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Abstract: Many data mining problems inveolve an investigation of relationships between features in

heterogeneous datasets, where different learning algorithms can be more appropriate for different regions. We
propose the locally application of ensembles’ techniques. This methodoelogy identifies local regions having
similar characteristics and then uses combining techniques to describe the relationship between the data

characteristics and the target value. We performed a comparison of the locally application of the combiming
techniques with the globally application of the combining techniques, on standard benchmark datasets and the
locally application of the ensembles gives more accurate results.
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INTRODUCTION

When the size of the training set is small compared to
the complexity of the learner, the learning algorithm
frequently overfits the noise in the traimng set. Thus
effective control of complexity of a learning algorithm
plays a basic role in achieving good generalization. Some
theoretical results and experimental results'” indicate that
a local learming algorithm provides a practicable solution
to this problem. In local learmng, each local model 1s
trained independently of all other local models such that
the total number of local models in the learning system
does not directly affect how complex a function can be
learned. This property avoids overfitting if a robust
learning scheme exists for training the individual local
model.

Local learning' is an extension of instance-based
learning. Local learners wait until they have seen the test
set instances before making a prediction. This allows the
learner to make predictions based on specific instances
that are most similar to the test set mstances. Local
learming can be understood as a general theory that
allows extending learning algorithms, to the case of
complex data for which the algorithin’s assumptions
would not necessarily hold glebally, but can be thought
as valid locally. A simple example 15 the assumption of
linear separability, which in general is not satisfied
globally in classification problems. Yet any leaming
algorithm able to find only a linear separation, can be

used inside a local leaming procedure, yielding an
algorithm able to model complex non-linear class
boundaries.

In the recent years researchers have continuously
argued for the benefits of using multiple models to solve
complex problems. The main idea behind combining
learners is based on the assumption that different learners
using different data representations, different concepts
and modeling techmques are most likely to arrive at
results with different patterns of generalization.

In this study, we propose the locally application of
ensembles’ techmques. This methodology 1dentifies local
regions having similar characteristics and then uses
combining techniques to describe the relationship
between the data characteristics and the target class. We
performed a comparison of the locally application of the
combining techniques with the globally application of the
combining techniques, on standard benchmark datasets
and the locally application of the ensembles gives better
accuracy. For the experiments, a number of combining
technmiques were used such as bagging, boosting, voting
and averaging.

Ensembles of learners: Empirical studies showed that
ensembles are often much more accurate than the
individual base learners that make them up™ and recently
different theoretical explanations have been proposed to
justify the effectiveness of some commonly used

ensemble methods™. Currently, there are two main
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approaches to model combination. The first is to produce
a set of learned models by applying an algorithm
repeatedly to different traimng sample data; the second
applies various learning algorithms to the same sample
data. The predictions of the models are then combined
according to an averaging/voting scheme or a stacking
algorithm™.

Starting with bagging™, we will say that this method
samples the training set, generates random independent
bootstrap replicates,
these and aggregates them by a simple majority vote
(for classification problems) or averaging procedure
(for regression problems). Therefore, taking a bootstrap
replicate one can sometimes avoid or get less misleading
traiming objects mn the bootstrap tramung set.
Consequently, a learner constructed on such a tramung
set may have a better performance’™.

Another method that uses different subset of training
data with a single leaming method is the boosting
approach’™. It assigns weights to the training instances
and these weight values are changed depending upon
how well the associated training instance is learned by the
learner; the weights for misclassified instances are
mcreased. Thus, re-sampling occurs based on how well
the training samples are classified by the previous model.
Since the training set for one model depends on the
previous meodel, boosting requires sequential runs and
thus 1s not readily adapted to a parallel environment. After
several cycles, the prediction is performed by taking a
weighted vote of the predictions of each learner, with the
welghts being proportional to each leamer’s accuracy on
its traming set. AdaBoost 1s a practical version of the
boosting approach for classification problems™.

