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Abstract: Nonlinear Model Based Predictive Control (MBPC) is one of the most powerful techniques in process
control, however, two main problems need to be considered; obtaining a suitable nonlinear model and using
an efficient optimization procedure. In this study, a neural network is used as a non-linear prediction model of
the plant. The optimization routine 18 based on Genetic Algonthms (GAs). First a neural model of the non-linear
system 13 derived from mput-output data. Next, the neural model 15 used mn an MBPC structure where the critical
element 1s the constrained optimization routine which is no convex and thus difficult to solve. A genetic
algorithm based approach 1s proposed to deal with this problem. The efficiency of this approach had been

demonstrated with simulation examples.
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INTRODUCTION

Model based predictive MBPC was
developed in the process industries m the 1960's and 70's,
based primarily on heuristic ideas and input-output step
and impulse response models!™. The basic principle is to
solve an open-loop optimal control problem at each time
step. The decision variables are a set of future
manipulated variables and the objective function is to
minimize deviations from a desired trajectory; constraints
on manipulated, state and output variables are naturally
providing a model update at each time and performing the
optimization again®™¥.

The classical MBPC algorithm use linear models of
the process to predict its output over the prediction
horizon. When no model of the system 1s available, the
classical system identification theory provides possible
solutions to the problem, but when the process is

control

non-linear and it is driven over a wide dynamic operating
range, the use of linear models becomes impractical and
the use of non-linear models becomes a necessity™.

The use of neural networks for non-linear system
modelling has proved to be extremely successful™®.
this study we propose to use neural networks to model

In

non-linear systems m an MBPC structure. Using such
norlinear prediction model, m the predictive centrol
scheme,
optimization problem which must be solved at each
control sample. The optimization problems to be solved
on line are generally nonlinear programs without any

results mm a non-inear and non convex
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redeeming features, which imply that convergence to
global optimum cannot be assured”. Often the nonlinear
optimization problem is solved by iterative methods such
as Sequential Quadratic Programming (SQP), which is
computationally very expensive with no guarantee of
conwvergence to a global optimum. Genetic Algorithms
{GAs) are potential methods as optimisation techniques
for complex problems. The aim of this study is to use
neural networks as models for the plant in an MBPC
strategy and to solve the non-linear constrained
optimization problem by genetic algorithms.

BASIC ELEMENTS OF MODEL BASED
PREDICTIVE CONTROL

MBPC also known as Receding Horizon Control
(RHC) 15 a general methodology for solving control
problems in the time domain. It 1s based on three main

concepts™+57:

s Explicit use of a model to predict the process output.

+  Computation of a sequence of future control actions
by minimizing a given objective function.

¢ The use of the receding horizon strategy: only the
first control action in the sequence is applied, the
horizons are moved one sample period towards the
future and optimization 1s repeated.

Because of the optunization approach and the explicit
use of the process model, MBPC canrealize multivariable
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control input
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Fig. 1: The basic principle of model based predictive
control

optimal control, deals with nonlinear processes and
handle constraimnts efficiently. The three basic elements of
MBPC:

¢ amodel which describes the process,

* a goal, defined by an objective function and
constraints (optional) and

*  an optimization procedure.

The future process outputs are predicted over
the
process: ¥(k+i) for i=1,... H, These values depend on

prediction horizon I, using the model of the

the current process state and the future control
signal u(k+i) for 1=0,... H-1, where H< H, is the
control horizon The control variable 1s mampulated
only within the control horizon and remains constant
afterwards.

The
system well and it does not matter what type of

Process model: model must describe the
model is used to this end: A black-box, a gray-box,
* The process future outputs j(k+i)

for I=1,..., H,, are predicted over the prediction herizen

or a white-box!
H, using a model of the process.

The
the

general, good tracking of the reference trajectory

Objective function

mathematically  describes

function: objective

control goal. In
is required, with low control
These

form™:

energy consumption.

requirements can be expressed by the general
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Where r(k) is the reference, P, AP, Q and AQ are positive
definite weight matrices. Level and rate constraints of the
control 1nput and/or other process variables can be
specified as a part of the optimization problem.

