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Abstract: This study presents a new genetic method for selving dynamic multicast routing problem, which 1s
found m multimedia applications. Multicast services mn multimedia applications require the optimization of QoS
parameters namely cost, end-to-end delay and each link must meet delay and bandwidth constraints. This study
proposes an improved genetic algorithm for the construction of QoS multicast tree which has the following
features: Multicast tree adopts for dynamic changes; all the links m the tree must meet delay constramnt and
bandwidth constraint; cost and end-to-end delay 1s better than other heuristic algorithms; the encoding method
helps to perform dynamism; improved genetic operators and heuristic local search operation; Multicast routing
over unicast. We have also performed a comparative study of selection mechanisms in GA using simulation
and listed the best one for our problem. Experimental results show that our improved genetic algorithm has

higher search success rate, convergence rate, dynamic request success rate and least cost than existing
methods.
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INTRODUCTION

Need for dynamic QoS routing: Multicast service 1s a key
requirement for computer networks supporting multimedia
applications. Most of the multimedia applications such as
video conferencing, distance learning, concurrent editing
system, multi-person commumication etc require
transmission of message from single source to multiple
destinations with strict QoS parameters. Finding such a
multicast tree with optimizing of one parameter (cost) is
NP complete problem (Striegal and Manimaran, 2002)
(Wang and Hou, 2000). In real time multimedia
communication, a connection from source to multiple
destinations needs to be found before any data
(TAnsINnission occurs.

Multimedia applications require optimization of cost
and end-to-end delay simultaneously (Kompella et al.,
1993). There are 2 steps in real time multimedia
multicasting: Routing and Dynamic changes. The routing
1s to find the routing tree which is rooted from single
source to multiple destinations under the required QoS
constraints. And that tree must have a minimum cost and
end-to-end delay (Kompella et af., 1993). In addition to
minimum cost and end-to-end delay, the links present in
the multicast tree, which is used, for multimedia real time
services must meet bandwidth, delay bound constraints.

But finding a multicast tree with optimization of two
parameters: Cost and end-to-end delay is NP hard. The
dynamic change 1s nothing but both the group
membership change and node/link failure. Most of the
multimedia applications require dynamic membership
change in multicast group that is a destination node
may leave or jom the multicast group with out affecting
the existing traffic in the connection (with out
restructuring the existing tree and needs only small
modification in that tree).

Related works and objectives: In this study we have
given a brief review of several heuristic algorithms which
is available for construction of multicast tree. This review
includes both heuristic algorithms and  stochastic
algorithms proposed for multicasting. Also these
algorithms are classified into various categories: Static,
dynamic, constrained, without constrained, single solution
and Multiple solution algorithms. Brief review of static
and dynamic algorithm used for multicasting 1s given
below. Various conventional heuristic algorithms were
proposed by many researchers (Charikar et al., 2004, Tia
et al., 1997, Kuipers and Van, 2002). They also proposed
several traditional heuristic dynamic algorithms for
handling the group membership (Debasissh et al., 2003,
Imase and Waxman, 1991; Naryaez et al., 2000). These
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dynamic algorithms produced the least cost multicast tree.
Some tumes these dynamic and heuristic algorithms
produced good results: However, these are having the
following weaknesses: Average execution time grows
exponentially when size of network grows, no guarantee
for optimal convergence solution, sometimes lead to local
optimum and give optimum solution to the problem only
for sparse networks. Mostly these algorithms searched
the entire network in sequential manner (try all the paths)
and not in stochastic mamer (Gelenbe ef al., 1997; Imase
and Waxman, 1991, Tia et al., 1997). This takes more time
for finding optimal results. So these algorithms are mostly
efficient in small sized networks. Researchers used neural
networks to iunprove the quality of multicast tree
(Chotipat et al., 1995, Gelenbe et al., 1997). But the
method proposed by them 1s too complex for solving the
multicast routing. Neural networl approaches are suitable
for small sized networks. All iterative polynomial time
algorithms did not lead to optimal solution. Stochastic
heuristic algorithms are used for solving this type of NP
problem.