The AdaBoostR algorithm™ attacks the regression
problem by reducing it to a classification problem.
Friedman has also explored regression using the gradient
descent approach”. In each iteration, the Additive
Regression algorithm constructs goal values for each
data-pomt x1 equal to the (negative) gradient of the loss of
its current master hypothesis on x1. The base learner then
finds a function in a class minimizing the squared error on
this constructed sample.

Another approach for building of
classifiers 1s to use a variety of data mining algorithms on
all of the training data and combine their predictions.
Among the combination techniques, majority vote is the
simplest to implement, since it requires no prior training!™.
If we have a dichotomic classification problem and L
hypotheses whose error is lower than 0.5, then the
resulting majority voting ensemble has an error lower than
the single classifier, as long as the error of the base
learners are uncorrelated. A similar approach for building

constructs a learner on each of

ensembles
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ensembles of regression models is to use a variety of
learning algorithms on all of the training data and combine
their predictions. Among the combination techmques,
averaging 1s the simplest to implement, since it requires no
prior training!”. Other approaches were based on the
linear combination of the base models according to the

function: iaifl(x) where ¢; are the weight assigned to
i=1
the base models prediction f(x). The simplest approach to
determining the values of ¢ I 1s to set them to the same
value. This is known as the Base Ensemble Method
(BEM)'Y. More advanced approaches try to set the
weights so as to minimize the mean square error of the
traimng data.

Locally application of combining techniques: The
proposed algorithm builds a model for each point to be
estimated, taking into account only a subset of the
training points. This subset is chosen on the basis of the
preferable distance metric between the testing point and
the traiming point in the input space. For each testing
point, an ensemble of learners 1s thus learned using only
the training points lying close to the current testing point.
Generally, the proposed ensemble consists of the four
steps Fig. 1. The proposed ensemble has some free
parameters such as the distance metric. In our
experiments, we used the most well known-Euclidean
similarity function-as distance metric. For two data points,
XK=<y, Xy Xap s K and Y = <y, vy, va, L, Y7, the
Euclidean similarity fimction 1s defined as

420X, Y) = 1/2@ .

For the experiments, a number of combining
techniques were used such as bagging, boosting, voting
and averaging.

The proposed algorithm also requires choosing the
value of K. There are several ways to do this. A first,
simple solution is to fix K a priori before the beginning of
the learning process. However, the best K for a specific
dataset is obviously not the best one for ancther dataset.
A second, more time-consuming solution is therefore to
best K automatically through the
minimization of a cost criterion. One way to do that 1s to
evaluate the estimation error on a test set and thus keep
as K the value for which the error 1s the least. In the
current implementation we decided to use a fixed value for
K (=50} &) n order to keep the traimng time low and b)
about this size of mstances i1s appropriate for a simple
algorithm, to build a precise model according to!'¥.

determine this
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= Determine a suitable distance metric.

+ Find the k nearest neighbots using the selected distance metric.

. Apply combining technique using as training instances the k instances
« The answer of the engsemble is the prediction for the testing instance,

Fig. 1: Local ensemble

Our method shares the properties of other
memory-based methods such as ne need for training and
more computational cost for the prediction. Besides, our
method has some desirable properties, such as better
accuracy and confidence mterval.

EXPERIMENTS

We performed comparisons of the locally application
of the combining techniques with the globally application
of the combining techniques on classification and
regression problems.

Using the proposed technique as classification method:
We experimented with 22 datasets from the UCT
repository™. These datasets cover many different types
of classification problems having discrete, continuous
and symbolic variables. In order to calculate the
classifiers” accuracy, the whole training set was divided
mto ten mutually exclusive and equal-sized subsets and
for each subset the classifier was trained on the union of
all of the other subsets. Then, cross validation was run
10 times for each algorithm and the average value of the
10-cross validations was calculated. It must be mentioned
that we used the free available source code for most of the
algorithms by!"” for our experiments.

