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Abstract: Transmission of image and video over time-varying wireless channel can benefit from the use of the
joimnt source-channel (JSC) coding methods. This study investigates the use of the sequence-based approximate
MMSE method in the improvement of the jomt source channel decoding of a DPCM system. Using this
technique, three methods are presented. The produced results show that the method with the best performance
outperforms the sequence maximum a posteriori technique.
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INTRODUCTION

In Today’s multimedia systems which mix data, text,
speech, audio, 1image and video, the different sources are
compressed as much as possible before the bits are
transmitted via the commurnication channels. Generally the
higher the compression factor the higher 13 the sensitivity
to channel errors. A single error in the received data might
render the of the
Furthermore, the decoding of the-now erroneously
interpreted-bitstream will add to the distortion of the
decoded image. Since in a mobile environment, the
channel 13 quite noisy where an average error rates up to

remainder bitstream useless.

10% are quite common', both source and channel coding
are used. According to Shannon’s separation principle,
these components designed independently
without loss in performance™. However, this important
theory 1s based on several assumptions that may break
down in practice. Better performance can be obtamed if
joint source channel coding technicues are employed.

Joint source channel coding has
important research topic and several approaches were
proposed. These methods include optimised rate
allocation, unequal error protection, optimised index
assignment, channel optimised quantisation and recently
exploiting the source residual redundancy™™. The work
presented 1n this manuscript falls mto the category of
joint souwrce chammel coders which use the residual
redundancy in the output coder for improved
reconstruction over noisy channel.

can be

become an

The term “residual redundancy” was used by Sayood
and Borkenhagen™ to refer to statistical dependency that
remamns i the output of a DPCM prediction loop.
In®,  residual redundancy was defined in the
information-theoretic sense of excess rate. Methods
based on residual redundancy do not attempt to remove
excess rate from the source wvia entropy coding or
improved prediction; rather, they use this redundancy as
a form of implicit channel coding, to perhaps remove the
need for explicit charmel coding. A properly chosen ISC
decoder can capitalize upon the excess rate. Two
fundamental decoding approaches have been suggested
for this purpose. One approach 1s Maximum A Posteriori
(MAP) decoding and the second is Minimum Mean
Squared Error (MMSE) decoding.

The MAP approach estimates the transmitted
sequence output by the encoder and then feeds the
estimated indexes to a standard decoder. However, the
MAP structure is inherently suboptinal. Examples of
MAP approaches: sequence MAP detection™ and”,
Tnstantaneous MAP  detection™ and Modified MAP
receiver”.

For the MMSE approach, the ISC decoder directly
acts as conditicenal mean estimator, the MMSE estimator
for the source as shown in Fig. 1. Examples of such
approaches: Instantaneous approximate minimum mean
squared error (IAMMSE) decoder, sequence-based
approximate MMSE with first order and second order
Markovian approximation (SAMMSE)!.
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Fig. 2: HMM models used m the SAMMSE decoder, I:
sequence of hidden states, I: observed discrete
symbol

In this study, our objective is to design a source
decoder which mimmizes the mean squared error n the
reconstruction of a linear autoregressive DPCM coded
signal over a noisy chamnel as shown m Fig. 1. The
proposed sequence MMSE is based on the sequence-
based approximate MMSE with first order Markovian
approximation algorithm.

Sequence-based approximate MMSE: The SAMMSE
method combines the advantage of the sequence based
aspect of MAP decoding and the conditional mean aspect
of the instantaneous MMSE decoding. Given the
memoryless channel and Markovian index sequence
assumptions, the source encoder and channel tandem 1s
effectively considered to be discrete hidden Markov
model. In this model, the possible transmitted mdexes
correspond to the hidden states and the received
corrupted indexes correspond to the observed symbols
produced within these states. Fig. 2 shows a block
diagram of the model, where, a vector quantizer is used as
source encoder. A detailed description of this method 1s
given below.

Consider the sequence Y (v, ¥z ..» yp) which the
decoder uses to approximate the source sequence X =
(X4, X3, ..., X7). The SAMMSE method determines the values
of ¥ that mimimize the expected distortion given a
sequence of received indexes, I.