Researches have proposed several heuristic
algorithms for finding the least cost multicast tree under
various constraints (Chotipat et al, 1998, Lee and
Attiquazzaman, 2005). GA is a guided random search
stochastic techmque to solve large-scale optimization
problems and combinatorial problems (Bui and Moon,
1996; Davis, 1991). GA has been used for solving various
NP complete problems viz Network capacity assignment
(Atzori and Raccis, 2002), Cellular Call Admission (Rose
and Yener, 1997), Multicast routing (Shi et al., 2000), QoS
routing (Shimamoto ef al., 1993) etc. All researchers were
concentrating on construction of static least cost
multicast tree, which satisfy delay constraints (Barolli
et al., 2003, Haghighat et al., 2004). A bandwidth delay
constramed least cost multicast routing based heuristic
genetic algorithm was proposed by Zhengying et al.
(2001). They have used the penalty function to penalize
the individual based on delay tolerance. Debasissh et al.
(2003) have proposed a near optimal dynamic, delay, jitter,
bandwidth constrained non-stochastic algorithm without
concentrating on the end-to-end delay. Sun and L1 (2004)
have proposed a static least cost multiple constrained
multicast routing algorithm based on genetic algorithm.
His encoding method can not be able to adapt the
dynamic changes. Leung ef al. (1998) have proposed a
genetic algorithm approach for sparse and dense
networks with out constraints. But they also produced the
static tree only. Bao et al. (2006) have also proposed a
genetic approach for static least cost routing.

All the previous algorithms construct the least cost
multicast tree under various constraints. That is these
algorithms optimize only one parameter. But most of the
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real time multimedia applications require optimization of
residual cost and end-to-end delay. Dynamism and single
scalar optinized solution 18 requied for these
applications. And these two parameters (cost and end-to-
end delay) are consistent with each other (minimization of
both parameters). So we propose a novel protocol for
developing a single solution that satisfies all QoS
constramts using improved GA.

Genetic  Algorithms (GA) are adaptive
techniques that derive the models from the genetic
processes of biological orgamsms based on evolution
theory. GA provides a robust and powerful adaptive
search mechanism. The most important advantage of GA
is that they use only the pay off (objective function) and
hence mdependent of nature of the search space such as
smoothness, convexity or umumodality. For increasing the
convergence of GA, heuristic local search functions are
embedded into Simple GA (SGA). Modified GA operators
are also used for this purpose.

Improved genetic algorithm 1s used to incorporate the
domain specific knowledge. That is some modification is
added to simple GA in order to take into account the
discrete nature of multicast search space. Three ways to
incorporate the domain specific knowledge are suggested
in (Davis, 1991): Local search, use of special genetic
operators and problem specific encoding. These methods
were followed m various applications and successful
performance has been obtammed (Jog ef af, 1989
Zheng et al., 1997).

This study proposes an improved genetic algorithm
for the construction of bandwidth constrained multicast
tree which optimizes cost and end-to-end delay
simultaneously. Each link in the multicast tree must satisfy
the delay constraint A. We have embedded the new local
heuristic function into the SGA. Our proposed method
utilizes the m point crossover operator for quick
convergence.

Objective of our research is to construct the least
cost and mimimum end-to-end delay multicast tree.

This algorithm has following features:

search

Dynamic Change: Group Membership change: A
Destination can leave or enter into the multicast
group with out restructuring the multicast tree (Not
affecting the existing traffic). Tt also updates the node
or link failure.

Improved Genetic Operators: Modified ‘m’ point
crossover, Tournament selection with size 1s 2 and
mutation with heuristic algorithm for final
replacement.

GA based Routing table: Bandwidth and delay
constraint routes are found using GA and stored in
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the routing table on fitness sorted order. The routes
m routing table are cost and end-to-end delay
optimized routes.

