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Abstract: Tn a gene expression data matrix a bicluster is a submatrix of genes and conditions that exhibits a high
correlation of expression activity across both rows and columns. The problem of locating the most significant
bicluster has been shown to be NP-complete. Heuristic approaches such as Cheng and Church’s greedy node
deletion algorithm have been previously employed. It 1s to be expected that stochastic search techmques such
as evolutionary algorithms or sunulated annealing might improve upon such greedy techniques. In this study
we show that an approach based on modified simulated annealing 1s well suited to this problem and we present
a comparative evaluation of simulated annealing and node deletion. We show that modified simulated

annealing discovers more significant biclusters.
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INTRODUCTION

DNA microarray technologies has revolutiomsed
gene expression analysis and facilitated to momnitor the
expression of thousands of genes i parallel over many
experimental conditions (e.g., different patients, tissue
types and growth environments), all within a single
experiment Lander (1999). The results from these
experiments are usually presented in the form of a data
matrix in which rows represent genes and columns
represent condittons. Each entty m the matrix 5 a
measure of the expression level of a particular gene under
a specific condition. Thorough analysis of these datasets
aids in the amnotation of genes of unknown function and
the discovery of functional relationships between genes.
This ultimately contributes to the elucidation of biological
systems at a molecular level (Berrer et al., 2003). Gene
expression datasets typically contain thousands of genes
and hundreds of conditions and mining functional and
class information from such large volumes of data
presents a far from trivial task. One of the main methods
used thus far to investigate the underlying structure of
gene expression  datasets has been cluster analysis. In
this approach genes showing similar expression activity
over the set of conditions are grouped together mto
clusters. The premise behind this 1s that simailarly
behaving genes may be co-regulated and share a related

function 1.e., belong to a common pathway or a cellular
structure. Conditions too may be clustered enabling
disease types such as cancers to be defined in terms of
their umque expression profiles (Pomeroy er al., 2002).
Gene expression datasets are continually growing in size
as more experiments are carried out and as experimental
capacity unproves. As datasets mncrease size it becomes
less likely that objects (genes) will retamn sumilarity across
all attributes (conditions) making clustering problematic.
Furthermore it 18 not uncommeoen for the expression of
genes to be highly similar under one set of conditions and
yet independent under another set (Ben-Dor ef al., 2003).
Clustering genes over a subset of similar conditions
would be more beneficial m such cases. This approach
has been termed biclustering and was first introduced to
gene expression analysis by Cheng and Church
(2000). Greedy search algorithms start with an mitial
solution and find a locally optimal solution by successive
transformations that unprove some fitness function.
Stochastic methods such as Simulated Amnealing (SA)
(Kirkpatrick et ad., 1983) improve on greedy search due to
thewr having the potential to escape local optima. In this
study we present a biclustering techmque based on
Modified Simulated Annealing (MSA) that improves on
results and we carry out a comparative evaluation using
real gene expression dataset and show that our MSA
based approach finds more significant biclusters in yeast
dataset.
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BICLUSTERING

Biclustering refers to the “simultaneous clustering’ of
both rows and columns of a data matrix (Mirkin, 1996).
Cheng and Church defined a bicluster to be a subset of
genes and a subset conditions with a high similarity
score, where siunilarity 1s a measure of the coherence of
genes and conditions 1n the subset. A group of genes are
said to be coherent if their level of expression reacts in
parallel or comrelates across a set of conditions. Similarly,
a set of conditions may alse have coherent levels of
expression across a set of genes. Cheng and Church
developed a measure, called the mean squared residue
score, which takes into account both row and column
correlations and therefore makes it possible to
simultaneously evaluate the coherence of rows and
columns within a sub-matrix. They thus defined a
bicluster to be a submatrix composed of subsets of genes
and conditions with a low mean squared residue score
(the lower the score the better the correlation of the rows
and columns). The residue score of an entry aij in a
bicluster B (IT) (where T is the subset of rows and T the
subset of columns making up the bicluster) 1s a measure
of how well the entry fits mto that bicluster. It 1s defined
to be:

