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Abstract: Architecture determination of Artificial Neural Networks (ANNs) is an important issue for the
successful application of ANNs in many practical problems. Tt is well known that a three layered ANN can solve
any kind of linear and nonlinear problems. This study proposes a new prumng algorithm, Architecture
Designing by Correlation and Sensitivity Pruning (ADCSP), to determine the three layered near optimal ANN
architectures automatically. The salient features of ADCSP are that it uses correlations, apply merging
operation, uses computationally inexpensive formula, maintain its generalization ability and avoid overfitting.

It has been tested extensively on a number of benchmark problems in machine learmng and neural networks.
The experimental results show that ADCSP can determine smaller architectures with good generalization ability

compared to many other works.
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INTRODUCTION

In the domain of Artificial Neural Networks (ANNs)
design, the most successful applications to the real-world
problems reveal the need of designing optimal ANN
structures rather than larger ones. When applications
become more complex, the structures presumably become
larger. Moreover, larger structures increase the numbers
of parameters and lose the generalizations ability. The
determmation of ANN architectures means to decide the
mumber of layers in the ANN and the number of neurons
m those layers. It 1s well known that a three layered ANN,
consists of an mput, a lndden and an output layer, can
solve any kind of problem. Therefore, ANN architectures
depend on the number of neurons in the hidden layers,
since the numbers of mput and output newrons are
determined by the sizes of mput and output vectors,
respectively.

The problem of designing a near optimal ANN
architecture for a given application 1s a tricky question for
the researchers. However, this 1s an important issue since
there are strong biological and engineering evidences to
support its functions. So, the information processing
ability of an ANN 1s mostly depends on its architecture
(Chauvin, 1990; Simoen, 2003; Reed, 1993). The fact 1s that
both the large and small networks exhibit a number of

advantages and disadvantages. On the one hand, a larger-
sized network may be trained quickly; it can more easily
avoid local minima and more accurately fit the training
data. However, it may be inefficient because of its high
computational complexity, many degrees of freedom and
poor performance in generalization due to over-fitting
(Chauvin, 1990, Costa et al., 2002; Reed, 1993). On the
other hand, a smaller network may save the computational
costs and have good performance in generalization.
However, it may learn very slowly or may not leamn the
data set at all. Even it is known, there is no guarantee that
the smallest feasible network will converge to the correct
weights during tramning because the network may be
sensitive to the initial settings and more likely to be
trapped in local minima (Reed, 1993; Yeung and Zeng,
2002). To design an appropriate architecture for the
solution of a given task 1s always an open challenge
(Xiang et al., 2003, Yeung and Zeng, 2002).

There have been many attempts to design ANN
architectures automatically, such as various constructive
(Ash, 1989; Costa et al., 2002; Fahlman and Lebiere, 1990,
Simon, 2003; Huang et al., 2005; Tslam et al., 2003; Kwok
and Yeung, 1999) pruning (Chung, 1998; Costa et al.,
2002; Cunet al., 1990, Engelbrecht, 2001; Hagiwara, 1994;
Hassibi and Stork, 1993; Lee and Park, 2002; Reed, 1993,
Yeung and Zeng, 2002) and evolutionary (Fogel, 1995;
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Miller et al., 1989, Odri et al., 1993; Yao and Liu, 1997)
algorithms. Roughly speaking, a constructive algorithm
starts with a minimal sized network (1.e., a network with a
minimal number of layers, neurons and connections) and
starts to add layers, neurons and connections gradually
mn the traimng period. In contrast, a pruning algorithm
does the opposite, 1.e., it starts with larger sized network
and gradually deletes unnecessary layers, neurons and
connections during training period. Unlike constructive
and pruning algorithms, an evolutionary algorithm starts
ANN design process with M networks where M is a user-
specified parameter. Tt can add or delete neurons and/or
comnections during the evolution process until a near
optimal architecture has been designed.

PROPOSED ALGORITHM

ADCSP mainly emphasis on correlation based
pruning, but to make prior shortening, it reduces low
information bearing (having lower standard deviation
values) hidden neurons. Thereafter, it reduces the similar
or dissimilar hidden neurons based on their correlations
(both positive and negative) strength. As complete
elimination of neurons could harm the network=s
performance, merging strategy is used in ADCSP to
handle thus situation. To ensure the stability of the ANN
after each reducing, ADCSP try to compensate proper
substitutions so that the performance of the network does
not fall under certain limit or the network could not move
mnto wrong direction.

