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Abstract: Field orientation control techmques of induction machine have permitted fast transient response by
decoupled torque and flux control. Among these techniques, Indirect Field Oriented Control (IFOC) strategy
is adopted as an effective one. The results showed that the technique can keep the rotor flux constant even
during changes in load torque. This indicates that decoupling control of flux and torque has been obtained.
However, field orientation detuning caused by parameter variation is a major difficulty for indirect field
orientation control method. The decoupling that IFOC could perform 1s conditioned by the accuracy of slip
calculation. The slip calculation depends on the rotor time constant, which varies continuously according to
the operational conditions. A Fuzzy Logic Control (FLC) provides a systematic method to incorporate human
experience and implement nonlinear algorithms, characterized by a series of linguistic statements, into the
controller. Results of computer simulation showed that FL. controller has potential to improve the closed-loop
control performance and can outperform conventional PT controllers. An FL.C scheme has been designed for
an IFO induction machine drive system. Good performance of the [FO drive system 1s obtained in terms of
overshoot, steady-state error, load disturbance rejection and variable speed tracking. The speed measurements
are undesirable in a drive because they add cost and reliability problems, besides the need for a shaft extension
and mounting arrangements. Therefore, this study has presented a state estimation technique for speed
sensorless FOC of mduction motors. A stochastically nonlinear state estimator, Extended Kalman Filter (EKF)
is suggested for this purpose. Using this observer, the rotor speed and rotor fluxes are estimated
simultaneously. The motor model designed for EKF application mvolves rotor speed, dg-axis stator currents.
A number of simulations were carried out to verify the performance of EKF observer. The performance is tested
under variable speed tracking, loaded conditions. Also in the implementation of the EKF different of
measurement and state noise covariance matrices may be tried to detect the optimum research which increase
performance of the EKF.
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INTRODUCTION

Induction Machines models (IM) are often 11l defined.
Even if the machine model is well known, there may be a
parameter variation problem. The d-q machine model of
IM is multivariable, complex and nonlinear. Vector or
Field-Oriented Control (FOC) of a drive can overcome
this problem, but accurate vector control is nearly

umpossible and there may be a wide parameter variation

problem in the system (Bimal, 2002).

To compensate such parameter variations m the
drive, a Proportional Integral PI controller is firstly
candidated mn the outer speed loop of FOC drive to
generate a command current, directly proportional to the

required torque. However, the fixed parameter controller
is not an intelligent controller and changes in rotor time
constant will degrade the speed performance (Denai and
Attia, 2002; Zhen and Longya, 2000; Heber et al., 1997).

Fuzzy Logic Control (FLC) does not strictly need
any mathematical model of the plant and provides a
systematic method to incorporate human experience
and implement nonlinear algorithms, characterized by a
series of linguistic statements, mto the controller.
Moreover, fuzzy controller is easy to apply and possibly
the best adaptive control among the techniques
discussed earlier (Zhen and Longya, 2000, Heber et al.,
1997). In thus study, 2 control strategies are considered to
adjust the speed of the drive system: PT and FL, controller.
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The robustness of these suggested controllers s
checked in terms of motor parameter
(Heber et al, 1997, Cheng and Yeh, 1993).

Controlled mduction motor drives without mechameal
speed sensors at the motor shaft have the attractions of
low cost and high reliability. To replace the sensor, the
mnformation on the rotor speed 1s extracted from measured
stator voltages and currents at the motor terminals
(Barambones et al., 2002; Denai and Attia, 2002; Bilal,
2003). Therefore, the speed controller is performed under
no mechanical speed sensors and speed observer, based

on Extended Kalman Filter (EKF), 1s adopted for thus
purpose.

variations

DYNAMIC MODEL OF INDUCTION MACHINE

Induction Machine (IM) equations in arbitrary
rotating reference frame can be represented in stator and
rotor dq veltage equations (Bimal, 2002; Chee, 1998;
Leonhard, 1998).