R(alj):aij-alj_aij+ ey (1)
where ail is the mean of the ith row in the bicluster, al j is
the mean of the jth column and alT mean of the whole
bicluster. The overall mean squared residue score 1s:

HIL D= (1/[1) 3 R,y
1€ je]d

(2)

The next problem to be tackled is how locate these
low scoring biclusters within a parent data matrix. The
deterministic approach is to sequentially run through all
the possible combinations of rows and columns of the
data matrix and find the sub-matrices which satisfy a
predefined low score, d(the set of &-biclusters). The most
significant biclusters, the largest d-biclusters, would be of
most interest as they capture the relationships between
the largest number of objects. However the mumber of
possible sub-matrices increases exponentially with the
size of the parent matrix making this task practically
umpossible when the matrix exceeds the fairly modest size
of a few 100 elements. Cheng and Church designed a set
of heuristic algorithms to locate these &-biclusters
sequentially in a top-down manner by deleting the row
and column nodes from the parent matrix which most
umprove the mean squared residue score. Upon reaching
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the & threshold a node addition phase is then carried out
to add rows/columns which may have been missed.
Inversely correlated rows, which may represent negatively
regulated genes, are also added at this stage. A
subsequent study noted that as with other greedy
searches there is a possibility that the system may
become trapped at a locally good solution. It is thus
unlikely that the global maximum or maximal d-bicluster
will be found. Applying a stochastic search technique to
locate this global maximum seems to be the next logical
step mn the bicluster search problem.

SIMULATED ANNEALING

Simulated annealing 15 a well established stochastic
techmque originally developed to model the natural
process of crystallisation and later adopted to solve
optimization problems.

As with a greedy search it accepts all changes that
lead to improvements in the fitness of a solution.
Evolutionary optimization schemes employing the mean
squared residue function have been used to tackle the
bicluster search problem (Aguilar-Ruiz and Divina, 2005).
These attempts failed to find more significant solutions
than the Cheng and Church technique in terms of
bicluster size and instead focused on returning sets of
smaller biclusters with lugh row variability. In the virtual
environment the temperature of the system 1s lowered
after certain predefined number of accepted changes,
successes, or total changes, attempts, depending on
which 1s reached first. The rate at which temperature
decreases depends on the cooling schedule. Simulated
Amnealing has been applied to such problems as the
well known travelling salesman problem (Bimnder and
Stauffer, 1985) and optimisation of wiring on computer
chips (Kirkpatrick ef @f., 1983) and recently to biclustering
of gene expression data.

EXPERIMENTAL METHODS

In biclustering using simulated annealing several
parameters are common to every simulated annealing
implementation. The mean squared residue score was
used as a measure of bicluster fithess in this study. Many
simplified cooling schedules have been introduced for
practical problem solving and a popular simple cooling
model 18 Tik) = Tik-1) / (1+ o). Consequently each
subsequent temperature 1s reduced. In Simulated
Annealing it is also important to ensure that an adequate
search is performed at each temperature. This is dictated
by the number of attempts that occur before each
reduction m system temperature. The selection of the



Int. J. Soft Comput., 2 (3): 378-381, 2007

number of successes and attempts depends on the depth
and size of the search space as determined by the size and
dimensionality of the dataset. Our Modified Sumulated
Annealing Biclustering (MSAB) algorithm begins the
search mn a top-down mammer with the umtial selution
containing all rows and columns. The solution 1s then
iteratively perturbed by the deletion or addition of rows or
columns with the mean squared residue being recalculated
each time. The method for generating a new solution is
explained below (MSAB algorithm) This method takes
into account the number of rows and columns in the
current solution and a minimum solution size of 10x10 was
chosen. This was deemed to represent the minimum
significant size of a solution m this study. So for example,
if genes correlate over 10 conditions it 1s likely that they
may be related. This minimum solution size also prevents
the search from ending on a trivial bicluster of one row or
one column and score 0. To allow the comparison of
MSAB with the node deletion algorithm, some way
needed to be found to return biclusters of a chosen &
value. Upon reaching a d-bicluster the minimum solution
size is then reset to that of the &-bicluster. The Modified
Simulated Annealing also continues but with the added
proviso of accepting solutions less than or equal to the
8- score that are larger in size. This gradually increases
the size of the &-bicluster.