If a hidden neuron exhibits high correlation (either
positive or negative) with other neurons in their
responses, then it 13 considered redundant in ADCSP. It
is therefore, possible to merge a pair of correlated neurons
and replace them by a single neuron. The major steps of
ADCSP are summarized in Fig. 1, which are explained
further as follows.

Step 1: Create a fully connected imtial ANN architecture.
The number of neurons m the input and output layers are
same as the size of the mput and output vectors of the
problem datasets. The numbers of hidden neurons are
taken arbitrarily. All the weights are mitialized randomly
within a certain range and the biases are assigned to a
fixed real value.

Step 2: Train the ANN by using Back Propagation (BP)
algorithm until the error E reduces to a certain value. The
training ends when the training error is still decreasing
and the validation error starts to increase. In ADCSP, E 1s
calculated according to following equation.
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Fig. 1: Flow diagram of ADCSP
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where, n, and o, are the total number of input patterns and
output neurons, respectively. d, and a, are the desired
and actual outputs, respectively.

Step 3: Compute the standard deviation of the output
values for all hidden neurons in the ANN. If the standard
deviations of the hidden neurons are under a threshold
value, identify those as low information bearing neurons
0, and delete them all, otherwise go to next step. After
pruning the error has been checked. If the error increases
then send for BP retraming to reduce the errors. If error
does not reduce under certamn limit retrieve the pruned
neurons. Jo to next step.

Step 4: Compute correlations among hidden neurons pairs
in an ANN. Both positive and negative correlations are
calculated. The pairs having positive or negative
correlations more than a threshold value p, are marked as
M and they are selected for merging. If M marked pairs of
neurons are found in the ANN then merge those pairs and
replace the neurons. In spite of replacements, if the error
of the ANN increases then send for BP retraining. If the
error does not reduce under certain limit then restore the
neurons and restart the algorithm further, otherwise fixes
the final ANN architecture designed by ADCSP.

ADCSP uses replacement strategies to incur the
losses due to pruning. The following subsections
describe these components of ADCSP in detail.

Pruning by sensitivity: Standard deviation is used to
measure how widely the output values of hidden neurons
are dispersed from its average values. In ADCSP, a hidden
neuron is identified as low information bearing if its
standard deviation is small. Generally, a hidden neuron
with small standard deviation delivers almost constant
output value to the neurons in the succeeding layer. As
a result one can easily replace the contributions of those
neurons m ANN. To undermine the effect of pruning
neurcns, ADCSP implements a replacement strategy
after each prumng. If a neuron (H,) of hidden neuron 1s
pruned then the connection weight of the bias neuron for
the k™ output neuron is changed according to the
following equation
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W t+D =W, B+ W, x, &

Here, W' | (), the biases of the output neurons, where
0 represents biases, k represents output neurons 1i.e.,
fk=1,2,..,.0n},

Wnkjij , is the average weighted value feeds from the j*
pruned hidden neuron to the k™ output neuron.

Wi ,(t+1), denotes updated bias values of the output
layered k™ neurons.

Pruning by correlations: Correlation defines a
relationship between two given sides, so when it is
between two lidden neurons it refers the relationship
among them. If any two neurons exhibit correlated
responses (either identical or opposite) over the whole
mput patterns, there is a possibility that these two
neurons are closely related in their natures. The idea
behind the merging is that since the contribution of each
neuron in a correlated pair is similar in nature. If the error
of the ANN increases after merging, ADCSP retrains the
ANN to reduce the error. In the worst case scenario, if the
retraining do not successful to reduce the error, ADCSP
retrieves the last changes in the ANN architecture. The
correlation between hidden neurons H, and H, 1is
expressed by the following equation.

_ Cov(H . H,)

H, Hp
g .0
#HOOH

3)

Here, p 4, 1 represents the correlation among H, and H,
neurons. o, and o,; are standard deviations of the output
values of H, and H,. Cov(H,, H,) denotes the covariance.
It can be calculated as:

Cov(H, H,) =+ 3" (x, - X)(y, - y) “

1=1

Where x; and y, are the output values of H,and H,
respectively. The mean output values of H, and H, are
expressed by = and ¥, respectively.