Local voting vs. global voting: For the first experiment, we
compare Local Voting with Global Voting. For the
experiment we used the three most common wealk machine
learning algorithms OneR!", Decision stump"® and Naive
Bayes!". Each classifier (NB, COneR, DS) generate a
hypothesis hl, h2, h3, respectively. The a-posteriori
probabilities generated by the individual classifiers are
correspondingly denoted pl(i), p2(i), p3(i) for each output
class 1. Next, the class represented by the maximum sum
value of the a-posteriori probabilities 1s taken as the
voting hypothesis (h*). The predictive class is computed
by the rule:

i=numberof classes, j=3

Predictive c¢lass = argmax P
i=1j=1

As it is well-known, voting methods fail if the weak
learners cannot achieve at least 50% accuracy for the
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specific dataset. For this reason, the proposed method
reduces the multi-class problems to a set of binary
problems. We have used the One Per Class (OPC)
approach. The ith classifier 1s trained with all of the
examples in the ith class with positive labels and all other
examples with negative labels. The final output is the
class that corresponds to the classifier with the highest
output value.

During the experiment we compared the proposed
ensemble with the plain classifier NB, DS, OneR and their
local versions using 50 mstances as local region as well as
the simple voting using the same learning algorithm as
base learners. In Table 1, we represent with “v” that the
proposed ensemble looses from the specific algorithm.
That 13, the specific algorithm performed statistically
better than the proposed according to t-test with
p<0.05"" Furthermore, “*” indicates that proposed
ensemble performed statistically better than the specific
classifier according to t-test with p<t0.05. In all the other
cases, there is no significant statistical difference between
the results (Draws). In the last row of the table one can
also see the aggregated results m the form (a/b/c). In thus

“a” means that the proposed ensemble 1s
significantly less accurate than the compared algorithm in
a out of 22 datasets, “c¢” means that the proposed
algonthm 1s significantly more accurate than the compared
algorithm 1n ¢ out of 22 datasets, while mn the remaming
cases (b), there is no significant statistical difference.

In the last raw of the Table 1 one can see the
aggregated The presented
significantly more accurate than single NB in 7 out of the
22 datasets, while it has significantly higher error rate in
4 datasets. What 13 more, the proposed ensemble is

notation
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significantly more accurate than DS and OneR m 14 and
13 out of the 22 datasets, equvalently, whlst it has
significantly higher error rate in none dataset. Likewise,
the proposed ensemble is significantly more accurate than
local DS and OneR 1n 6 and 4 out of the 22 datasets,
equivalently, whulst it has sigmficantly higher error rate in
none dataset. Furthermore, the presented ensemble is
significantly more accurate than local NB in 3 out of the 22
datasets, whalst i1t has sigmficantly higher error rate in one
dataset. Moreover, the proposed ensemble 1s significantly
more accurate than simple voting in 9 out of the 22
datasets, while on 2 datasets, it hassignificantly higher
error rate.

Local boosting vs. Global boosting for classification
problems: Secondly, we compared the local application of
boosting with other methods that are based on the same
base learning algorithm-DS:
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Datasets Local voting Local NB Local D8 Local OneR NB D3 OneR Vating
Autos 81.07 75.93% 69.86% 76.49 57.41# 44,9% 6177 66.45
Breast-cancer 73.59 7282 73.38 T2.69 72.7 69.27 66.91% 67.26
Breast-w 96.45 96,32 96.22 96.27 96.07 92.33# 92.01# 94.48
Colic 82.39 81.77 81.3 81.17 78.7 81.52 81.52 81.52
Credit-rating 85.39 82.87* 82.35% 83.59 77.86% 85.51 85.51 85.51
Diabetes 71.9 71.84 7236 69.76% 7575w 71.8 71.98 72.72
Glass 75.48 72.66 69.44% 68,52+ 49.45% 44,89* 56.84* 60,21+
Haberman 69.89 71.3 T0.65 68.88 T3.06v 71.57 72.53 72.56
Heart-c 80.53 81.36 78.68 79.23 8334 72.93# 72.53# 7319
Heart-h 79.68 80.66 78.31 79.14 83.95 81.78 80.69 81.58v
Heart-statlog 78.85 8041 74.63 78.3 83.50v 72.3% 71.26% T2.67v
Hepatitis 81.71 86.18 83.76 82.02 83.81 T7.62% 82.05 82.18
Tonosphere 88.24 81.91% 87.56 88.24 82.17# 82.57# 82,59 90.03#
Tris 91.53 95.67 93.8 91 95.53 66.67% 93.53 93.53
Lymphotherapy 82 82.95 75.61% T9.6 83.13 7531 477 75.91
Monk3 924 91.66 92.64 924 9345 T6.01% 77.88% 78.45%
Primary-tumor 44.9 44.46 4328 43.8 49.71v 28.91# 27.74% 28.21%#
Sonar 82.45 86.6 77.81% T3.57% 67.71% T2.25% 62.12% 68.98%
Titanic 78.95 78.95 78.94 78.95 77.85 77.6% 77.6* 77.6*
Vehicle T72.01 74.94v 69.12% 67.37% 44,68 39.81* 52.36% 46,37
Vote 95 9549 95.88 95.47 90.02# 95.63 95.63 95,63
Wine 97.07 98.92 95.67 91.83 9746 57.91% TT.953% 86.02
Average