In MBPC, Eq. 1 is usually used in combination with
input and output constraints:

u, Sufu
Au_ <Au<Au__

(2)
Yonin SV S Y tnas
Ay, SAYSAY,
Other constraints can be 1implemented n a

straightforward way, e.g. state constraimts for state space
modelst?,

Optimisation: Model predictive control requires an
optimization procedure by which a sequence of optimal
control signals can be found at each step. Linear MBPC
problem with constraints form a convex optimization
problem that can be efficiently solved by numerical
methods™. In the presence
constraints, a non convex optimization problem must

of nonlinearities and
be solved at each sampling period. This hampers the
application of nonlinear MBPC to fast systems where
iterative optimization techniques cammot be properly
used, dueto short sampling periods and
computation times®™.

Moreover, iterative optimization algorithms, such as
the Nelder-Mead method, the multi-step Newton-type
algorithm™!, or Sequential Quadratic Programming

extensive

(SQP)*, usually converge to local minima, which results
i poor solutions of the optimization problem. For
efficiency many vendors use heuristic methods, for
example, by using dynamic matrices™®.

In this study, a genetic algorithm based approach is
used to solve the MBPC constramned optimisation

problem.
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NONLINEAR MODELLING USING
NEURAL NETWORKS

Because of their ability to approximate virtually any
arbitrary mapping between two sets of data, neural
networks have been extensively studied for their use in
the identification of dynamical systems™.

Multilayer feedforward neural networks are the most
used neural structures in system modelling. A multilayer
feedforward neural network with one hidden layer and
linear activation fimction for the output nodes can be
described as!™:

Y = Wo(Vu+8) (3)

Here ue " 1s the input vector and ye S 1s the output
vector and the nonlinear element ¢(.) 1s taken element
wise. The interconnection matrices are We S™ for the
output layer, Ve $™ for the hidden layer, 8¢ H" is the
bias vector (thresholds of hidden neurons) with h the
number of hidden neurons. Given a training set of
input/output data, the original leaming rule is the
backpropagation algorithm.

A non-linear dynamic system with sampled mput and
output data can be expressed as:

Y{k-1),..Y(k-N,}).U
(k-1),..U(k-N,)

Y(k) “4)

Where Y(k) is the system output vector at time k, ¢
is a nonlinear function, U is the input vector, N, and N,
are model orders.

The basic 1dea of non linear modelling with neural
networks 1s to approximate the function ¢ by a neural
network.

The input-output measurements are
determine the appropriate weight values. There are many
variations of the backpropagation algorithm. The simplest
implementation of backpropagation learning updates the
network weights and biases in the direction in which the

wed to

performance function decreases most rapidly the negative

of the gradient. One iteration of this algorithm can be
written as:

W(k+1)=W(k) - a(k)g(k) (3)

Where W(k)

biases, g(k) is the current gradient and a(k) is the learning

rate. Backpropagation 1s known by its slow convergence.
Several high performance algorithms which can converge

is a vector of current weights and
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faster were proposed. Fletcher-Reeves, Polak-Ribiére,
BFGS and Levenberg-Marquardt algorithins can converge
from ten to one hundred times faster than the original
backpropagation'?.

OPTIMIZATION

Genetic Algorithms (GAs) as an optimization method
have been widely applied as an altemative to classical
optimization methods. Their ability to find the optimum of
functions where classical methods have difficulties
{e.g. non derivative functions), i1s one of the most
properties of this technique. In this study, a genetic
algorithm 1s used to solve the MBPC optimization
problem. The algorithm is derived from the steady-state
GA and utilizes floating poimnt encoding. The fitness
function of the optimizer is defined by the objective
function of the model predictive control formulation.
Encoding: Every individual {p, ; =1,...N } in the
population of a genetic algorithm determines a control
sequence:

p ={u (k)0 (k+ 1), (k+H -1)}  ©

the elements of which are represented as floating point
numbers. An individual p, 18 described by a set of H,
numbers which are selected within the admissible interval
[V » W | with absolute differences {Au(k+y); 1 =1....,
H-1} not exceeding the prescribed value Au,,,.

Initialization: Tn order to provide faster convergence of
the genetic algorithm, suitable imtialization procedure
should be specified. In this study we combine random
initialisation with the mnterevolution steady-state principle:

Randomly initialization: Random control sequences are
generated in accordance with the constraints presented in
Eq 2.

Inter-evolution exchange: The best solutions of the last
optimization cycle are used in the next period.