To compensate at merging, it is necessary to
quantify the contribution of two correlated neurons in
the ANN. If one can quantify the contribution of
correlated neurons then he/she can try to make merging
operation in such a way so that the contribution of the
merged neuron will be nearly similar to that of the
correlated pair of neurons.

Consider a three layered feed forward ANN and
two correlated neurons H, and H, are selected to merge
(Fig. 2). Let H, be the merged neuron that will replace
neurons H, and H, (Fig. 3). Thus H,, will be
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Fig. 2: Correlated neurons are selected

Fig. 3: Correlated neurons merged into one
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This is true for all correlated hidden pairs. Besides Fig. 2
shows that, the total amount of mput values supplied by
the two correlated neurons (H, and H,) to the output layer
neuron O, 1s (w) + w,). ADCSP assigns summation
weight to the merged neuron=s connection. Figure 3
shows, in case of merging H, and H, the new connection
weight between O, and H,, is w;}, , whichis

o

Wi =W+ W) ©
Experimental results: ADCSP is applied on several well-
known benchmark problems to evaluate its performance.
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These are Australian Credit Card Assessment, Breast
Cancer, Diabetes, Heart Disease, Iris, Soybean and
Thyroid problems. The performance of ADCSP 1s
measured m terms of the size of the ANNs, the
number of epochs required for desigmng ANNs and
classification accuracies of the designed ANNs. Each
experiment was carried out 30 ttmes in order to achieve
fairness in the results.

Descriptions of the dataset: The detailed descriptions
of the datasets are available at ics.uci.edu (128.195.11)
in directory/pub/machine-learning-databases. Table 1
describes the characteristics of the different datasets.

Australian credit card assessment dataset: This 15 a
credit card approval dataset problem. The problem is to
assess the applications for Australian credit cards based
on a number of attributes. This 1s a two-class problem.
There are 690 examples in the dataset each of which
consists of 531 real valued inputs. There are 307 examples
of positive class and 383 examples of negative class.

Breast cancer dataset: This dataset was obtained from
the University of Wisconsin Hospitals, Madison,
Wisconsin, USA, by Dr. William H. Wolberg. The dataset
was designed to diagnosis breast tumors as either benign
or malignant. The dataset representing tlis problem
contains a total mumber of 699 examples. Each example
consists of 9 real value attributes as an mput vector and
represents two classes as output vector. Out of 699
examples 458 are bemign examples and 241 are malignant
examples.

Diabetes dataset: This dataset was originally donated by
Vincent Sigillito from Johns Hopkins University by the
National Institute of Diabetes and Digestive and Kidney
Diseases. The problem posed here is to predict whether a
patient would test positive or negative for diabetes
according to criteria given by World Health Orgamzation
(WHO). This 18 a two-class problem with class value 1 and
2 interpreted as negative and positive results for diabetes.
There are 500 examples of class 1 and 268 of class 2. There
are & attributes for each example. The dataset 1s difficult to
classify.

Heart disease dataset: This dataset comes from the
Cleveland Clinic Foundation and was supplied by Rebert
Detrano of the V. A. Medical center, L.ong Beach, CA. The
purpose of the dataset is to predict the presence or
absence of heart disease given the results of various
medical tests carried out on a patient. There are two
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Table 1: Datasets used by ADCSP

Number of

Datasets Total examples Input attributes  Output classes
Australian credit 690 51 2

card assessment

Breast cancer 699 9 2
Diabetes 768 8 2
Heart disease 920 35 2

Iris 150 4 3
Saybean 683 82 19
Thyroid 8124 21 3

classes: presence or absence (of heart disease). The data
here used has 920 examples each of which consists of
35 real valued inputs.

Iris dataset: The classification of irises was chosen as an
example of continuous valued input and binary output.
Trises are classified into three categories: setosa,
versicolor and virgima. Each category has 50 examples.
Each example possesses four attributes: Sepal length,
sepal width, petal length and petal width.

Soybean dataset: This dataset comes from the AANN
version of the Asoybean dataset from the UCI machine
learning repository. Donors of this dataset are Ming Tan
and Jeff Schlimmer. These datasets were developed for
developing an expert System for Soybean Disease
Diagnosis. This is a problem of 19 output classes and
has 82 input attributes. There are 683 examples are
available in the dataset.