Accuracy 81.29 81.14 79.14 79.19 77.24 69.95 73.53 75.04
W/D/L 1/18/3 0/16/6 0/18/4 4/11/7 0/8/14 0/913 2/10/9

¢+  Simple DS algorithm
+  Local weighted DS using 50 instances
*  Global Boosting DS (using 25 sub-classifiers)

In the last raw of the Table 2 one can see the
aggregated results. The presented ensemble is
significantly more accurate than single DS in 14 out of the
22 datasets, while it has sigmficantly higher error rate in
none dataset. Likewise, the proposed ensemble is
significantly more accurate than local weighted DS in 2
out of the 22 datasets, whilst it has sigmficantly higher
error rate in none dataset, respectively. Adaboost DS has
significantly lower error rates in 1 out of the 22 datasets
than local boosting, whereas it is significantly less
accurate mn 6 datasets.

Local bagging vs. global bagging for classification
problems: Thirdly, we compared the local application of
bagging with other methods that are based on the same
learming algorithm-DS3:

¢+  Simple DS algorithm

* Local weighted DS using 50 local mnstances. This
method differs from the proposed technique since it
has no bagging process.

+  (lobal Bagging DS (using 25 sub-classifiers).

In the last raw of the Table 3 one can see the
aggregated results. The proposed ensemble is
significantly more accurate than simple Bagging DS in 11
out of the 22 datasets, whilst it has sigmficantly higher

error rate in none dataset. In addition, the presented
ensemble is significantly more accurate than single Local
DS in 2 out of the 22 datasets, while 1t has sigmficantly
higher error rate in none dataset. The presented ensemble
is significantly more accurate than single DS in 14 out of
the 22 datasets, while it has significantly higher error rate
in none dataset.

Using the proposed technique as regression method: We
experimented with 16 datasets from the UCT repository™l.
The most well known measure for the degree of fit for a
regression model to a dataset is the correlation coefficient.
In order to calculate the regression models’ correlation
coefficient, the whole training set was divided into ten
mutually exclusive and equal-sized subsets and for each
subset the regression model was tramed on the umon of
all of the other subsets. Then, cross validation was run 10
times for each algorithm and the average value of the
10-cross validations was calculated. It must be mentioned
that we used the free available source code for most of the
algorithms by"? for our experiments.

Local averaging vs. global averaging: For the comparison
of local averaging with the global averaging we used the
three most common algorithms Linear Regression (LR)™,
RepTree™ and Decision Table (DT as learners. These
weak regression models combine rapid learning processes
and acceptable performance. During the experiment we
also compared the proposed ensemble with the plain
regression models LR, RepTree, DT and their local
versions using 50 mstances as local region. In Table 4, we
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Table 2: Comparing T.ocal Boosting DS for classification problems

