2|I| different item sets. If I 1s large enough, then the
naive approach to generate and count the supports of all
item sets over the DB can’t be achieved within a
reasonable period of time. For example, in many
applications, I contains thousands of items and then, the
number of item sets 1s more than the number of atoms in
the universe (=1079). Instead, we could generate only
those item sets that occur at least once in the TDB. For
large transactions, this number could be too large. We
could optimize and generate only those subsets. This
technique has been studied by Amir et al!" and has
proven to pay off for very sparse TDBs. Tt occupies
more memory space. Therefore, several solutions have
been proposed to perform more directed and optimized
search. During the search, several collections of CISs
are generated.

Definition 3: CIS: Given a TDB D, a MST o, and an
algorithm that computes F(D, o), an item set T is called a
candidate, based on frequency. Obviously, the size of
a collection of CISs fits within memory. In the best case,
only the FISs are generated and counted. 1. Several

22

Table 2: Over the set of items T = {beer, chips, pizza, wine}

Tid X

100 {beer, chips, wine}
200 {beer, chips}
300 {pizza, wine}
400 {chips, pizza}
Table 3: Itemsets and their support in D

Ttem set Cover Support Frequency %
0 {100,200,300,400} 4 100
{beer} {100, 200} 2 50
{chips} {100, 200,400} 3 75
{pizza} {300,400} 2 50
{wine} {100, 300} 2 50
{beer, chips} {100, 200} 2 50
{beer, wine} {100} 1 25
{chips, pizza} {400} 1 25
{chips, wine} {100} 1 25
{pizza, wine} {300} 1 25
{beer, chips, wine} {100} 1 25
Table 4: ARs and their support and confidence in D

Rule Support Frequency % Confidence %
{beer}-{chips} 2 50 100
{beer}-{wine} 1 25 50
{chips}-{beer} 2 50 66
{pizza}-{chips} 1 25 50
{pizza}-{wine} 1 25 50
{wine}-{beer} 1 25 50
{wine}-{chips} 1 25 50
{wine}-{pizza} 1 25 50
{beer, chips}-{wine} 1 25 50
{beer, wine}-{chips} 1 25 100
{chips, wine}-{beer} 1 25 100
{beer}-{chips, wine} 1 25 50
{wine}-{beer, chips} 1 25 50

efficient algorithms have been proposed to find only the
positive border of all FISs, but if we want to know the
supports of all item sets in the collection, we still need to
count them. Hence it still poses several interesting open

problems™.

Proposition 1: {(Suppert monotonicity) Given a TDB D
over], let 3, Y = I be two item sets. Then, X Y,
support(Y)< support(X).

Proof: This follows immediately from cover(Y)<cover(X).
Hence, if an item set is infrequent, all of its supersets must
be infrequent. The monotonicity property is also called as
downward closure property. The SS of all item sets can be
represented by a subset-lattice, with the empty item set at
the top and the set containing all items at the bottom. The
collection of FISs F(D,0) can be represented by the
collection of maximal frequent item sets, or the collection
of minimal infrequent item sets, w.r.t set inclusion.

Definition 4: (Border) Let F be a downward closed
collection of subsets of 1. The Border BA(F) consists of
those item sets Xc I such that all subsets of X

are in F and no superset of X is in F:

Intl. J. Soft Comput., 2 (1): 21-36, 2007

Bd(F)= {Xc TW Yo X : Ye FAYVZ2X 1 Z ¢ F }, These
item sets in Bd(F) that are in F are called the
positive border Bd"(F):

Bd'(F):={Xc TV Yo X: YEFAVZoOX . Z ¢ I }, those item
sets in Bd(F) that are not in F are called the
negative border Bd(F):

Bd(F)={Xc TV Yo X: Ye FAVZSX Z ¢ F §,

The lattice for the FISs for Example 1, together with
its borders, 1s shown.

Theorem 2: Mannila” Let D be a TDB over I and ¢ is a
MST. Finding the collection F(D, o) requires that at least
all item sets in the negative border Bd(F) are evaluated.
Note that the number of item sets m the positive or
negative border of any given closed collection of item
sets over I can still be large, but it is bounded by (|x|/
(1x]/2)). In combinatorics, this upper bound is well known
as Sperner’s theorem. If the number of FISs for a given DB
1s large, it becomes infeasible to generate all of them. A
FIS of size k includes the existence of at least 25 - 1 item
sets. Several proposals have been made to generate all
FISs for agiven TDBP.

DATABASE (DB)
To compute the supports of CISs, presented in a DB

can be represented by a bmary 2D matrix in which
every row represents an individual transaction and the

Table 5: Horizontal and vertical DB layout of D

Beer Wine Chips Pizza Beer Wine Chips Pizza
100 1 1 1 0 100 1 1 1 0
200 1 0 1 0 200 1 0 1 0
300 0 1 0 1 300 0 1 0 1
400 0 0 1 1 400 0 0 1 1

columns represent the items m I. Such a matrix can be
implemented horizontal or vertical layout, which is
most commonly used. Tn vertical data layout, the DB
consists of a set of items, each followed by its cover'™.
Table 5. a shows both layouts for the DB from Example 1.
For both layouts, it is possible to use the exact bit-strings
from the binary matrix'”.

To count the support of an item set X using the
horizontal DB layout, we need to scan the DB completely
and test for every transaction T, whether XcT. The
number of transactions in a DB is correlated to the MST
in the DB. The vertical DB layout has the major advantage
that the support of an item set X can be computed by
intersecting the covers of any two subsets Y,.Zc X, > YuZ
=X, proved in Proposition 4.

ASSOCIATION RULE MINING (ARM)

ARM is one of the most popular DM taslk,
application of knowledge extraction by tlhuis kind of
analysis. The extraction of ARs from a DB is typically
composed by two phases. First, it 1s necessary to find the
frequent patterns. Once such patterns are determined,
the actual ARs can be derived in the form of logical

{Beer, Chips, Pizza} | {Beer, Chips, Wine} | {Beer, Pizza, Wine} ({Chips, Pizza, Wine}]

[|

Positive border

Fig. 1: The latice for the itemsets of example 1 and its horder

{Beer, Chips, Pizza, Wine}

23

)

Negative border

Intl. J. Soft Comput., 2 (1): 21-36, 2007

{Beer, Chips, Wine} =>{}

{Chips, Wine} = > {Beer}

{Wine} = > {Beer, Chips}

{Beer, Wine} = > {Chips}

{Chips} => {Beer, Wine}

{Beer, Chips} = > {Wine}

{Beer} => {Chips, Wine}

{} => {Beer, Chips, Wine}

Fig. 2: An example of a lattice representing a collection of Ars for {beer, chips, wine}

implications: X = Y which reads whenever X occurs in a
record, most likely Y also will occur. The computationally
intensive part of ARM is the determination of frequent
patterns, as confirmed by the considerable amount of
efforts devoted to the design of algorithms. DCI (Direct
Count and Intersect), algorithm shows significant
performance improvement over previous approaches.