Vs = p?LqS + kg + Lige

i

Vids = pkds - G);\‘qs + 1 qs

r r r L
Vor = p?uqr + (o — @ Ay + Lige

f r f for
Var = phdr - (00 - mr)qu + Llgr

(1)

Where v is voltage; A is the flux linkage; 7 is the
current;  1s the arbitrary speed of the reference frame; r
15 the resistance and p 1s the tume derivative. The
subscript r and s denotes the rotor and stator values,
respectively rteferred to the stator and the subscripts
d and q denote the dg-axis components in the arbitrary
reference frame.

The equations of the machine in the stationary and
synchronously rotating reference frame can be obtained
from (1) by setting w to zero and w = w,, respectively. To
distinguish these 2 frames from each other, an additional
superscript will be used; s for stationary frame variables
and e for synchronously rotating frame variables. The
electromagnetic torque equation can be given by Bimal
(2002), Chee (1998) and Dal (2001).

3 P LA LA
Tem = EE(A‘qudr - A"drlqr) (2)

where P denotes the mumber of machine pole
pairs. Using Eq. 1 and 2,
state-space model for mduction motor developed in
stationary reference frame as given below (Bimal, 2002;
Bilal, 2003).

one can obtain the
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Where K, = L, L-L*)L, K; = 40, (L /L") and
Ky = (3P’L,)/A8JL’,). The parameters L, L’, L., are rotor,
stator and main inductances, respectively. T, = L/r’, 1s the
rotor time constant and 1s the rotor electrical speed in
angular frequency.

INDIRECT FIELD ORTENTATION CONTROL (IFOC)

Figure (1) explains the fundamental principle of
indirect vector control with the help of a phasor diagram.
The d*-g° axes are fixed on the stator, but the d-j axes,
which are fixed on the rotor, are moving at speed .
Synchronously rotating d°-g° axes are rotating ahead of
the d'-q" axes by the positive ship angleB, corresponding
to slip frequencyw,.

Since the rotor pole i1s directed on the d° axis
and w, = w,+w, ,one can write

6, = fme dt = f(mﬁrmsl) dt=0.+0, (3)

The phasor diagram suggests that for decoupling
control, the stator flux component of current 1°,, should be
aligned on the d° axis and the torque component of
current should be on the axis, as shown. For decoupling
control, one can make a derivation of control equations of
indirect vector control with the help of d*-q° dynamic
model of IM, 1e., using Eq. (1) with the addition of
superscript eto the variables and setting w = w,. If d° axis
aligned with the rotor field, the g-component of the rotor
field, ?Jeqr, i1 the chosen reference frame would be zero.
One can easily shows the following important equations
(Bimal, 2002; Chee, 1898; Dal, 2001).
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Fig. 1: Phasor diagram explaining indirect vector control

3PL, e
Tem = EETI: dr1q5 (6)
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To mmplement the indirect vector control strategy, it
is necessary to use the condition in Eq. 6-8 in order to
satisfy the condition for proper orientation. Figure 2
shows an indirect field-oriented control scheme for a
current controlled PWM
drive.

The command values for the abec stator currents can

induction machine motor

then be computed as follows

i =5, cosB, +ifsin, ©
i = —if. sin0, +1if, cos0,

s = ite

i = —(1/ 2% — (V3 /25 10

igs = ~(1/ 25 + (V37 215

FUZZY LOGIC CONTROL OF AN INDIRECT
FIELD-ORIENTED INDUCTION MACHINE

The block diagram showing the inplementation of the
FL controller is illustrated in Fig. 2. The actual inputs to
the fuzzy controller are, e, and, e’ which are a scaled
version of the speed error (e;) and the change m speed
error (Ae)). The gains, G, and, G, can be varied so that
there is no saturation on its input universe of discourse.
The output gain, G,, can be tuned to reach the desired
performance (Bimal, 2002; Heber et al., 1997).

The fuzzy controller observes the pattern of the
speed loop error signal and correspondingly updates the
output AT'e, so that the actual speed w, matches the
command w',. The output of the fuzzy controller is
integrated and fed to command the IFOC IM.

The rules of FL. controller are designed to take full
advantage of the decoupling of torque and flux such that
the actual speed can reach the command speed as quickly
as  possible without overshoot. The general
considerations in the design of the controller are
(Bimal, 2002, Cheng and Yeh, 1993).

If both and are zero, then maintain the present control
setting AT'e, = 0.