The distortion incurred by Y 1s given by
T
DEX.Y) = 3%, 5,/ ®
t=

The expected distortion can be expressed as
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| _Pril=il= )
E[D(X, YNJ=]=X[D(X, YA =i] = T:J}’
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The quantities Pr{] = 1 / I=1} and Pr{ [=1i} can be
computed using the assumption that the communication
channel i1s memoryless and the transmitted sequence is
first-order Markovian. They can be written as

T
Pr{l=j\I=1} = t]j[IP{Jt =i\, =1}
and
Pr{I=i} =Pr{l, =1}- ]_[zPr{It =i,V =1}
t=

However, choosing values of y by directly
minimizing Eq. 2 still involves E [d(3{, v\ I=i] which
requires a decoder table of cardinality N' for each t. A
direct computation from (2) will involve a huge number of
multiplications; hence, this approach 1s not practical. To
reduce the amount of computation, Miller et al
suggested a first order approximation

B [d(X, y)vI=i] = B [dX, ph L1

where t can take any value between 1 and T. For this
study, mimmizing Eq. 2 is equivalent to selecting vy, for
each t to mimnimize the quantity

~ T N
D=3 y(-y, P, =111 =} ®
where
y(D=E[X) T=1], @
and
¥ Pr{l=j\I=i}-Pr{l =i}
Prilt=l\ J=j} =122 - &)

YbhriJ=j\I=i}-Pril =i

The optimal decoder in the sense of [) selects the
reconstructions according to the centroid rule
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N
v, = 2v()-Prfl, =1"J=j} forall t ©
121 =

The key to realizing Eq. 61s to find an efficient way of
calculating the probabilities mn (5). The discrete HMM
method provides such method. Tn this study, the source
encoder and channel tandem 1s mterpreted as a discrete
hidden Markov model, with the unknown sequence [ as
sequence of hidden states and with the received index j,
the observable discrete symbol produced in a hidden
state at time t. Therefore Pr{l,=I\J=]} can be computed by
the well-known forward/bacleward algorithm. Tf we define
forward probabilities o,(1)=Pr{j,, jz..., J» L=1 \ A} and
backward probabilities P()= Prij.., jum---» i+ + I=1, A}
based on the discrete HMM parameters A= (A, B, II),
where A is the state transition probability matrix, B is the
probability of the observed symbol i a given state and II
is the initial state distribution. These probabilities can be
calculated through the standard forward/backward

recursions which are

e,(1)= Pril,=1} PriT, =i\ I,=13, 1=1,2,...,N

N .
@D Zon, (0)-Pril =1L, =K3|-Prill =\, =13
forl=1,2,...,Nandt=23,...,T

p(D=1, forl=1,2,....,N

i N -
BL=, %H{Im :k\It :1}'Pr{Jt+1 =la \It+1 =k}- Bt+1(k)

forl=1,2,....Nand t=T-1,.., 1.
Finally, the a posteriori probabilities are computed via

PriTt=1\ 7=} :M )

El o, (m) ) Bt (m)

In summary, the SAMMSE
described by the following major steps

algorithim can be

¢+ Compute the HMM parameters A and IT from the
traimng set of mages

¢ Determine the HMM parameter B from the channel
characteristics

¢« forl=1,2,... . Nandt=1,2,....T
. Evaluate cz.(Dand (1)
. Compute Pr{l=1\I=j} from (7).

* For 1=1,2,..., N, compute y(D=E[X\ I=]] from the
codebook

*  Determine vy, from (6) for all t
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Fig. 3: DPCM encoder with auto regressive prediction

Application of the SAMMSE to DPCM system: Tn this
study, we apply the SAMMSE decoding techmque in the
reconstruction of DPCM signals over noisy chamel. We
focus on the DPCM systems with auto regressive
prediction. This is due to the popularity of these systems
and the fact that the ideas employed in this study can be
easily applied to other study including moving average
predictive (linear or nonlinear) encoding systems. Fig. 3
shows the block diagram of a DPCM encoder with first
order auto regressive prediction. For a source input X, the
quantized sample, X , is given by

X, =8 +A-X,_, &

where € represents the quantized value of the predictive
ITOr &,

The SAMMSE algorithm as described in previous
study was developed for the study when a vector
quantizer is used as a source coder. In order to apply the
algorithm to a DPCM system, some modifications have to
be introduced. The output sequence, I, produced by the
DPCM encoder 1s actually the output of the vector
quantization of the predictive error e, However, in the
SAMMSE model, I, is the output of the vector
quantization of X, Considering this difference, three
approaches are proposed.