Proposition 3: Let X,Y.7 c T be three item sets,> X NY
={}. Then, Confidence (X\Z = Y U Z) < confidence
(X=Y).

Proof: Smce, XUYc XUYUZ and X'\ 7 c X, we have,
Support{ XU Y U Z) / support(X \ Z) < support{ XU Y) /
support(X)

If a certain head of an AR over an item set I causes
the rule to be unconfident, all of the head’s supersets
must result in confident rules. For a given frequent item
set I, the S5 of all possible ARs X=Y, 3 X uY =1, can be
represented by a subset-lattice with respect to the head of
a rule, with an empty head at the top and with all items in
the head at the bottom. Figure 2 shows such a lattice for
the item set {beer, chips, wine}.

EXAMPLE DATA SETS

Table 6 shows the number of items, number of
transactions n each data set, mimmum, maximum and

Table 6: Data set characteristics

Data set #ltems #Transactions MinT MaxT AveT
T40I10D100K 942 100000 4 77 39
Mushroom 119 8124 23 23 23
BMS- 497 59602 1 267 2
Webview-1 13103 41373 1 52 9
Basket

Table 7: Data set characteristics

Data set ol F, F Max{k| [F,|=0}
T40110D100k 700 804 550126 18
Mushroom 600 60 945309 16
BMS-Webview-1 36 368 461521 15
Basket 5 8051 285758 11

average length of the transactions. Additionally, Table 7
shows for each data set the lowest MST, number of
frequent items, item sets, size of the longest FIS that
was found.

The apriori algorithm: AIS algorithm generates all FISs
and CARs proposed by Agrawal et ™. The algorithm
was improved and called as Apriori by Agrawal et al., by
exploiting the monotonicity property of the support of
item sets and the CARs™!!.

Item set mining (breadth first search algorithm BFS):
The item set mining phase of the Apriori algorithm is

given mn Algorithm 1. We use the notation X[i], to
represent the i* item in X. The k-prefix of an item set X is
the k-item set {X[1],. . . X[k]}.

Intl. J. Soft Comput., 2 (1): 21-36, 2007

Algorithm 1 : Apriori-ltemset mining

Input: D, 0

Output: F(D, 0)

1: C1:i={ {1} 1cT}

2: k=1

3: while C.2 {} do

4: /leompute the supports of all candidate item sets
5: for all transactions (tid,[)eD do
6
7
8

- for all candidate item sets X €C, do
c1if X I then
: X, support++
9. endif
10: end for
11: end for
12: // Extract all frequent item sets
13: F, :={X|X supports>= o}
14: //Generate new candidate item sets
15: forall X, Y eF, X[I]=Y[I] for 1 < I <k-1,and X[k]<YTk]
do
T=Xu{Y[k]}
if Il [J]=k .J €F, then
Ca =G
end if
end for
k++
end while

16:
17:
18:
19:
20:
21:
22

The algorithm performs a BFS through the SS of all
item sets by iteratively generating CIS C,,, of size k+1,
starting with k = 0 (line 1). More specifically, C, consists
of all items m I and at a certamn level k, all item sets of size
k + 1 in BA(F,) are generated. This is done in two steps.
First, F, is joined with itself. The umion X uY of item sets,
F. 1s generated if they have the same k - 1-prefix
(lines 20-21). In the prune step, X UY 1s only inserted into
Cpy if all of its k-subsets occur in F (lines 22-24). To
count the supports of all K-items of CISs, is scanned as
one transaction at a time and mcremented (hines 6-12).
All item sets that turn out to be frequent are inserted
into F, (lines 14-18).

ARM algorithm: As per Algorithm 2, we can generate all
FAR and CARs. Fust, all FISs are generated using
Algorithm 1. Then, every FIST is divided into a candidate
head Y and a body X = T/Y. This process starts with Y =
{1, which always holds with 100% confidence (line 4). The
algorithm iteratively generates candidate heads C,., of
sizek + 1, starting with k =0 (line 5). A head is a candidate
if all of its subsets are to represent CRs. To compute the
confidence of a candidate head Y, the support of [and X
1s retrieved from F. All heads that result in CRs are
inserted into H, (line 9). At the end, all CRs are inserted

25

into R (line 20). Computing the CR requires the support of
at most 2 item sets. If the number of item sets and ARs is
not too large, then the time to find all such rules, takes
only the time needed to find all frequent such sets. The
computation of all frequent and ARs becomes
straightforward, when item sets and its ARs are known.
To compute the confidence of an AR X =Y, with XcY =
I, we need to find the supports of I and X, which can be
retrieved from the collection of FIS.

Data structures (DS): The candidate generation and the
support counting process requires an efficient DS.

Algorithm 2 Apriori-ARM

Input: D, o,v

Output: R(D, 0,v)

: Compute F(D, o)

‘R=1}

: forallIeF do

‘R =RuI={}

(CL= 4T} [TeT},

k=1,

s while C# {} do

. // BExtract all heads of confident association rules
cH, . ={XeC,| confidence(I\ X=X D)=T}
0: // Generate new candidate heads

1: forall X, YeH, X[I]=Y[I] for 1 <i<k-1 and X[k]<YT[k]
do

I=Xu{Y[k]}

itvI=T, | T |=K:TeH, then

Chrays =Cp Ul

end if

end for

I+

end while

/ /cumulate all association rules

R =Ru{IX=XXeHlu...UH}

end for

i I e I e LY T SN VN I S

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Hash-tree (HT): To find all k-subsets of item set, all FISs
in F, are stored in a hash table. CTSs are stored ina HT!',
A node of the HT contains a list of item sets or a hash
table. In an interior node, each bucket of the hash table
pomts to another node. The root of the hash-tree 1s
defined to be at depth 1. An interior node at depth d
points to nodes at depth d + 1 Item sets are stored in
leaves. When we add a k-item set X during the candidate
generation process, we start from the root and go down
the tree until we reach a leaf. At an interior node at depth
d. we decide which branch to follow by applying a hash
function to the X[d] item of the item set and following the
pouter n the corresponding bucket. All nodes are mitially
created as leaf nodes. When the number of item sets in a

Intl. J. Soft Comput., 2 (1): 21-36, 2007

leaf node at depth d exceeds a specified threshold, the leaf
node 1s converted imto an interior node, only ifk > d. To
find the CISs that are contained in a transaction T, we
start from the root node. If we are at a leaf, we find whuch
of the item sets in the leaf are contained in T and
mcrement their support. If we are at an interior node and
we have reached it by hashing the item i, we hash on each
item that comes after 1 m T and recursively apply this
procedure to the node in the corresponding bucket. For
the root node, we hash on every item in T.