If e, is not zero but approaching this value at a
satisfactory rate, then maintain the present control
setting.

If e, is growing, then the change of AT e, (0.0) will
depend on the magnitude and sign e, of and e, to force e,
towards zero.

The center of the Table 1, AT'e,, represents that
when the error and change of error are zeros, AT'e, = 0.
Moving away from the center, in any direction, causes the
FL. controller to increment or decrement T'e, The
following rule

IF e, is NB and e, is PB then AT'e,, is PS
applies for the case when w, is much less than w’, and is
accelerating quickly toward, w',, where the linguistic
variables PS, PB and NB denote Positive Small, Positive
Big and Negative Big, respectively. Most FLs would
conclude that AT"e_ should be 0. However, with the TFOC
M application, FL. controller decides to slightly increase
the torque causing the machine to accelerate even faster.

The brakes are applied when the linguistic value of
error becomes PM by the rule

IF e, is NM and e, is PB then AT'e_ is NB

The rules near the center are also different from a
typical fuzzy controller. In particular, the rules (e, = “PS”
and e, = “NS”) and (e, = “N3” and e, = “PS”) would have
a zero for the output with a typical FL. control. However
with this application, this rule base outputs a
“PS” or a“NS”
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Fig. 2: Block diagram of the FL.C for an TFQ controlled induction machine drivewith current regulated pwm inverter

Table 1: Knowledge-base array for drive fuzzy model
€

Af. NB NM NS 7E PS PM PB

NB PB PE PE PE PB PB NS

NM PB PB PM PM PS ZE  NM
NS PB PM PM PS NS NM NM
7E PM PM PM 7E NM NM NM
PS PM PM PS NS NM NM NB
PM PM 7E NS NM NM NB NB
PB PS NB NB NB NB NB NB

respectively; a valid justification, as this will change the
current command just enough to drive the error to zero
faster than a zero output would. Moreover, if any
disturbance occurs, the rules near the center quickly
change the current to keep the speed at the reference
speed. Consequently, these rules near the center reduce
the error more effectively and then improving the
steady-state performance. Following the above reasoning
for the other possible situations, the knowledge base of
direct FL controller can be stored in Table 1.

Thus, the rule base of direct FL controller is designed
to have large changes m the current command when the
error and/or the change of error are large. This makes a
better use of the torque capabilities of the FOC drive.

A fuzzy set 13 defined by assigmng the grade of
membership values to each element of the universe of
discourse. There are many types of Membership
Functions (MF), eg., the bell-shaped, the triangular-
shaped, the trapezoidal-shaped, etc. For simplicity,
uniformly distributed the triangular-shaped MFs are used
for FL controller.

The defuzzification strategy 1s aimed at producing a
nonfuzzy control action that best represents the
possibility distribution of an nferred fuzzy control action.
Many strategies can be used for performing the
defuzzification The Center-of-Gravity method (COG) 1s
adopted m this study.

SPEED ESTIMATION USING EKF

The standard KF 1s a recursive state estimator capable
of use on a multi-qinputioutput system with noisy
measurement data and process noise (stochastic plant
models). It uses the plant's nputs and output
measurements, together with a state space model of
the system, to give optimal estimates of system states
(Bilal, 2003; Wade et al., 1997).

To estimate the rotor speed, it must be treated as a
state and a nonlinear model 13 formed with the states
consisting of the parameter to be estimated and the
original states (Wade et al., 1997; Ouhrouche, 2000). The
new model is formed after augmented with the new state
and discretized to give

N ik+) = £(x, u, k) + Vik)
Y (k)= CX (kK W(k)

(11)
where,

T
X0 =150 i5,00 1500 15 () o, |

is the combined state and parameter matrix, f (x, u, k) is the
nonlinear state function. V (k) and W (k) are zero-mean,
white Gaussian noise vectors of X(k) and Y(k),
respectively.

fx,uwk=AXKH+BUI) =(12)

a, %, (k) +a,x,(k)+a,x (k)x, k) + bu, (k)
a,X, (k) —a,x;(k)x, (k) +a,x,k)+bu,k)
a,x,(k)+a,.x,k+a,x,(kx, k)

a,x, (k) —a,x,(kKx(k)+a,x, X&)
x,(k)
where,
K mI-lr 1
ay :177RT5= a5 = g e ay, = LK °