Thyroid dataset: This dataset comes from the Aann
version of the Athyroid disease dataset from the UCI
machine learning repository. Two files were provided
Aann-tramn.data contains 3772 learming examples and
Aamn-test.data contamns 3428 testing examples. There are
21 attributes for each example.

Experimental setup: In this experiment, the instructions
described in benchmark methodologies (Prechelt, 1995,
1994, 1996) were followed. ADCSP partitioned datasets
into three disjoint sets: a training set, a validation set and
a test set. The traming set 1s used to train ANNs by back-
propagation learming algorithm (Simon, 2003). The
validation set 1s used to evaluate the interim performance
of ANNs and fixes the criteria for stopping the traimng of
ANNs. Fmally, the test set 13 used to measure the
generalization ability of ADCSP. In these experiments, the
output neurons are encoded 1 for representing a
particular Class (C) and remaining neurons become 0.
Actually, the most common winner-takes-all method is
used in ADCSP to determine the class. Most widely used
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sigmoid function is used as activation function in neurons
of hidden and output layers. The number of input neurons
was equal to the number of attributes of that dataset. The
number of output neurons was equal to the number of
classes of that dataset. Since ADCSP uses pruning
approach, so the number of hidden neurons was taken
larger than the sum of both mput and output neurons
divided by two. Imitial connection weights of ANNs are
assigned randomly between -0.20 and 0.20. Bias neurons
in hidden and output layers are initially assigned 1.0 for all
datasets. The learning rate varies from 0.50 to 0.70. The
threshold values of standard deviation and correlation
vary from 0.10 to 0.25 and 0.65 to 0.90, respectively. It
becomes inevitable to take more neurons in the hidden
layer when the mput or output vector sizes seem larger.
The imitial hidden neurcns for breast cancer, diabetes,
heart and thyroid disease datasets are assigned from 7 to
10, 8to 14, 8to 18 and 8 to 16, respectively. For Australian
credit card assessment, iris and soybean datasets the
imtial lndden neurens are chosen from 10 te 20, 6 to 8 and
101to 30, respectively. For most of the data sets first 50, 25
and 25% number of examples are used as training set,
validation set and test set, respectively.

Table 2 and 3 summarizes the results achieved by
ADCSP for different problems. The number of epochs in
Table 2 represents the total number of iterations required
to attam the final ANN architectures. The classification
error in Table 3 refers to the rate of wrong classification
produced by designed ANNs on different datasets. Tt is
clear from Table 2 and 3 that ANNs designed by ADCSP
are very small m size, 1e., a small number of ludden
neurons 1n the structure; convergence of ADCSP 1s very
fast and classification errors of ADCSP are small. For
example, an ANN having only two neurons can achieve
an average error rate of 1.11% on the testing set for the
cancer problem. In another case, ANNs designed by
ADCSP for Australian credit card assessment dataset
have only on average 1.2 hidden neurons and 13.64%
classification error rate on testing set. Another important
property of ADCSP 15 that the number of epochs required
to finalize ANN architectures is also small in number. For
example, for the diabetes problem, the average number of
epochs required to finalize ANN was 44. The largest
number of epochs required by ADCSP was for the thyroid
problem and it was 138. This is not always true, however,
that a problem having a large number of examples will
need a large number of epochs mn determining ANN
architectures. Amnother difference between these two
problems, as seen from Table 2 is the numbers of input
attributes and output classes. The number of input
attributes and output classes for the heart disease
problem was 35 and 2, respectively, while they were 82
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Table 2: Architechires designed by ADCSP