Trie data structure (TDS): In TDS''Y, every k-item set
has a node associated with it, as does its k - 1-prefix. All
the 1l-itemsets are attached to the root node and their
branches are labeled by the item. Every other k-item set is
attached to its k - 1-prefix. Every node stores the last item
n the item set it represents, its support and its branches.
The branches of a node can be implemented using several
DSs such as a hash table and a BST. To find the CTSs that
are contained in a transaction T, we start at the root node.
To process a transaction for a node of the trie,

¢ Follow the branch corresponding to the first item in
the transaction and process the remainder of the
transaction recursively for that branch and

* Discard the first item of the transaction and process
it recursively for the node itself. The join step of the
candidate generation is simple using a trie, since all
item sets of size k with the same k - 1-prefix are
represented by the branches of the same node. We
copy all siblings of the node that represents X as
branches of that node. All FISs mining algorithms
presented in this paper are implemented using this trie
data structure.

Optimizations: The performance is mainly dependent on
the number of CISs that occur mn each transaction.

AprioriTid, AprioriHybrid: Agrawal et al ' proposed
two algorithms, AprioriTid and AprioriHybrid. The
AprioriTid algorithm reduces the time for the support
counting procedure by replacing every transaction m the
DB by the set of CTS that occur in that transaction. This
is done repeatedly at every iteration k. This is given in
Algorithm 3. It performs slower than Apriori in early
iterations. This 1s mainly due to the additional overhead
that is created when C, does not fit into main memory. If
a transaction does not contain any CISs, then C, will not
have an entry for this transaction. Hence, the mumber of
entries 1 C, may be smaller than the number of
transactions in the DB. At later iterations, each entry may
be smaller than the corresponding transaction. In early

26

iterations, each entry may be larger than its corresponding
transaction. Hence, another algorithm, AprioriHybrid, has
been proposed”” that combines the Apriori and
AprioriTid algonthms. This hybnid algorithm uses Aprior
for the initial iterations and switches to AprioriTid when
it is expected that the set C, fits into main memory. Since
the size of C, 1s proportional with the number of CIS3s

Algorithm 3: Aprion Tid

Input: D,o

Output: F(D,0)

. compute F, of all frequent items
", D(with all items not in F, removed)
k=2
while F,, # {} do
compute C, of all candidate k-items
Cy =1}
// compute the supports of all candidate item sets
for all transactions (tid, T)eC", do
Cy =4}

: for all XeC, do

T U0) S K173 eTAEX[-2].X [k-2], X[k]} €T
then

D Cr =Cu X

: X. support++

s end if

: end for

cif Cp#) then

(O =Chui(ud, Cod

s end if

: end for

. Extract F, of all frequent k-itemsets

Dk

22: end while

Counting candidate 2-itemsets:

_ e = e e e e T e N T S TV I NG S

[P I
= O

DHP algorithm (Direct hashing and pruning): Park et al.
proposed an optimization algorithm to reduce the
number of CISs. During the k™ iteration, DHP already
gathers information about CISs of size k + 1 in such a way
that all (k + 1)-subsets of each transaction after some
pruming are hashed to a hash table. Each bucket in the
hash table consists of a counter to represent how many
itemn sets have been hashed to that bucket so far. During
the support counting phase of iteration k, every
transaction is trimmed in the following way. If a
transaction contains a FIS of size k + 1, any item
contained mn that k+1 itemset will appear m at least k times
of the CIS in C*. Instead of using the hash-tree to store
and count all candidate 2-itemsets, a triangular array C
15 created, m which the support counter of a candidate
2-itemset {i, j} is stored at location C[i][j]. Using this

Intl. J. Soft Comput., 2 (1): 21-36, 2007

array, the support counting procedure reduces to a simple
two level for-loop over each transaction.

Alogorithm 3.a: DHP

Input: Database

Output: frequent k-itemset

/* Database=set of transactions;
Ttems=set of items;
Transactions=<TID, {xeltems}>;
F, 1s a set of frequent l-itemsets™/

Fis,

#* Ha iy the hosh avte r 2-1temsELS

Read the transactions and count the
occurrences of each item and generate H, .,
for each transaction teDatabase do begin
for each item x int do

X.count++;

for each 2-itemset y m t do

H,add(y);

End

// Form the set of frequent 1-itemsets

for each item 1€items do

if 1. count/|Database|>min sup

thenF, =F, uT,

end

/* Remove the hash values without the
minimuin support*/

H, prune{min sup);

/*Find F,, the set of frequent k-itemsets, where lc=2%/
for each (k:=2; F, , #¢b:k++) do begin

/1 Ck 1s the set of candidate k-items
Ck=o,

/* Fy.+ Fy 18 a natural join of

F,,and F, , on the first k-2 items

H, 1s the hash table for k-itemsets™*/

For eachxe{ F, . F,,tdo

If Hy hassupport(x)

Then C= C, ux;

End

/* Scan the transaction to count candidate k-itemsets and
generate Hy,, */

for each transaction teDatabase do begin
for each k-itemset x in t do

ifxe C,

thenx. count-++;

for each (k+1)-itemset y int do

if =3z z=k-subset of v

"= H, hashsupport(z)

then H,,, add(v),

end

/1 Fy1s the set of frequent k-itemsets

Fe=d;

27

For eachxe C,,,

if x.count/| Database|>min sup

then F, _F, ux;

end

/*Remove the hash values without the minimum support
from H,,*/

H,., prume(min sup);

end

answer=u,Fk;

Perfect hashing and pruning algorithm (PHP): In the
sale transaction database domain, an example association
rule may be that 90% of transactions that purchase bread
and butter also purchase milk. The following is a formal
statement of association rule mining for transaction
database!"'?: let I={i,,1,.... .1} be a set of items and D be
a set of transactions, where each transaction T 1s a set of
items such that Tcl. Each transaction has a unique
transaction identifier called its TID. We say that a
transaction T contains X if X ¢ T, where X 1s a set of
some items in [. An association rule 1s an implication of
the form X = Y, where X and Y are sets of some items in
I such that they are disjoint. The rule X = Y holds in the
database D with confidence ¢, if ¢% of transactions in D
that contain X also contain Y. the rule X=Y has support
s in the transaction set D, if s% of transactions in D
contain X u Y. Given the database D, the problem of
mining assoclation rules involves the generation of all
association rules that have support and confidence
greater than or equal to the user-specified minimum
support and minimum confidence.

The discovery of association rules for a given dataset
D, involves two main steps™: The first step is to find each
set of items, called as itemsets, such that the co-
occurrence rate of these items is above the minimum
support and these itemsets are called as large itemsets or
frequent itemsets. The size of an itemset represents the
number of items in that set. If the size of an itemset is
equal to k, then this itemset is called as the k- itemset. The
second step 1s to find asscciation rules from the frequent
itemsets that are generated in the first step. The second
step of the generation of association rules is
straightforward. Tn that step, for every frequent itemset f,
all nonempty subsets of f are found. Then for every such
subset a, a rule of the form a=(f-a) 1s generated if the ratio
of support (f-a) to support(a) is greater than or equal to
the minimum confidence.