L L =L
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Also, A, and B, matrices are discretized system and
mput matrices, respectively. T, is the sampling time

Vas(k)
VE)

.Ce=[1 0 0 o 0],Uk)= (13)
01

00 0

S O D
< O = O

To use a nonlinear model with the standard KF, the
model must be linearized about the current operating
point, giving a linear perturbation model

F(X, w k) — 6f(x,u,k)

& |REK)+ulk)
a, 0O a,, a,x; (k) a,x,(k
0 a, a,,X, (k) a5 a,%;(k)
a; 0 iy ay,x, (k) ayx,(k) |-
0 4y 7334X34(k) 833 as, 3(k)
0 0 0 0 1

Figure 3 shows the block diagram of the EKF
algorithm. The EKF algorithm uses the full machine
dynamic model, where the speed w, is congidered a
parameter as well as a state. Both V (k) and W (k) are
independent of ¥X(k) and Y(k), respectively. The statistics
of noise and measurements are given by 3 covariance
matrices, Q, R and P, where Q = system noise vector
covariance matrix (5x5), R = measurement noise vector
covariance matrix (2x2) and P = system state vector
covariance matrix (5x3).

The sequence of the EKF algorithm implementation
by a flow diagram is shown in Fig. 4, which also includes
the basic computational expressions. Basically, it has 2
main stages: Prediction stage and filtering stage. In

ViV
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|
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-

F

Extended for kalman filter
Fig. 3: EKF for estimation of speed

prediction stage, the next predicted wvalues of states
X" (k+1) are calculated by the machine model and the
previous values of estimated states. In addition, the
predicted state covariance matrix P’ (k+1) is also
calculated using the covariance vector Q. In the filtering
stage, the next estimated states X'(k+1) are obtained
from the predicted states X' (k+1) by adding the
correction term e, where ¢ = Y (k+1)-Y (k+1) and
K = Kalman gain. The Kalman gain 1s optimized for the
state estimation errors. The EKF computations are done
in recursive mamner so that e approaches 0.

RESULTS AND DISCUSSION

In the simulation, a 20 Hp motor 1s used, whose
parameters are listed in Table 2. In the first part of
simulation, the state estimation performance of EKF is
assessed. The simulation of Fig. 1 13 mplemented with
Simulink. Tn this simulation, input voltages and measured
currents in stationary reference frame are produced
by IFOC block. The EKF algorithm Is developed as a
S-function and then inserted to Simulink in the form of
S-function block.

Step 0
Initialize state vector and covariance matrix
X(0) Q.R, P,
Step 1 ¥
) Predict EIJ: state vector [— V',
XKy =X (k+1) = AX(kYB, Uk) l— V',
Step 2 I
Estimate P(k-+1) covarience matrix
Pktl)= f(k+1) B k+134Q
where
fkt1)= 7_7 (AX+tBU) 2=k}
Step 3 *
Computer kalman filter gain
K'(kt1) =P (et LGt Db P Gt D't LHR] ™
where 3
hict+1)y= X [CXI]I EmrtHl)
Step 4 +
Estimate state v &
K@) =X GeHHK ckrl)[?am) -Yet)] —
Step 5
Update etror covariance matrix
X =X () = AX ®HBU &

Fig. 4: EKF algorithm flow diagram

Table 2: Induction motor parameter

Rated power 20 hp
Rated line-line voltage 200V
Rate torque 81.5Nm
Number of poles (P) 4

Stator resistans (1s) 0.106 Q

Stator inductance (L) 8.67 mH
Rotor resistance (r;) 0.076 Q
Rotor inductance (L,) 9.15 mH
Moment of inertia (J) 2.5kgm?
Base excitation frequency (f) 60 Hz
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In Fig. 5 speed reversal at no-load is given with
reference speed. The estimated speed and the reference
speed are ploited together. The estimated speed near
steady-state is shown in Fig. 6. The figure illustrates that
the estimated speed does not overlap with reference
speed at steady state.