Modified simulated annealing biclustering algorithm:
MSAB( f, x0, t0, rate, a, M, 1. DELTA)

f: Fimess function, x0: Imitial sclutien, tO: Imtial
temperature, rate: Temperature fall rate, a: Attempts, M:
Datamatrix, I: Mimimum solution size threshold, DELTA:
Mean squared residue threshold.

i

t=t0

rowx=no. of rows in M

colx=no. of columns in M

while(t>tmin)

{ account=0;

colarr[]=generateColComb, range (0,colx)
newrow—generateRandomRow, range (0.rowx)
xRows[]=newRow
while(acount<tattempts)

¢

x0=biCluster(newRow,noOfRowSel)
while (true)

¢

row=generateRandomRow, range (0,rowx)
if{row!=xRows[])

¢
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newRow=row
xRows[]=newRow
exit loop

i

i

acount++;

t=cool(trate)

xRows[|=null;

i

i

biCluster(newRow, noOfRowsel)
{

r-newRow

addNewrRow(r) to generate Xnew
atm[]=r

loop=0

while(loop<noOfRowsel)

{

while{(TRUE)

{

row=generateRandomRow, range(0,rowx)
if(row!=atm[])

{

r=row

atm([]=r;

exit loop

i

i

if (fitfunc (Xnew)<=DELTA)
addNewRow (1) to generate Xnew
else

deleteOldRow () to generate Xnew
loop=loop+1

i

return xNew

}

Upon the discovery of a bicluster Cheng and Church
masked the solution with randomly imputed numbers from
the same range as the dataset. This prevents the bicluster
from being rediscovered by the determimstic node
deletion algorithm. Typically, using the parameters given
above and for a dataset of 2884 genes and 17 conditions
the search produced large number of biclusters and much
reduction in time is also observed The generated
biclusters are checked for repetition and if there is
repetition they are ignored and only new clusters are
discovered for solution. Cheng and Church chose a yeast
cell cycle dataset in their study. This dataset contains
2,884 genes and 17 conditions and the same has been
used for this study.
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Table 1: Comparison of biclusters discovered in real dataset (Veast data)

ND ND2 SAB MSAB
) Biclusters
300 15165 15750 16460 24500
200 8463 9540 10360 14570
100 2520 2700 2540 3740

EVALUATION OF BICLUSTERING USING
MODIFIED SIMULATED ANNEALING

Cheng and Church carried out node deletion on the
veast dataset mentioned above and used a mean squared
residue threshold (8) of 300 Eq. 2. The MSAR algorithm
was applied to the same yeast dataset. In this study &
thresholds of 300, 200 and 100 were set and the size of the
discovered biclusters compared. MSAB produces
biclusters of at least 10 columns (conditions) in width.
The size of the biclusters found by ND (Node Deletion),
ND2 (Adjusted Node Deletion), SAB(Simulated
Amnnealing Biclustering) and MSAB over the various 8
thresholds for the yeast dataset. The results for all 8
scores are shown in Table 1.

CONCLUSION

It has been shown in the previous section that MSAB
has the ability to retrieve more significant biclusters. Using
MSAB we have shown that stochastic methods have the
potential to give improved results for the bicluster search
problem. MSAB also works in top-down manner with the
mean squared residue function promoting the deletion of
rows/columns which do not fit in with the trends in the
dataset and takes lesser time to converge on a bicluster
solution.
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