The proposed algorithm uses perfect hashing for the
hash table generated at each pass and also reduces the
size of DB by pruning the transactions. In first pass a
hash table is created. Each distinct item in the DB is
mapped to different location in the hash table. After the

Intl. J. Soft Comput., 2 (1): 21-36, 2007

first pass, the hash table contains the exact number of
occurrences of each item in the DB. Tn the next pass the
algorithm prunes the DB by discarding the transactions.
Also, trims the items that are not frequent from the
transactions. The Pseudo code is given below:

Algorithm 3.b : FPHP

Input: Database

Output: Frequent k-itemset

/* Database =set of transactions;

Ttems = set of items;

Transaction=<TID, {xeTtems}>;

Fl is a set of frequent l-itemsets*/

F =,

/* H, is the hash table for I-itemsets

Read the transactions and count the occurrences
of each items and generate H, */

For each transaction teDatabase do begin

For each item x int do

H,.add(x);

End;
/{Form the set of frequent l-itemset
for each itemset y in H, do

if H; hassupport(y)

then F = F,uy
end

/*Remove the
support™®/

H, prune(min sup);

D, =Database;

/1 Dyis the pruned database

/* find F, the set of frequent k-itemsets,
where k>2 and prune the database*/
k=2

repeat

D=¢:

F=b;

For each transaction te D, ; do begin

M wis k-1 subset of items int

if vwiwe Fy

then skip t;

else

items=d;

for each k-itemset y int do

1f =37 z=k-1 subset of y

7= H, ; hassupport(z)

then H.add(y);

items=itemsuy;

end

D, D, ut //such that t contains

/fitems only in the set items

end

hash values without the mimimum

28

for each itemset y in H, do

if Hhassupport(y)

then F,_ Fuy

end

/*Remove the hash values without the minimum support
from H,*/

H, prune(min sup);

K++;

UntilF, = ¢;

Answer = U, Fy;

Efficient algorithm: We propose the following
optimization algorithm. When all single items are counted,
resulting in the set of all frequent items F1, we do not
generate any candidate 2-itemset. Instead, we start
scanming the DB and remove from each transaction all the
items that are not frequent, on the fly. Then, for each
trimmed transaction, we increase the support of all
candidate 2-itemsets 20 contained in that transaction. If
the candidate 2-itemset does not yet exists, we generate
the CIS and imtialize its support to 1. Only those
candidate 2-itemsets that occur at least once in the DB are
generated. For example, this technique was specially
useful for the basket data set. In that data set there exist
(* ' C) frequent items. Hence, Apriori would generate
8,051 = 32,405,275 candidate 2-itemsets. Using this
technique, this number was drastically reduced to
1,708,203, Support lower bounding apart from the
monotomcity property, it 1s possible to derive information
on an item set, given the support of all of its subsets. The
technicue gives a lower bound on the support of an item
set apart from the monotomecity property.

Proposition 4: Let X, Y, 7 1 be itemsets. Support{ X U
YUZ) = support (X UY)+ support (X UZ) —support
(X)

Proof:

Support (XU YUZ)

=|cover (X UY)ncover (X UZ)|

=|cover (XU Y)\ (cover (XUY)\cover (X UZ))
>|ecover (XUY)\ (cover (X)\ cover (X TUZ))
>|cover (XUY) —| { cover (X)\ cover (XT1J 7))
=|cover (XU Y)|—(cover(X)|—|cover(XUZ)|)
=support (X U Y)+ support (X U Z) —support { X)

The lower bound can be used in the following way.
Every time a candidate k + 1-itemset is generated by
joming two of its subsets of size k. Suppose the CIS
Kedfi, 1,} is generated by joining Xe i} and Xe fin}, we
simply add up the supports of these two itemsets and
subtract the support of X. If this lower bound 1s lugher

Intl. J. Soft Comput., 2 (1): 21-36, 2007

than the MST, then we already know that it is frequent
and hence, we can already generate CTSs of larger sizes
for which thus lower bound can again be computed. We
still need to count the exact supports of all these itemsets.
Using the efficient support counting mechanism, this
optimization could result in significant performance
mnprovements. We can also exploit a special case of
Proposition 4 more specifically.

Corollary 5. TLet X, Y,Z €1 be itemsets. support
(XUY) = support (X)=support (XUYuZ) = support (XUZ).
This specific property was later exploited by
Pasquier ef al. in order to find a concise representation of
all FISs!". Suppose, we have generated and counted the
support of the FIS Xu{i}, its support is equal to the
support of X. The supports of every superset Xu {1}uY
15 equal to the support of X uY and hence, we do not
have to generate all such supersets, but, only keep the
information that every superset of Xu{i}
represented by a superset of X. This rules shows
significant improvement in performance.

is also

Combining passes: To combine as many iterations as
possible 1n the Apriory algorithm, only few candidate
patterns can be generated. We provide several upper
bounds on the number of CTSs that can be generated after
certain iteration.

Dynamic itemset counting (DIC) algorithm: In Aprion, at
each iteration the DCT in Algorithm 4, builds the set F, of
the frequent k-itemsets on the basis of the set of
candidates C,. However, DCI adopts a hybrid approach to
determine the support of the candidates. During the first
iterations, it exploits a counting-based technique and
dataset pruming (line 7), 1.e., items which will not appear in
longer patterns are removed from the dataset. The pruned
dataset fits into the mam memory, DCI starts using an
optimized intersection-based technique to access the in-
core dataset (line 14 and 16).

Input D,o

1: F,=first_scan(D,s, and D,);

/ffind frequent items and remove non-frequents from D
2: F,=scond scan(D,,s, and D,),

3 : k=2, /find frequent pairs from pruned dataset
4: // until pruned dataset 1s bigger than memory ...
5: while(Dk+1 size()»memory_available())do

6 : kt++; // keep the horizontz] format

7: F=horizontal _iter(Dy,s.k, and Dy+1);

8: end whle // switch ot verticle format

10: dense=D,+1.1s_dense();

/fmeasure dataset density

11 : while(F =0)do

12 kt++;

13 :if (dense) then

14: F,=verticle iter dense(D,.s,k);

15 else // optimize dense dataset

16: F=vertical iter sparse(D,sk, and D +1);
17 : end if // optimize sparse dataset

18 : end while

Algorithm 4 : DCI

The DIC algorithm, proposed by Brin et al. tries to
reduce the number of passes over the database by
dividing the DB mto mntervals of a specific size. DCI deals
with dataset peculiarities by dynamically choosing
between distinct optimization heuristics according to the
dataset density (line 13). During its initial counting-based
phase, DCI exploits an out-of-core, horizontal DB with
variable length records. By exploiting effective pruning
techniques inspired by the DHP algorithm, DCT trims the
transaction. A pruned dataset D, is thus written to disk
at each iteration k and employed at the next iteration. Let
my, be the number of distinet items included m the pruned
dataset D, and n, the number of remaining transactions.
Due to dataset pruning m,,, > my and n,,>n, always hold.
As soon as the pruned dataset becomes small enough to
fit into the mam memory, DCI adaptively changes its
behavior, builds a vertical layout DB in-core and starts
adopting an intersection based approach to determine
frequent sets. Note, however, that DCI continues to have
a level-wise behavior. At each iteration, DCI generates the
candidate set C, by finding all the pairs of (k-1) itemsets
that are included in F, | and share a common (k - 2) prefix.
Since ¥, 18 lexicographically ordered, pairs oceur n close
positions and candidate generation is performed with high
spatial and temporal locality. Only during the DCI
counting-phase, C, is further pruned by checking whether
all the other subsets of a candidate are included in F, .
Comversely, during the intersection-based phase, since
our intersection method is able to quickly determine the
support of a candidate itemset, we found much more
profitable to avoid this further check Fig. 3.