Datasets Local boost DS Local DS DS Boost DS
Autos 75.49 74.82 44.9% 44.9%
Breast-cancer 7275 72.68 69.27 71.55
Breast-w 95.9 96.4 92.33% 95.28
Colic 78.91 80.87 81.52 82.72
Credit-rating 84.94 83.61 85.51 85.57
Diabetes 73.77 73.2 71.8 7537
Glass 70.39 70.58 44.89% 44.89%
Haberman 68.9 69.81 71.57 74.06v
Heart-c 80.4 78.29 72.93% 83.11
Heart-h 79.06 7917 81.78 8242
Heart-statlog 78.15 76.33 723 81.81
Hepatitis 841.45 83.04 77.62*% 81.5
Tonosphere 90.01 88.24 82.57% 92.34
Tris M.47 M 66.67* 95.07
lymphography 8.6 T6.67 75.31* F5.44%
Monk3 90.68 93.44 76.01* 90.92
Primary-tumor 43.22 43.22 28.91% 28.91%
Sonar 83.89 76.62% 72.25% 81.06
Titanic 79.08 79.08 77.6% 77.83
Vehicle 70.98 69.58 39.81* 39.81%*
Vote 96.02 95.4 95.63 96.41
Wine 97.47 96.79 57.91% 91.57*
Average accuracy 80.614 79.62 69.95 76.02
/DAL 02072 w814 14156
Table 3: Comparing Local Bagging DS for classification problems

Datasets Local bagging DS Local DS DS Bagging DS
Autos 76.37 74.82 44.9% 44.95%
Breast-cancer 73.606 72.68 69.27 73.38
Breast-w 96.45 96.4 92.33% 92.56*
Colic 81.77 80.87 81.52 81.52
Credit-rating 85.01 83.61 85.51 85.51
Diabetes 74.54 73.2 71.8 72.45
Glass 70.96 70.58 44.89* 45.08*
Haberman 71.18 69.81 71.57 73.07
Heart-c 80.97 78.29 72.93% 75.26
Heart-h 79.69 79.17 81.78 81.41
Heart-statlog 78.07 76.33 72.3% 75.33
Hepatitis 84.59 83.04 77.62% 80.61
Tonosphere 88.89 88.24 82.57* 82.66%
Iris 93.87 94 66.67% 68.87*
lymphography 80.78 76.67 75.31% 74.5
Monk3 9345 93.44 76.01% 82.41*
Primary-tumor 43.98 43.22 28.91* 28.91*
Sonar 82.21 76.62% 72.25% 73.21%
Titanic 78.99 79.05 77.6 77.6*
Vehicle 71.47 69.58 39.81% 40.14*
Vote 95.72 954 95.63 95.63
Wine 97.8 96.79 57.91% 86.27*
Average accuracy 80.92 T9.62 69.95 7233
W/D/L 0/20/2 0/8/14 0/11/11

represent as “v” that the specific algorithm performed
statistically better than the proposed ensemble according
to t-test with p<<0.05. On the other hand, “*™ indicates that
proposed ensemble performed statistically better than the
specific algorithm according to t-test with p<0.05. Tn all
the other cases, there i3 no significant statistical
difference between the results (Draws).

In the last row of the Table 4 one can see the
aggregated results. The presented ensemble has
significantly higher correlation coefficient than single LR
1 9 out of the 16 datasets, whle it has significantly lower

correlation coefficient in 4 datasets. What is more, the
proposed ensemble has significantly higher correlation
coefficient then RepTree and DT in 14 and 12 out of the 16
datasets, equivalently, whilst it has sigmficantly lower
correlation coefficient in one dataset. Likewise, the
proposed ensemble has significantly higher correlation
coefficient than local RepTree and DT m 10 and 12 out of
the 16 datasets, equivalently, whlst it has sigmficantly
lower correlation coefficient in none dataset. Furthermore,
the presented ensemble has significantly Thigher
correlation coefficient thanlocal LR m 6 out of the 16

84



Intl J. Soft. Comput., 2 (1): 80-87, 2007

Table 4: Comparing local averaging with the plain regression model DT, Rep tree, LR, their local versions as well as global averaging