No. of No. of
Dataset epochs hidden neurons
Australian credit card assessment  Min 8 1
Max 29 4
Mean 12 1.2
Breast cancer Min 2 2
Max 16 2
Mean 9 2
Diabetes Min 21 2
Max 117 3
Mean 44 2.07
Heart disease Min 8 2
Max 35 4
Mean 12 2.7
Tris Min 146 2
Max 267 2
Mean 163 2
Soybean Min 16 12
Max 89 18
Mean 51 15.17
Thyroid Min 92 1
Max 196 3
Mean 138 1.7
Table 3: Classification accuracies of ANN designed by ADCSP
Classification Error for
Training Validation Testing
Dataset set (%0) set (%0) set (%)
Australian credit Min 11.01 8.67 11.63
card assessment Max 14.20 10.98 14.54
Mean 12.01 9.50 13.64
Breast cancer Min 343 229 0.58
Max 4.00 2.86 1.15
Mean 3.63 2.31 1.11
Diabetes Min 18.49 22.40 22.40
Max 22.66 23.96 27.60
Mean 2013 23.40 25.00
Heart disease Min 6.74 16.96 16.96
Max 15.44 18.70 21.74
Mean 13.07 18.19 19.61
Iris dataset Min 1.33 2.63 0.00
Max 4.00 13.16 5.41
Mean 2.58 6.75 1.44
Saybean dataset Min 1.17 351 6.47
Max 10.82 14.62 14.71
Mean 2.63 4.99 7.57
Thyroid disease Min 5.13 6.12 5.92
Max 5.73 6.84 6.21
Mean 5.38 6.33 6.08

and 19 for the soybean problem. However, ADCSP
required 8 and 51 number of epochs in determining near
optimal ANN architectures for heart disease and soybean
problems. This indicates that the number of epochs
required in determimng ANN architecture 1s not only
dependent on the number of examples in problems. There
are factors such as problem complexity, type and number
of input attributes and output classes that might affect the
number of required epochs to design a near optimal ANN
architecture. The final number of hidden neurons for
breast cancer 1s only 2. To achieve this ADCSP needs on
average only 9 iterations. The minimum, maximum and
average errors were 0.58, 1.15 and 1.11%, respectively.
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Figure 3 shows the architecture determination
performance of ADCSP. In order to observe the
architecture determination process for Australian Credit
Card Assessment problem, Fig. 4 and 5 shows traimung
processes of ADCSP in determining a near optimal ANN
architecture for a particular problem. Tt is seen from Fig. 4
that the error of ANNs generally decreases as the traming
processes progress. However, it 13 seen that sometimes
average errors increase temporarily and again started
decrease afler some iterations. This 1s due to effect of
pruning hidden neurons from trained ANNs. The weight
replacement strategy and retramning used in ADCSP help
to reduce the errors quickly. For example, every hidden
neuron of a trained ANN has some contributions to
reduce its error. Whenever any hidden neuron 1s pruned
from a tramned ANN it does not get contribution from the
pruned neuron. Tt is therefore obvious that the errors of
ANNs will increase after pruning neurons. When ADCSP
substitutes weights and retrains ANN after pruning,
exiting neurons get chance for increasing their
contributions so that the loss of pruned neurons can be
compensated. This is the reason that after retraining the
errors of ANN comes down m spite of temporary error
mcrease due to prumng. Figure 5 shows the average
mumber of hidden neurons with respect to the number of
iterations for same dataset. At some points the average
number of lidden neurons increases. This happens as
this value 1s the average of 30 separate executions and in
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Fig. 7: Hidden neurons vs iterations

different executions the number of iterations varies. It is
seen from Fig. 5 that the numbers of hidden neurons
reduces and remams consistent. For example, for
Australian credit card assessment dataset, the average
numbers of hidden neurons remain same in 40 to 46
iterations which indicate that ADCSP could reduce the
hidden neurons very quickly. Similarly, Fig. 6 and 7 show
the converging process performance for cancer dataset.
However for some dataset such as diabetes, ADCSP
reduces hidden neurons very slowly. This is because
diabetes problem 1s one of the hardest problems in
machine learmng and the data set 1s very noisy.
Considering different datasets it can be concluded that
ADCSP can design smaller sized ANNs for almost all
datasets.