Chromosome representation: Number of bits 1n the
chromosome representation depends on number of
destined nodes. Routes in the routing table are
bandwidth and delay constrained optimized routes.
Initial Population: Random Imitial Population method
18 used and the entire chromosome 1n the mitial stage
must different from each other.

GA is used for routing table and Multicast tree
construction.

Elitist model: For avoiding the removal of best
feasible solution at every generation.

Geno-Pheno Algorithm: Gene to Tree Conversion.
Local heuristic function: Local heuristic function is
used to get the best chromosomes
generation.

for next

PROBLEM SPECIFICATION

The network can be represented as the undirected
and connected graph G(V,E) where V is set of network
nodes, E 1s set links (edges) and n = [V| be the number of
nodes n G. A link ecE connecting nodes v, and v, will be
denoted by (v,, v,). Each edge is associated with edge
cost C;, delay D; and bandwidth B; where 1, jeV. Delay
mcludes transmission, propagation and queuing delay
and edge cost could be a measure of buffer space or
monetary cost. A non- empty set U= {s, v, v,, v;.. v,} in
V is called the multicast tree (X), where s€V is the source
node, T = {v,, v,, v,, ... v} 1s the set of destination nodes
and k 1s the number of destination nodes. The Multicast
tree X = (s, T) is a tree rooted at s and routes information
to all members in T. P (s, v;) is the unique path in a tree
X¥(s, T) from the source node to a destination node
v, v;€T. The goal is to find a multicast tree between a
single source and set of destinations, which will
simultaneously optimize the monitory cost and end-to-end
delay.

Cost of the multicast tree X 1s the sum of the cost of
all links in that tree and can be given as follows:

Ct(x): Z C1]

i,jexX

End-to-end delay of the multicast tree X 1s the sum of
the delay of all links in that tree and can be given as
follows:

D,(x)=3 D;

1,]€X

Bandwidth of the path P(s,d) is defined as the
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minimum bandwidth at any link along the path is B(P(s, d))
= minimum (B;;, where link i toj is in P(s, d)).

Our algorithm has two objectives: Minimization of
cost (Ct(X)) and minimization of end-to-end delay (Dy(X)).
Aim of our work 1s to find least cost, minimum end-to-end
delay multicast tree which is subjected to bandwidth

constraints. Problem is defined as follows:
Min (Ct(X), Dy(X))

Subject to

B (P(s,d)) = By, ¥deT
IGADQoS contains two phases
s Construction QoS routing table.
+  Construction of multicast tree.
In both phases, the basic idea is to optimize cost,
end-to-end delay with degree and bandwidth constraints

using GA. At run time, use dynamic algorithm for
adapting the dynamic changes.

GENETIC ALGORITHM IN DYNAMIC QOS
ROUTING

There are two steps in our algorithm: Routing and
Dynamic changes. Routing consists of two stages: One is
construction of optimized routing table using improved
GA and second is the construction of QoS multicast tree
using routes i routing table and improved GA.

Description of genetic algorithm: The genetic algonthms
are part of the evolutionary algorithms family, wiuch are
computational models, inspired m the Nature. Genetic
algorithms are powerful stochastic search algorithms
based on the mechanism of natural selection and natural
genetics (Davis, 1991). Genetic algorithms are able to
evolve solutions to real world problems. Tt works with
populations  (chromosomes) of individuals,
representing a possible solution to a given problem. Each
individual is evaluated to give some measure of its fitness

each

to the problem from the objective functions. GA works
with a population of binary string, searching many peaks
1n parallel. By employing genetic operators, they exchange
information between the peaks, hence reducing the
possibility of ending at a local optimum. GAs are more
flexible than most search methods because they require
only information conceming the quality of the solution
produced by each parameter set (objective function
values) and not like many optimization methods which
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require derivative information, or worse yet, complete
knowledge of the problem structure and parameters.