Dynamic type selectio: The optimization is concerned
with the amount of memory used to represent itemsets
and their counters. Since such structures are extensively
accessed during the execution of the algorithm, 1s it
profitable to have such data occupying as little memory as
possible. This not only allows to reduce the spatial
complexity of the algorithm, but also permits low level
Pprocessor optunizations to be effective at run tune. During
the first scan of the dataset, global properties are
collected like the total number of distinct frequent items or
the meaximum transaction size and the support of the most

Intl. J. Soft Comput., 2 (1): 21-36, 2007

Prefix ndex Suffix
T FERY Compressed
“';: (i o |1 momary=9+3+10=21
a »
bdf » 9 £12
h|4
ils
116
m|7
abecd il8
abee al9
abec f —
abeoc g
abdh . Non-compressed
ﬂggi * Momary = 4x10=40
a
abdm
bdf i
bdfn

Fig. 3: Compressed data structure used for itemset

frequent item. Once this information 1s available, we remap
items to ordered and contiguous integer identifiers. This
allows us to decide the best data type to represent such
identifiers and their counters.

Dense vs. sparse optimization: We adopt two different
strategies according to whether a dataset is recognized as
dense or not. We describe in more detail the heuristic
used to determine a dataset density.

Sparse datasets: Sparse datasets originate bit-vectors
containing long muns of 0’s. To speedup computation,
while we compute the intersection of the bit-vectors
relative to the first two items ¢l and ¢2 of a generic
candidate itemset ¢ = {cl, c2,.. ., ck} & C, we also identify
and maintain information about the runs of 0"s appearing
in the resulting bit-vector stored in cache. The further
mtersections that are needed to determine the support of
¢ will skip these runs of 0°s, so that only vector segments
which may contain 1°s are actually intersected. The same
mformation is reused many times. Note that such
technique 1s a fast approximation a dataset projection,
since the vertical dataset is dynamically reduced by
removing transactions that do not support a given 2-item
prefix. This cannot support larger itemsets sharing the
same prefix. Moreover, sparse datasets does the
possibility of furthr pruning vertical datasets as
computation progresses. The benefits of pruning regard
the reduction m the length of the bit-vectors and thus in
the cost of intersections. Note that a transaction, can be
removed from the vertical dataset when it does not
contain any of the itemsets mcluded in F,. This check can
simply be done by oring the intersection bit-vectors
computed for all the frequent k-itemsets. However, we
observed that dataset pruning is expensive, since vectors

30

must be compacted at the level of single bits. Hence, DCT
prunes the dataset only if turns out to be profitable, i.e. if
we can obtain a large reduction in the vector length and
the number of vectors to be compacted is small with
respect to the cardinality of C,.

Dense datasets: If the dataset 15 dense, we expect to deal
with strong correlations among the most frequent items.
This not only means that the bit-vectors associated with
the most frequent items contam long runs of 17s, they turn
out to be very similar. The heuristic techmique adopted by
DCT works as follows: Reorder the colummns of the vertical
dataset, in order to move identical segments of the bit-
vectors assoclated with the most frequent items to the
first consecutive positions; since, each candidate 1s likely
to include several of the most frequent items, we avoid
repeated intersections of identical segments. This
technique may save a lot of work because

» The mntersection of identical vector segments 15 done
ongce,

» The identical segments are usually very large and

» Long candidate itemsets presumably contains several
of these most frequent items.

CARMA algorithm (Continuous association rule mining
algorithm): Proposed by Hidbert uses interval size to 1.
CISs are generated on the fly from every transaction. By
reading a transaction, it mncrements the support of all
CISs. CARMA generates more CISs than DIC or Apriori.
CARMA allows the user to change the MST during the
execution of the algorithm. When the DB has been
processed once, CARMA generates a superset of all FIS
relative to some threshold. To determine the exact
supports of all generated item sets, a second scan of the
DB 1s required.

Sampling algorithm: Proposed by Toivonen, performs
two scans through the DB by picking a random sample
from the DB. It finds and verifies all frequent patterns in
that sample. The sampling method does not produce all
frequent patterns. Missing patterns can be found by
generating all remaimng frequent patterns, verifying their
supports during a second pass through the DB. The
probability of such a failure can be kept small by
decreasing the MST.

Partitioning algorithm: Proposed by Savasere et al. uses
DB is partitioned into several disjoint parts and the
algorithm generates for every part all item sets that are
relatively frequent within that part, using Algorithm 5. The
parts of the DB are fit into main memory. The algorithm
merges all relatively FISs of every part together. This
results m a superset of all FISs. Supports of all itemsets

Intl. J. Soft Comput., 2 (1): 21-36, 2007

are computed during a second scan through the DB.
Every part is read into main memory using the vertical
database layout and the support of every itemset is
computed by intersecting the covers of all items occurring
in that itemset. The exact Partition algorithm is given in
Algorithm 6.

Algorithm 5 Partition- Local Ttemset Mining

Input: D,o

Output: F (D,o)

1: Compute F, and store with every frequent item 1its cover
2:k: =2

3. while F, ,#{t do

4:F,.. =4

50 forall XYe F,,, X[I]=Y[I] for 1<i<k-2 and X[k-
11<Y[k-1] do

6: I={X[1],...... SRS

7. if¥ I I TeF, , then

8: I. cover: =X.cover NY .cover

9: if | Leover| 20 then

10:F: =F, ul

11: end if

12: end if

13: end for

141+

15: end while

Algorithm 6 Partition

Output: F (D,0)

1: PartiionDinD,, D,

2: // Find all local frequent item sets
3: forl <p<n do

4: Compute C*:=F(D,, [orel. [D,|])
5: end for
6
7
8

- /f Merge all local frequent item sets

D Chma TU e &

: //Compute actual support of all item sets
9: for l<pzn do
10: Generate cover of each item in D,
11: forallIeC,,,,; do
12: T support . =L support + | I [1]. Coverm ... nT[|T]]
Cover |
13: end for
14 end for
15: // Extract all global frequent item sets
16: F. ={1= C,4a | L support = o}

lspsn

The algorithm 1s lighly dependent on the
heterogeneity of the DB and can generate too many local
FISs, resulting significant decrease in performance.