Robustness of ADCSP: The aim of this section is to
observe that ADCSP can perform consistently in spite of
the varations of its parameters, then it will prove the
robustness of ADCSP. Basically, two control parameters
are used m ADCSP: correlation threshold (o) and
standard deviation threshold (p). Another parameter is
also considered for faimess 1.e., the imtial mumber of
Hidden Neurons (HNs). These parameters were varied
into a wide range to evaluate the robustness of ADCSP.
Table 4 and 5 show the robustness performance of
ADCSP for Australian Credit Card datasets. On the other
hand Table 6 and 7 show the result set for Thyroid
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Table 4: Number of epochs and HNS for Australian credit card assessment

Table 7: Classification accuracy dataset

No. of
No. of hidden
Parameters threshold values epochs neurons
g=0.15,p=+ 085 HN=14 Min 9 1
Max 85 8
Mean 22 217
g=0.10, p =+0.85, HN = 14 Min 6 1
Max 74 9
Mean 19 2
0=0.15,p =+ 0.80, HN =14 Min 9 1
Max 85 8
Mean 25 1.57
0=0.15,p=+0.85 HN=14 Min 9 1
Max 85 8
Mean 22 217
0=0.15,p==+ 085 HN=16 Min 10 1
Max 64 5
Mean 21 21
o=0.15p=+085 HN=14 Min 9 1
Max 85 8
Mean 22 217

Table 5: Classification accuracy for Australian credit card assessment

Classification error for

Training  Validation  Testing
Parameters threshold values set (%) set (%0) set (%0)
o=0.15p=+ 085, Min 6.67 9.25 11.63
HN=14 Max 15.94 12.72 15.70
Mean 11.88 10.56 13.93
o=010,p =+ 085, Min 5.22 9.25 11.05
HN =14 Max 15.36 13.30 17.44
Mean 11.86 1035 13.82
o =015 p=+ 080, Min 6.67 9.83 12.21
HN =14 Max 15.94 12.72 15.70
Mean 11.83 10.67 13.95
o=0.15p=+ 085, Min 6.67 9.25 11.63
HN=14 Max 15.94 12.72 15.70
Mean 11.88 10.56 13.93
o=0.15p=+ 085, Min 10.15 8.67 11.63
HN=16 Max 14.20 12.14 18.61
Mean 11.87 10.64 13.93
=015 p=+ 085, Min 6.67 9.25 11.63
HN =14 Max 15.94 12.72 15.70
Mean 11.88 10.56 13.93
Table 6: Number of epochs and HNS for thyroid disease
No. of
No. of hidden
Parameters threshold values epochs neurons
o=0.25,p=+ 0.80, HN=14 Min 92 1
Max 196 3
Mean 138 1.7
0=0.15,p=% 080, HN=14 Min 19 1
Max 161 3]
Mean 52 3.23
0=0.20,p=% 070, HN=20 Min 73 1
Max 208 4
Mean 127 3.2
0=0.20,p=+0.70, HN=12 Min 85 2
Max 278 4
Mean 128 273
0=0.20,p =+ 0.85, HN=10 Min 27 0
Max 99 4
Mean 55 1.66
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Classification error for

Training  Validation  Testing

Parameters threshold values set (%0) set (%) set (%)
o=0.25,p=0.80, Min 5.13 6.12 5.92
HN =14 Max 573 6.84 6.21
Mean 5.38 6.33 6.08

o=0.15,p=0.80, Min 5.00 6.00 6.06
HN =14 Max 7.56 883 9.33
Mean 6.53 761 7.92

0=10.20,p=0.70, Min 4.65 5.96 5.95
HN =12 Max 5.69 7.87 6.94
Mean 5.26 6.29 6.12

0=10.20,p=0.70, Min 4.61 6.04 5.95
HN =20 Max 7.24 811 7.29
Mean 5.21 6.41 6.26

o=0.20,p=0.85, Min 4.69 6.04 5.98
HN =14 Max 5.97 811 7.96
Mean 5.21 6.35 6.19

Table 8: Comparison between ADCSP and OBD (Eleuteri et af., 2005) for
breast cancerdataset means not available

Algorithm ADCSP OBD
No. of epochs 24 -

No. of hidden neurons 1 10
No. of connections 14 -
Testing error rate 1.53% 3.50%

datasets. These tables also show that the performance of
ADCSP 15 consistent m spite of varying different
parameters.

Comparisons: Since ADCSP is an automated ANN
architecture designing method, so the comparisons stand
interms of sizes of ANNs (number of hidden neurons and
mumber of connections), convergences performance
(number of epochs) and testing error rate (accuracies).
Sometimes, direct comparisons among the ANN
architecture designing methods become very difficult due
to the lack of similar experimental assumptions and
setups. In the followings, the outputs generated by
ADCSP are compared with the results of some other
prominent pruning algorithms.