Datasets TL.ocal averaging Local rep tree Local DT Local LR LR Rep tree DT Averaging
Auto93 0.79 0.71+ 0.76 0.62% 0.83v 0.23* 0.68* 0.83v
AutoHorse 0.93 0.92 0.93 0.853% 0.95v 0.83* 0.85% 0.93
AutoMpg 0.92 0.90* 0.88* 0.91 0.93 0.88* 0.90% 0.93
AutoPrice 0.93 0.90* 0.90* 0.93 0.89% 0.88* 0.81% 0.91#
BRodyfat 0.99 0.98+ 0.98+ 0.99 0.99 0.98* 0.97* 0.98
Cleveland 0.65 0.65 0.55+ 0.58% 0.71v 0.54% 0.52% 0.66
Cpu 0.98 0.93* 0.93* 0.99v 0.95% 0.90% 0.92% 0.97%
Fishcatch 0.98 0.96* 0.97* 0.98 0.97% 0.95% 0.94% 0.98
Housing 0.92 0.87+ 0.87+ 0.9v 0.85% 0.85% 0.81* 0.89*
Lowbwt 0.76 0.76 0. 74+ 0.73% 0.79v 0.78v 0.78v 0.79v
PwLinear 0.90 0.82* 0.85* 0.93v 0.86% 0.89 0.83# 0.91
Quake 0.10 0.09 0.05* 0.10 0.06% 0.07% 0.09 0.10
Servo 0.93 0.86* 0.93 0.93 0.85% 0.86* 0.80* 0.90*
Stock 0.99 0.99 0.99 0.99 0.93* 0.98* 0.97* 0.98*
Triazines 0.45 0.41 0.39% 0.34* 0.39% 0.27*% 0.47 0.54v
Veteran 0.45 0.35* 0.31%* 0.41# 0.48 0.23% 0.41 0.47
Average correlation 0.79 0.75 0.75 0.76 0.77 0.6 0.73 0.79
coefficient

W/D/L 0/6/10 0/4/12 3/7/6 4/3/9 17114 1/312 3/8/5
Table 5: Comparing Local Additive Regression DS for regression problems

Dataset Local additive regression DS Local DS Additive regression DS D3
Auto93 0.77 0.72% 077 0.59%
AutoHorse 0.92 0.92 0.86*% 0.72%
AutoMpg 0.89 0.89 0.87% 0.74*
AutoPrice 0.92 0. 89% 0.90% 0.81*
Bodyfat 0.95 0.94% 0.95 0.82%
Cleveland 0.57 0.63v 0.65v 0.40%
Cpu 0.96 0.92% 0.95% 0.31*
Fishcatch 0.96 0.94% 0.94% 0.83*
Housing 0.87 0.84* 0.84* 0.60%
Lowbwt 0.73 0.78v 0.78v 0.78v
PwLinear 0.89 0.84% 0.85% 0.68*
Quake 0.10 0.09 0.10 0.09
Servo 0.93 0.89% 0.85% 0.79%
Stock 0.99 0.99 0.94% 0.78%
Triazines 0.51 0.47* 0.37* 0.04%
Veteran 0.35 0.28% 0.40v 0.15%
Average correlation 0.77 0.75 0.75 0.57
coefficient

W-D-L 2410 3/3/10 FEd

datasets, whlst 1t has sigmficantly lower correlation
coefficient Moreover, the proposed
ensemble has significantly higher correlation coefficient
than simple averaging in 5 out of the 16 datasets, while it
has significantly lower correlation coefficient on 3
datasets.

m 3 datasets.

Local boosting vs. global boosting for regression
problems: We compared the local application of boosting
with other methods that are based on the same learning
algorithm-DS:

*  Simple DS algorithm

* Local DS using 50 local mstances. This method
differs from the proposed techmque since it has no
boosting process.