Depth-first search (DFS) algorithms: It 1s possible to
reduce this total size by generating collections of CISs in

a DFS. The first algorithm proposed to generate all FISs in
a DFS manner is the Eclat algorithm by Zaki®'. Later,
DFS algorithms have been proposed of which the
FP-growth algorithm by Han et al™ is the most well
known. Given a TDB D and a M ST o, denote the set of all
frequent k-itemsets with the same k - 1-prefix. Al F1Ss can
be computed during an mitial scan over the DB, after
which infrequent items will be ignored.

[Eclat]. Zaki’s Eclat algorithm: Tt is based on a clever
dataset partitiomng method that relies on a lattice-
theoretic approach for decomposing the SS. Each
subproblem obtained from this SS decomposition is
concerned with finding all the FISs that share a common
prefix. On the basis of a given common prefix it 15 possible
to determine a partition of the dataset, which will be
composed of only those transactions, which constitute
the support of the prefix. By recursively applying the
Eclat's SS decomposition we can thus obtain
subproblems which can entirely fit m mam memory.
Recently Zaki proposed an enhancement to Eclat (dEclat),
whose main innovation regards a novel vertical data
representation, which only keeps track of differences in
the tids of a candidate pattern from its generating
frequent patterns. Eclat uses the vertical DB layout
and uses the intersection based approach to compute
the support of an itemset.

Algorithm 7 Eclat

Input: D,o,Ic I

Output: F[T](D, o)

1: F[I]:=1}

2. for all 1€T occurring in D do
3: F[I]:=F[I]u{Iu{Itt

4. /f Create D*

5 Dh={}

6: for all jel oceurring in D such that 1=I do
7:C:=cover ({I})ncover ({1})

8 if |C| zo then

9:D': =TFu {(j, %

10: end 1f

11: end for

12: //Depth-first recursion

13: Compute F[Iu {I}] (D', o)
14:F[I]=F[I]uF[Tui{l}]
15: end for

Note that a CTS is now represented by each set T 17
{1, 1} of which the support is computed at line 6 of the
algorithm. Since the algorithm doesn’t fully exploit the
monotonicity property, but generates larger CISs based
on two of its subsets. Eclat join step from Apriori. To

Intl. J. Soft Comput., 2 (1): 21-36, 2007

reorder all items in the DB in support of ascending order
to reduce the number of CTSs. Such reordering can be
performed in step 10 and 11. Here, counting the supports
of all itemsets 1s performed efficiently. The total size of all
covers n main memory 18 much less. In the DFS, the
covers of at most all k-itemsets with k-1-prefix are stored
in main memory.

To compute the support of I, we simply need to
subtract the size of the diffset from the support of its k -
1-prefix. The diffset of an itemset I U {1, 7}, given the two
diffsets of its subsets IU{1} and [U{E, with 1 < j, 1s
computed as follows: diffset(I U {1, j}) := diffset(IU {7})\
diffset(T 17 {i}). This technique has shown best
improvements, designated as dEclat. Using this DFS, it 1s
possible to optimize Apriori algorithm. Another
optimization proposed by Hipp et al. combmes Aprion
and Eclat into a single Hybrid The algorithm starts
generating FISs in a BFS manner using Apriori and
switches after a certain iteration to a DFS strategy using
Eclat. The exact switching point must be given by the
user. Eclat generates every possible 2-itemset. If the TDB
contains a large transactions of frequent items, such that
Aprior needs to generate all its subsets of size 2, Eclat
outperforms Apriori.

FP-tree (Frequent pattern) algorithm: FP growth builds
inmemory a compact representation of the dataset, where
repeated patterns are represented only once. The DS used
to store the dataset is called FP-tree. This algorithm
recursively identifies tree paths which share a common
prefix and projects the tree accordingly. These paths are
intersected by considering the associated counters. FP-
growth works very well for dense datasets, to construct
very compressed FP-trees. FP-growth 1s more effective
than Apriori algorithms, which need to store huge
number of candidates for subset-counting. Unfortunately,
FP-growth does not perform well on sparse datasets. It
uses a combination of the vertical and horizontal
database layout to store. Tt stores the actual transactions
from the DB in a trie structure and every item has a
linked list going through all transactions. This new DS
is denoted by FP-tree!l.

Example 1: Assume we are given a TDB and a MST of 2.
First, the supports of all items is computed, all infrequent
items are removed from the DB. An example of
preprocessed DB 1s shown below :

The FP-tree 1s shown 1 Fig. 4. The FP-tree, supports
of all frequent items can be found in the header table. The
FP-tree is just like the vertical and horizontal DB of TDB
for the generation of FISs. Tt uses some additional steps
to maintain the FP-tree structure during the recursion
steps, while Eclat only needs to maimtain the covers of all
generated itemsets. First, FP-growth computes all frequent
items for D, at lines 6-10, which is of course different in

32

Nu]l

Header table " ,..-—-bb 1

—""'—-—‘_--——
a4y -1
bidl-l __

———e——p b3 —pd:il
el3l -

—‘_____._
di3 | o

-....,______\
el 31 =
fl3 \w

\ c 1

Node-

\\v

Fig. 4: An example of an FP-tree

every recursion step. This can be efficiently done by
simply following the linked list starting from the entry of
i in the header table. Then at every node in the FP-tree it
follows its path up to the root node and increments the
support of each item it passes by its count. Then, at lines
11-13, the FP-tree for the i-projected DB is built for those
transactions in which 1 occurs, intersected with the set
of all frequent items m D greater than 1. These
transactions can be efficiently found by following the
nodelinks starting from the entry of item i in the
header table and following the path from every such
node up to the root of the FP-tree.

Algorithm 8 :Fp growth

Input: D, 0,1 c1

Output: F[I1](D,0)

1:F[I]: =4}

2: for all ieT occuwrring in D do
3:F[I]:=F[I]uw {Iuil}}

4: /f Create D"
5
6
7

Dh=4}

H:={}

: for all jel oceurring in D such that 3= do
if support (Tuw {L,j}) >0 then
9 H:=Hu{;}

10: end if

11: end for

12: for all (tid, X)eD with 1eX do
13: D*=D'u {(t1d, X nH)}

14: end for

15: // Depth-first recursion

16: compute F [Tu {1}](D, o)
17:F[I]=F[IJuF[Iu{l}]
18: end for

w0

Intl. J. Soft Comput., 2 (1): 21-36, 2007

If this node has count n, then the transaction is added
n times. We can dynamically add a counter imtialized to 1
for every item that occurs on each path in the FP-tree that
1s traversed. Suppose that the FP tree consists of a single
path, then, we can stop the recursion. FP-growth is able
to detect this one recursion step ahead of Eclat. At every
recursion step, an item j occurring in D, represents the
itemset TU{1, j}. For every frequent item T occurring in D,
the algorithm recursively finds all frequent 1-itemsets in
the i-projected DB D,

The main advantage FP-growth, each lmked list,
representing the cover of that item, is stored in a
compressed form. Unfortunately, to accomplish this gain,
it needs to mamtamn a complex DS and perform a lot of
dereferencing, while Eclat only has to perform simple and
fast intersections. In Eclat, the cover of an item can be
implemented using an array of transaction identifiers. In
FP-growth, the cover of an item is compressed using the
linked list starting from its node-link m the header table,
but, every node in this linked list needs to store its label,
a counter, a pointer to the next node, a pomter to its
branches and a pointer to its parent. The size of an FP-tree
1s atmost 20%. Table 9 shows for all four used data sets
the size of the total length of all arrays in Eclat (||D|]), the
total number of nodes in FP-growth (|[FP-tree|) and the
corresponding compression rate of the FP-tree. We show
the size of the DSs in bytes and the corresponding
compression of the FP-tree. FP-growth becomes an actual
compression of the DB is the mushroom data set.