Termination conditions: The termination function is used
to determine when the optimization loop should be
finished. Selection of a fixed number of generations is not
very suitable because evolution may converge earlier.
Therefore we introduce a new convergence measure to
determine the termmation condition. Deviations of all
signals of the best individual in the population are
scanned for the last N, generations. The termmation
condition is fulfilled when either the relative maximum
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deviation becomes smaller than a prescribed value or the
maximum mumber of generations N, is exceeded.

Constraints handling: Mampulated Variables (MVs)
Constraints are directly handled in the AG reproduction
procedure. Each individual p; 18 described by a set of H,
numbers which are selected within the admissible interval
[V Une | with absolute differences {Au (k+y); 7 =1,...,
H.-1} not exceeding the prescribed value Au,, and Au.
Controlled Variables (CVs) constraints are handled by
penalizing infeasible individuals!?. The fitness function
15 modified and the violation of constraints is specified by
penalties. The modified fitness function for an individual
P 1s evaluated by:

no constraint vioaltion

I{pj+e

eval(p) = : N

otherwize

Where J(p) 1s the function value given by (2) and € 1s a
small positive number to avoid the division by zero and
Q(p) 1s a penalty function corresponding to constramnts
violation. The value of Q(p) is a function of the amplitude
and the time of the constraint violation.

SIMULATION

Example 1: Consider the non-linear discrete system
described by the Eq:

A neural model 13 obtained using input/output data sets
generated by random values of u(l)e[-1.0, 1.0]. The model
15 a feedforward neural network with three layers: one
input layer, one hidden layer and one output layer. The
activation function of the three hidden units 1s the
sigmoid. The activation function of the output node is
linear. The model has two mputs y(k) and u(k) and one
output y(k+1).

Levenberg-marquardt algorithm 1s used to tram the
neural model using the input output data generated
randomly. The structure of the neural model 1s
represented in Fig. 2.

The goal of the predictive control is to generate
suitable sequence of actions u(k)e[-1.0, 1.0] so to minimize
the objective function given by Eq. 1 where the reference
signal 1s: r(k)=0.5 fork=1,..., 50, n(k)=-0.2 fork=51,..., 100
and rk) = 0.2 for k=101,..., 200.

The constraints are:
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1.0

k)
y(k+1)

u(k)

Fig. 2: The neural model

06 Output and desired output
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Fig. 3: System output (solid line) and the desired

response (dashed line)
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Fig. 4: Control sequence

-1.0<u(k)<1.0
-1.0=y(k)<1.0

@)

The prediction horizon 1s Hp=4 and the control horizon 1s
H. =2. The weight matrices in Eq. 1 are P =1.0, Q =1.0,
AP=0and AQ =0.
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System and desired output
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Fig. 5:System output (solid line) and the desired

response (dashed line)
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Control sequence
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Fig. 6: Control sequence

Figure 3 represents the system output and the
reference and the comresponding control input 1s
represented in Fig. 4. As shown in Fig. 3. the process
output follow closely the reference

Example 2: Let us consider an exothermic Continuous
Stirred Tank Reactor (CSTR) described by the following
differential Eq.!":

25(t)
B o0, (1 (e
1o
Xi(t())
dx Phiciy
gt(t):fx ()+BD,(1-x (O)e ¢ /+
B(u(tfr)fxz(t))

Where x; and x, represent diumensionless reactant
conversion and temperature, u 1s the coolant temperature
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which is used as a manipulated variable. The parameters
inthe process are: B=8, Da=0.072, $=20, p=0.3 and 1=0.4.
The sampling time 1s 0.1 s. The process output 1s the
reactor temperature x,. The purpose of the control is to
keep the temperature to track the reference set point.

A sequence of random steps with amplitude between
[-1, 1] is used to excite the process. Then the produced
data are employed for identification. A feedforward neural
network with four mputs ( y(k-1),y(k-2),u(k-5),uk-6)), five
hidden nodes and one linear output y(k) is constructed to
model the process. The neural model was trained by
Levenberg-Marquardt algorithm.

The neural model 1s used in an MBPC structure, the
plant response is represented in Fig. 5 and the control
sequence in Fig. 6.

CONCLUSION

A non-linear model based predictive control strategy
based on neural models and genetic algorithms had been
presented. This strategy 1s a very efficient non-linear
model based predictive control approach.

Future study should be done to improve the
computation time of the optimiser by choosing special
operators to erthance the convergence of the genetic
algorithm. A combination with iterative methods may

decrease the computational time and avoid the
convergence to local minima.
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