First approach: In the first approach, the same notation 1s
used as in the previous study. Therefore, the MMSE
decoder outputs, v, will approximate the prediction error
e, and X, can be estimated from y, using Eq. 8

X, =8, 1A,-X,_,
=Y Jr‘ﬂ‘l .it—l (9)

Hence, for the first approach, the modified algorithm
can be written as following

¢+ Compute the HMM parameters A and II from the
traimng set of images

¢ Determine the HMM parameter B from the channel
characteristics
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2 bit DPCM and p = 0.01
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Fig. 4 Improvement obtained by the three methods for
the 2 bit DPCM and p = 0.01
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Fig. 5. Improvement obtained by the three methods for
the 2 bit DPCM and p = 0.1

e forl=12,... . Nandt=12,....T

. Evaluate ¢.(Dand B,(1)

. Compute Pri{l=1\1=j} from (7).
Forl=1.2,..., N, compute y(1) from the codebook
Determine y.= &, from (6) for all t.

+ Compute X, from (9)

Second approach: The second method 18 similar to the
first one except m the last step, equation (13), ¥, 1is
replaced by its closest value to the codebook.

Third approach: In the third method, v, 1s considered to
represent the estimated value of X,. In such study, y() i
interpreted differently from the previous methods and it is
expressed as y(I) =E[X\ [=1]= A, .)A(t_l +eodebook(1).
Therefore, the algorithm becomes

45

+  Compute the HMM parameters A and II from the
training set of images

¢ Determine the HMM parameter B from the channel
characteristics

o forl=12,. ,Nandt=1,2,....T
. Evaluate a(D)and (1)
. Compute Pr{I=1%T=j} from (7).

s+  Forl=12,..., N, compute y(1)

+ Compute y= ¥, from (6) for all t.

RESULTS AND DISSCUSSION

The system described in Fig. 1 was implemented for
various study using MATLAB software. In the first part
of the experiment, the proposed methods were tested and
compared. For this purpose, twelve standard images are
used such as couple, lena, etc. The images are of size
256x256 or 512x512 and with 8 bits per pixel. Three images
are used for training and the rest are employed for testing.
Each image was encoded to 2-bit and 3-bit DPCM samples
and was sent over the channel The communication
channel was assumed to be a binary symmetric channel
with bit error probability p ranging from 0.01 to 0.20.

The umtial state probabilities, IT and state transition
probabilities, A, were estimated from the encoded
sequence of the three training images. The performance of
each proposed method was evaluated using the
Reconstruction Signal-to-Noise Ratio (RSNR) measure
which is defined as™.

Y 255°
DA

where x; is the input to the source coder and X is the
output of the source decoder.

Figure 4 to 6 show the improved obtained by the
three proposed methods for the SAMMSE techmque for

2 bit DPCM and p =10.01

RSNR =10log,, (10)
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Fig. 6: Improvement obtained by the three methods for
the 2 bit DPCM and p = 0.15
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3 bit DPCM and p= 0.05
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Fig. 7. Improvement obtained by the three methods for
the 3 bit DPCM and p = 0.05
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Fig. 8 Improvement obtained by the three methods for
the 3 bit DPCM and p=0.15
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Fig. 90 Improvement obtained by the three methods for
the 3 bit DPCM and p = 0.20
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the study of 2 bit and for various values of p. The results
indicate that in general the third method produce better
solution. For the study of 3 bit DPCM, we observed
similar results a shown m Fig. 7-9.

When the third method is compared with the
found that it
outperforms the sequence MAP technique. For example,

sequence MAP technique. Tt was
using image “Cameraman” for 2 bit DPCM system and
p=0.10, 0.77 dB improvement was obtained with sequence
MAP in comparison of 2.75 dB obtained with the third
method. For the study of image “Clown” and with the
same condition, the proposed method outperformed the
sequence MAP by 1.5 dB.

CONCLUSION

This study studies the use of the sequence-based
approximate MMSE method 1n the improvement of the
joint source channel decoding of a DPCM system. Based
on this technicque, three methods were proposed and
tested. The method with the best performance is selected
and compared with the sequence MAP techmique. It was
found that the best method outperform sequence MAP
technique.
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