Opportunistic projection (OP) algorithm: Another
projection-based algorithm, has been proposed. OP
overcomes the limits of FP-growth, using a tree-based
representation of projected transactions for dense
datasets and a new array based representation of the
same transactions for sparse datasets. OP Algorithm
proposes heuristic method to opportunely switch
between DES, BFS of the frequent set tree. The choice
of using a BFS depends on the size of the dataset to
mine. For large datasets, we use BFS, for small DS, we use
DFS approach.

The Breadth First Search (BFS): We create the upper
portion of FIS Tree in three steps. First, Create Counting
Vector(v). We attach counting vectors to all nodes at the
current level k to accumulate local supports for the item of
each sibling node that is after the node attached
according to the imposed ordering. For example, possible
items local to the Projected Transaction set(PTS) of the
node (a,3) m figurel are b, ¢, £, m and p, which are the

33

Table 8: An example preprocessed TDB

Tid X

100 {a,b,c, d e f}
200 {a,b,c,d, e}
300 {a, d}

400 {b, d, f}

500 {a, b, c, e f}
Table @: Memory usage of eclat versus FP-growth

Data set lin]] |FP-tree| Cover/FP-tree
T40I10D100K 3912459:15283K 3514917:68650K 89%:174%
Mushroom 174332:680K 16354:319K P :46%
BMS-Webview- 148209:578K 55410:1082K 37%:186%
1 399838:1561K 294311:5748K 73%:368%
Basket

items of siblings that follow the node (a, 3). Therefore, a
length 5 counting vector is attached to accumulate the
supports for items b, ¢, f, m and p.

Second, Project And Count (t,D”). We project the
transaction t along the path from the root to nodes at the
current level k and accumulate counting vectors. If a
transaction can be projected to a level k node and
contribute to its counting vector, it may also be projected
to level k+1, therefore record it in D’. Otherwise 1t can be
removed from further consideration. This results in the
reduction of the number of transactions level by level.

Third, Generation Children(v). We create children for
each node at the current level k for its local frequent items
whose element in the counting vector has a value over the
support threshold. If the node v has no child, it is
removed at that time and its parent will be deleted also if
v is the only child of its parent and so on.

The BFS is a recursive procedure. We use the
available free memory as parameter to control BFS
process.

Algorithm 9 : OP

Opportune project (Database: D)
Begin

Create a null root for FIS tree T,
D’ = Breadth first(T,D)

v = the null root of T;

Guided depth first(v,D’);

End

Breadth first(FIST: T,CurrentLevel: ., Database: D)
Begin

For eachnode v at level L of T do
Create counting vector(v);

Dr={}

For each transaction t in D do
Project and count(t,D");

For eachnode v at level L of T do
Generate children(v),

Intl. J. Soft Comput., 2 (1): 21-36, 2007

If D’ cannot be represented by TVLA and TTF
Then BreadthFirst(T,L+1,D7);

Else return(D7);

End

GuidedDepthFirst(CurrentFTIR STNode:p, PTS: D)
Begin

ILp=TraverseAndCount(T,p);
Dp=Represent(D,p)

For each frequent entry e in ILp by particular ordering do
Begin

C=GetChuld(p,e);

GuidedDepthFirst(c.Dp);

End

End

Algorithm 9. OpportunisticProjection

The guided DFS: Suppose the BFS procedure stops at
level k, then, only paths with length of k are maintained on
the FIS Tree whose lower portion will be generated by
GuidedDepthFirst as follows.

First, TraverseAndCount(D,p) scans all transactions
in D that support p, namely D, and get ILp which either be
local frequent items list created at that time if D is on the
disk or in the form of Threaded varied length arrays
(TVLA), or be represented in parent item lis(IL)t if D 1s in
the form of TIF.

Second, Represent(D,p). If D is on the disk or in the
form of TVLA, create a Threaded Transaction Forest(TTF)
for D, if the density of D, is estimated to be greater than
a given value, otherwise create a filtered TVLA. If D is in
the form of TTF, represent D, by a pseude TTF and make
a filtered copy if necessary.

Third, GetChild{p,e), for node p, either retrieve a child
c that 1s labeled by the same items as that of e if the child
is already created by BreadthFirst procedure, otherwise
create the child at that time.

The GuidedDepthFirst procedure 1s more efficient
than unguided one in that it avoids re-creating paths that
end at upper portion created by the BreadthFirst
procedure.

Experimental evaluation: We implemented the Apriori
implementation using the online candidate 2-itemset
generation optimization. We implemented the Eclat,
Hybnd and FP-growth algorithms. All experunents
reported in this paper were performed on a 2.8 GHZ HCL
system with 1 GB main memory in C++. Figure 5 shows the
performance. The first mteresting behavior can be
observed in the experiments for the basket data. Eclat
performs much worse than all other algorithms. This
behavior has been predicted, since the number of frequent
items in the basket data set 13 very large, hence, a huge

34

1000 - (2) Bask
—+ Apriori
-+ Edat
- forowth
1001 - hybrid

Time (seconds)

//

161

—

0 10 20 30 40 50 60 70 80 90 100
Support
10%1 1y BMS Webview-1
Apriori

forowth
hybrid

et

104

Time (seconds)

/

55 60

th
(=]

40 45
Support

1 -
00007 () T40r10D100K ~ Apriori

-» Edat
-« forowth
o hybrid

Time (seconds)
:

100 T T T T T 1
700 750 800 850 900 950 1000
Support
1000+
(d) Mushroom
g loo = Apriori
g -« Edat
g -+ forowth
l o hybrid
E 1|J-b*’_“\j_§11

1 T T T T T T T 1

600 650 700 750 800 850 900 950 1000
Support

Fig. 5: FIS mming performance

Intl. J. Soft Comput., 2 (1): 21-36, 2007

amount of candidate 2-itemsets is generated. The other
algorithms all use dynamic candidate generation of 2-
itemsets resulting in much better performance results. The
Hybrid algorithin performed best when Apriorn was
switched to FEclat after the second iteration Apriori
performs better than FP-growth for the basket data set.
This result 1s due to the overhead created by the
maintenance of the FP-tree structure. For all MSTs higher
than 40, the differences in performance are negligible. For
MSTs, Eclat clearly outperforms all other algorithms,
because, for large transactions for which the subset
generation procedure for counting the supports of all
CISs consumes most of the time. For example, counting
the supports of all 7-itemsets takes 10 seconds of which
9 seconds were used for these 34 transactions. Hybrid
algorithm performed best in this case.