*  Additive regression DS (using 10 sub-models).
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In the last raw of the Table 5 one can see the
aggregated The proposed
significantly more accurate than simple DS in 14 out of the
16 datasets, whlst 1t has significantly lower correlation
coefficient in one dataset. In addition, the presented
ensemble is significantly more accurate than Local DS in
10 out of the 16 datasets, while it has significantly lower
correlation coefficient in 2 datasets. Furthermore, global
additive regression DS have significantly higher
correlation coefficient in 3 datasets than the proposed
ensemble, whereas it is significantly less accurate in 10
datasets.

results. ensemble 13

Local bagging vs. Global bagging for regression
problems: We compared the local application of bagging
with other methods that are based on the same leamning
algorithm-D3:
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Table 6: Comparing T.ocal bagging DS for regression problems

Dataset. Local bagging D8 Local DS BRagging D} D3
Auto93 0.82 0.72% 0.74* 0.59*
AutoHorse 0.91 0.92 0.80* 0.72%
AutoMpg 0.92 0.89 0.78% 0.74%
AutoPrice 0.9 0.89 0.82% 0.81%
Bodyfat 0.96 0.94 0.84* 0.82*
Cleveland 0.68 0.63* 0.61* 0.40*
Cpu 0.93 0.92 0.87% 0.31%
Fishcatch 0.95 0.94 0.85% 0.83#
Housing 0.88 0.84% 0.74* 0.60*
Lowbwt 0.79 0.78 0.78 0.78
PwLinear 0.86 0.84 0.68% 0.68%
Quake 0.11 0.09 0.09 0.09
Servo 0.89 0.89 0.79* 0.79*
Stock 0.99 0.99 0.79* 0.78*
Triazines 0.51 0.47* 0.25% 0.04%
Veteran 0.38 0.28* 0.33% 0.15%
Average correlation 0.78 0.75 0.67 0.57
coefficient

W-D-L viis 0/2/14 0/2/14

¢+ Simple DS algorithm

¢ Local DS using 50 local instances. This method
differs from the proposed technique since it has no
bagging process.

+  Bagging DS (using 25 sub-models).

In the last raw of the Table 6 one can see the
aggregated results. The proposed
significantly more accurate than simple DS in 14 out of the
16 datasets, whilst 1t has sigmficantly lower correlation
coefficient in one dataset. In addition, the presented
ensemble 13 significantly more accurate than Local DS in
5 out of the 16 datasets, while it has significantly lower
correlation coefficient in none dataset. Furthermore,
global bagging DS have significantly higher correlation
coefficient in none dataset than the proposed ensemble,
whereas it is significantly less accurate in 14 datasets.

ensemble  1s

CONCLUSION

Local algorithms defer processing of the dataset until
they receive request for information (e.g. classification or
prediction of target wvalue). A database of observed
mput-output data 1s always kept and the estimate for a
new operating point is derived from an interpolation
based on a neighborhood of the query point. TLocal
techniques are an old idea in time series prediction".

Lazy leamers are particularly useful for prediction on
data streams. In data streams, new data keep arriving, so
building a new learner each time can be very expensive. In
addition, the multidimensional data 1s sometimes
feature-space heterogencous so that different features
have different inportance in different sub-areas of the

whole space.

Local learning can reduce the complexity of
component learners and improve the generalization
performance although the global complexity of the system
can not be guaranteed to be low. In this study, we
propose the locally application of ensembles’ techniques.
We performed a comparison of the locally application of
the combiming techniques with the globally application of
the combining technmiques, on standard benchmark
datasets and the locally application of the ensembles gave
better accuracy. Due to the encouraging results obtamed
from our experiments, we can expect that the proposed
combining method can be successfully applied to the
classification and regression task in the real world case
with more accurate results than the traditional data mining
approaches.

The benefit of allowing multiple local models 1s
somewhat offset by the cost of storing and querying the
training dataset for each test set example which means
that lazy leamers do not scale well for the large amount of
data associated with several applications. Local weighted
learning algorithims must often decide what mstances to
store for use during generalization in order to avoid
excessive storage and time complexity. By removing a set
of instances from a database the response time for the
predictions will decrease, as fewer instances are examined
when a query instance is presented. This objective is
primary when we are working with large databases and
have limited storage.

In a following work we will focus on the problem of
reducing the size of the stored set of instances while
trylng to maintain or even umprove generalization
accuracy by avoiding noise and overfitting. In'*"*"
found numerous instance selection methods that can be
combined with local boosting technique.

can be
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