Table 8 compares between ADCSP and OBD
(Cun et al, 1990) for breast cancer dataset. The
convergence performance of ADCSP is excellent. The
average required number of epochs is only 24. Designed
ANN has only one lidden neurons, on the other hand
OBD requires ten hidden neurons; which is ten tumes
larger. Besides the testing error rate of ADCSP is
significantly better than OBD.

Similarly, Table 9 compares ADCSP with OBD for s
dataset.

Similarly Table 10-14 compare ADCSP with OBS
(Hassibi and Stork, 1993) Impact Factor(ImF) (Lee and
Park, 2002) Sensitivity analysis (Yeung and Zeng, 2002)
variables selection (Eleuteri ez al., 2005).
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Table 9: Comparison between ADCSP and ORD (Eleuteri et af., 2005) for
iris dataset means not available

Algorithm ADCSP OBD
No. of epochs 163 -

No. of hidden neurons 2 -

No. of connections 19 28
Testing error rate 1.44% 13.00%0

Table 10: Comparison between ADCSP and OBS (Eleuteri et ., 2005) for
thyvroid dataset means not available

ADCSP

195

(2 min pentium 4, 2.4GHz)

Algorithm
No. of epochs

OBS

(511min sparc
Works. 200MHz)

No. of hidden neurons 2 (21-2-3) 7(8-7-3)
No. of connections 50 28
Testing error rate 6.66% 1.50%

Table 11: Comparison between ADCSP and ImF (Lee and Park, 2002) for
breast cancer dataset

Algorithm ADCSP ImF
No. of epochs 24 51
No. of hidden neurons 1 1

No. of connections 14 14
Testing error rate 1.53% 2.22%

Table 12: Comparison between ADCSP and ImF (Lee and Park, 2002) for

iris dataset
Algorithm ADCSP ImF
No. of epochs 163 455
No. of hidden neurons 2 1
No. of onnections 19 11
Testing error rate 1.44% 4.23%

Table 13: Comparison between ADCSP and sensitivity analysis Yeung and
Zeng, 2002) for iris dataset means not available

Algorithm ADCSP Sensitivity measure
No. of epochs 66 22611

No. of hidden neurons 4 4

No. of connections 20 -

Testing error rate 5.73% 10.90%

Table 14: Comparison between ADCSP and variables selection
(Eleuteri et ai., 2005) for iris dataset means not available

Algorithm ADCSP Variables selection

No. of epochs 24 -

No. of hidden neurons 1 5

No. of connections 14 -

Testing error rate 1.53% 2.20%
CONCLUSION

Correlation 1s such a property, thorough which the
nature of different hidden neurons can be identified.
Therefore, it becomes possible to design small ANNs for
all the datasets. ADCSP uses effective replacement
strategies to compensate the prumng effects. ADCSP
always preserves its generalization property and avoid
overfitting very strictly. This algorithm uses the formulae
to find out standard deviations, correlations, errors and
substituted weights etc., which were computationally
inexpensive. As a result, the execution times of it for all
datasets become fast. Tt tries to compensate the deleted
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neurons through proper replacements. Thus, the required
numbers of epochs become smaller for almost all the
datasets. Tt uses merge approach to design the ANN
architectures automatically. ADCSP opens a new avenue
that pruning or reduction is possible through merging. As
per our best knowledge ADCSP 15 the first approach
which uses merge operations to design ANNs
automatically. Sometimes the accuracies of ADCSP are
not the best. The main reason of it is that it never puts
barriers to its generalization abilities.

FUTURE DIRECTIONS

ADCSP introduces correlations, there 1s a vast
opportunity to apply this property into different ANN
architecture designing methods, prumng or constructive
methods etc. Besides, it is also expected that it will be
useful in combimng this techmque with other techniques
to enhance the overall performance of the ANN
archutecture. For discovering the full strength of this
strategy, we will work on a wide variety of large datasets
and try to analyze the algorithm further to umprove its
performance. The future aims on to establish correlation
property, as a salient feature of ANNs, to show ADCSP as
a performance enhancer for other methods, to develop
this algorithm as computationally efficient to determine
the architectures, to develop a module containing this
method that will be applicable in different types of
standard problems solvers, try to modify this method as
less dependent on user-defined parameters or randomly
assigned values.
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