The performance of DCT were compared with those
achieved under the same testing conditions by three of
the most effcient FSC algorithms. We used FP-growth, OP
and dEclat, in the implementation. Reports shows the total
execution times obtained running FP-growth, dEclat, OP
and DCT on various datasets as a function of the support
thresholds. We can see that DCI performances are very
similar to those obtained by OP. In some cases DCI
slightly outperforms OP, in other cases the opposite
helds. Tn all the tests conducted, DCT instead outperforms
both dEclat and FP-growth. Finally, due to its
adaptiveness, DCI can effectively mine huge datasets.
The performance differences of Eclat and FP-growth are
negligible and are again mainly due to the differences in
mitialization and destruction. Because of the small size of
the database, both run extremely fast. Hybrid algorithm
doesn’t perform well. Tn this situation.

CONCLUSION

Lot of people have compared several algorithms to
solve the FIS mining problem as efficiently as possible.
We experienced that different implementations of
algorithms vield different results. We observe that,
different compilers and different machines sometimes
showed different behavior for the same algorithms. Also
different kind of data sets on which the algorithms were
tested showed remarkable differences in the performance
of such algorithms. An mteresting example of this is
presented by Zheng et al!' in their article on the real
world performance of association rule algorithms™?
which five well-known association rule miming algorithms
are compared. In this paper, we have presented an
analysis of a lot of algorithms which made a significant
contribution to improve the efficiency of FIS. We have
shown that as long as the DB fits in main memory, the

n

35

Hybrid algorithm, as a combination of an optimized
version of Apriori and Eclat is far the most efficient
algorithm. For dense DBs, the Eclat algorithm is better. Tf
the DB does not fit into memory, the best algorithm
depends on the density of the DB. For sparse DBs the
Hybrid algorithm seems the best choice if the switch from
Apriori to Eclat is made as soon as the DB fits into main
memory. For dense DBs, we envisage that the partition
algorithm, wusing FEeclat to compute all local FISs,
performs best.

REFERENCES

1. Han,J, I Pei, Y. Yin and R. Mao, 2003. Mining
frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Mining and
Knowledge Discovery.

Gunopulos, D., R. Khardon, H. Mannila and H.
Toivone, 1997. Data Mining, Hypergraph
Transversals and Machine Learning. Tn Proceedings
of the 16th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
pp: 209-216. ACM Press, 1997.

Mannila, H., 2002. Global and Local Methods in Data
Mining: Basic Techniques and Open Problems. In
Widmayer, P., F.T. Ruiz, R. Morales, M. Hennessy, S.
Eidenbenz and R. Conejo, Eds., Proceedings of the
26th TInternational Colloquium on Automata,
Languages and Programming, Volume 2380 of
Lecture Notes in Computer Science, pp: 57-68.
Springer, 2002.

Mannila, V. and H. Toivonen, 1997. Levelwise search
and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery, 1: 241-258.
November 1997.

Bylkowski, A. and C. Rigotti, 2001. A Condensed
Representation to Find Frequent Patterns. In
Proceedings of the Twentieth 20th ACM
SIGACT-SIGMODSIGART Symposium on Principles
of Database Systems, pp: 267-273. ACM Press.
Manmla, H., 1997. Inductive Databases and
Condensed Representations for Data Mining. In
Maluszynski, J. Ed., Proceedings of the 1997
International Symposium on Logic Programming,
pp: 21-30. MIT Press, 1997.

7. Pasquier, N., Y. Bastide, R. Taouil and L. Lakhal,
1999. Discovering Frequent Closed Ttem Sets for
Association Rules. In Beeri C. and P. Buneman, Eds.,
Proceedings of the 7th International Conference on
Database Theory, Volume 1540 of Lecture Notes in
Computer Science, pp: 398-416. Springer, 1999.
Zaki, ML.T. , 2000. Scalable algorithms for association
mining. TEEE Transactions on Knowledge and Data
Engineering, 12: 372-390.

10.

11.

12.

Intl. J. Soft Comput., 2 (1): 21-36, 2007

Orlando, 5., P. Palmerini, R. Perego and F. Silvestri,
2002. Adaptive and Resource-Aware Mining of
Frequent Sets. In Kumar, V., S. Tsumoto, P.S. Yuand
N. Zhong, Eds., Proceedings of the 2002 TEEE
International Conference on Data Mining. TEEE
Computer Society.

Agrawal, R., T. ITmielinski and AN. Swami, 1993.
Mining Association Rules Between Sets of Ttems in
Large Databases. In P. Buneman and S. Jajodia, Eds.,
Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, of
SIGMOD Record, pp: 207-216. ACM Press,
http: /fwww.almaden.

Agrawal, R. and R. Srikant, 1994. Fast Algorithms for
Mining Association rules. In Bocea, I.B. , M. Jarke
and C. Zaniolo, Eds., Proceedings 20th International
Conference on Very Large Data Bases, pp: 487-499.
Morgan Kaufmann, 1994.

Borgelt, C. and R. Kruse, 2002, Induction of
Association Rules: Apriori Implementation. Tn”Ardle
W.H and B.R'onz, Eds., Proceedings of the 15th
Conference on Computational Statistics, pp: 395-400,
http://fuzzy.cs.uni-magdeburg. de/~borgelt/software.
html, 2002. Physica-Verlag.

36

13.

14.

15.

16.

Brn, 8., R. Motwani, I.D. Ullman and S. Tsur, 1997.
Dynamic Ttemset Counting and ITmplication Rules for
Market Basket Data. In Proceedings of the ACM
SIGMOD International Conference on Management.
of Data, Vol. 26(2) of SIGMOD Record, pp: 255-264.
ACM Press.

Zaki, M.T., 2001. Fast vertical mmming using di_sets.
Technical Report 01-1, Rensselaer Polytechnic
Institute, Troy, New York.

Manrmla, H., H. Toivonen and AL Verkamo, 1994,
Efficient Algorithms for Discovering Association
Rules. In Fayyad, UM. and R. Uthurusamy, Eds.,
Proceedings of the AAAT Workshop on
Knowledge Discovery in Databases, pp: 181-192.
AAAT Press, 1994,

Zheng, 7., R. Kohavi and L. Mason, 2001. Real
World Performance of Association Rule Algorithms.
In Provost, F. and R. Srikant, Eds., Proceedings of
the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mimng,
pp: 401-406. ACM Press, 2001.