A zero steady state error could be reached by
using different settings of measurement and state
covariance matrices, but this leads to poor fransient
speed estimation. In the case of Fig. 7 simulation, state
covariance is decreased; the algorithm begins to
behave such that the state space model gives more
accurate estimates compared to measure values so it
assigns less importance to the measurements. This
causes a decrease in Kalman gain, which reduces the
correction speed of the currents. In the extra time used for
current correction the algorithm finds opportunity to
decrease the steady-state error.

"
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Fig. 5:High Speed, no-load, four quadrant speed
estimation with EKF
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four quadrant speed estimation at steady state
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Low speed estimation performance of the EKF is also
quite satisfactory and close to reference speed as shown
inFig. & and 9.

To verify the performance of EKF under loaded
conditions, rated mechanical 1oad is applied to the motor
between 0.75-1.5 sec as shown in Fig. (10). The EKF
estimator works properly even under fully loaded case.
One may decrease steady-staie error to very low
levels with appropriate state covariance's optimized for
steady state.

In the second part of simulation, the performance of
FL coniroller is assessed in terms of speed tracking and
load rejection capability. The performance of the FL
controller iz compared to that of PI controller. In this case,
the speed controller receives the estimated speed from the
EKF block and then generates the required torque to
obtain the required speed. The estimated speed is also fed
into the TFOC block to generate the required slip angle for
proper filed orientation.
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Fig. 7:High Speed, no-load, speed estimation steady state
performance optimized
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Figure 11 and 12 show the speed tracking
performance, under no load, for both FL and PI
controllers, respectively. It can be shown that PI
controller has difficulty in following the command
because of the current limit and the time needed to build
up the flux once the flux iz established. At the same time,
the FL controller shows almost perfect overlap of the
command speed with the estimated speed.

To improve the speed tracking performance of PI
controller, the gains of the PI controller have to be
retuned, such as increasing the integration gain. However,
overshoot and oscillation are usually associated with the
increase of the gain. Therefore, there iz a serious conflict
in the speed performance.

Figure 13 shows the responses of PI and FL
Controllers with stepped load torque of four timesthe
nominal inertia (47). The load is exerted to motor between
0.75-1.5 sec. The robusiness in the response is self-
evident.

399

393-400, 2007

Trazlang Perfarmanca of FLC orrale

Fore S eeed (Raersec)

el PR N ke Al ] O,

& 11)
L8}

1§

T (54t |

Fig. 11: Speedtracking performance of the PI-based IM

Tracking Padformmanco of P Comnaler

—y N
150 4 N
oo
3 ol
a i e
= ot
5 &
& i
100 =
-150
e as i ¥ 3
Time [t
Fig 12: Speed tracking performance of the of the PI-

based IM FMRLC-based IM

Lood Hagection Capabity af FL and P Carimiber
00 T
b
L S S — P ———— -
V60 B L. L .
165 -
";%5 ! 15 2
Tirrm Jamc |
Fig. 13: Torque disturbance rejection capability of the PI

and FL bagsed IM

When the rotor's resistance iz doubled between
1-1.25 sec., the speed becomes oscillatory indicating that
the flux and torque current commands are no longer
decoupled. Despite the loss of decoupling, the FL
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controller can manage to refurn the speed to seftling point
faster than the case with PI controller. Moreover, the
maximum dip in the response of FL controller is much
lezs than that in case of PI controller as shown in Fig. 14.
One can deduce that the FL controller is more robust than
the PI confroller against the variation of IM parameters
(rotor resistance).

CONCLUSION

The following points can be deduced from the results
associated with speed estimation using EKF technique:

The EKF shows high tracking performance for both
high and low speed estimations and close to
reference speed. The high performance is verified for
four-quadrant speed.

The performance of EKF has been verified under
loaded conditions. The EKF works properly even
under fully loaded case.

The steady-state error may be decreased to very low
levels with appropriate state covariance's optimized
for steady-state case.

It has been shown that a properly designed direct
fuzzy controller can outperform conventional PI
controllers. Based on simulation results, the following
conclusions are made:

* The FC can be tuned to a single setting such that the
speed will frack trapezoidal commands with zero
steady-state error.
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FC iz more robust than the PI controller when load
disturbances occurred.

FC is more robust than the PI controller when
detuning effect (rotor resistance wvariation) is
encountered.
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