Genetic operators used: The detailed description of
genetic operators used in our proposed algorithm 1s given
below:

Selection: Reproduction operator is used to improve the
quality of the population by selecting the high-quality
(fittest) individuals, which is copied to next generations.
Tt is an operator that obtains a fixed number of copies of
solutions according to their fitness value. If the score
mcreases, then the number of copies increases too. A
score value 15 of associated to a given solution according
to its distance from the optimal solution (closer distances
to the optimal solution mean higher scores). In this study
we have taken
selection,
selection for simulation. We have analyzed the results and
finally use the pair wise tournament selection without
replacement is used in the proposed method In
tournament selection method, n (n is equal to tournament
size) individuals are selected randomly and the best one
among n is entered into new generation, which serve as a
parent to next generation. The same individual should not

mmto consideration the Truncation

roulette wheel selection and tournament

be selected twice as a parent. This process 1s repeated for
Population Size (PS). Convergence of GA’s may be fast
when we mcrease the tournament size that leads to
mcrease 1n the probability of selecting the wrong
mdividuals exponentially. So we have selected the
tournament size as 2.

Crossover, mutation and replacement: Using crossover
operator, information between two chromosomes are
exchanged which mimic the mating process. An m-point
cross over operator with crossover probability Pc (0.52) is
used. A pair of high fitted parents selected from the
population randomly and cross over operator chooses ‘m’
cutting points randomly and alternatively copies each
segment out of two parents. This operation 1s depicted in
Fig. 1. Value of ‘m’ 1s greater than 2 but less than g-1,
where ‘q’ 1s number of bits in the chromosome. This
crossover may result m offspring that break the subset
size requirements, because the exchanged gene segments
may have different number of occurrences of 1.

Mutation is applied to offspring after cross over.
Mutation involves switching a single bit in a random
position in a string and thus introducing fresh genetic
material. Mutation operator changes 1 to 0 and vice versa
with small probability P, (0.1) which mdicates the
frequency at which mutation occurs. The mutation

474

10] 101] 10|10 101 Crossover 1011011011101
10| 110] 000 | 11| 010 1010100010010
Fig. 1: 4" Point Cross Over
1011011011101 Murtation 1011011001101
 —_—
1010100610010 1010100000010

Fig. 2: Mutation operation

operator introduces new genetic structures in the
population by randomly modifying some of the genes,
helping the search algorithm to escape from local loop. Tt
replaces inferior parents and similar parents. Figure 2
shows the mutation at the Sth bit position. If the mutated
chromosome 1s superior to both the parents, it replaces
the similar parent; if it is between the two parents, it
replaces the inferior parent; otherwise, the most inferior
chromosome m the population is replaced. GA stops
when the mumber of generations reaches the preset
maximum generations Ns.

Simple GA (SGA): Simple Genetic algorithm 1s nothing
but it has simple GA operators with out any heuristic
search function. SGA is depicted as follows:

Generational SGA( )
{
Initialize population P
{
for(i=1 to Ns)
{
Calculate fitness values.
Select 2 parents p, and p, from P
Offspring ; = single pomnt cross over(p,, p,);
Mutation(offspring ,);

i
Replace P with offspring,, ...

}

offspring ,

Routing table construction (QoS routes): QoS unicast
routing is to find the optimal path from source node to
destination node, subject to many constraints and
optimized resources and i3 NP complete (Cheng and
Ramakrishnan, 2002; Korkmaz and Krunz, 2001). A GA
based constraint QoS routing method is used to find the
optimal routes and these are placed in sorted order based
on fitness value mn routing table. Variable length
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chromosomes representation has been used (Chang and
Ramakrishnan, 2002). Each locus in the chromosome
represents the node that included m a path between
source and destination. First locus m the chromosome 1s
always source node and last locus number is for
destination. Maximum number of loci in the chromosome
should not exceed the number of nodes in the network.
During the construction of routing table, we have not
considered the edge whose D; is greater than constant
delay A and whose bandwidth bij is greater than B. This
procedure helps the algorithm for not selecting the edge
with unacceptable (maximum) delay and mmimum cost.
We have used the following parameters for the
construction of routing table using GA.

Population Imtialization: Depth first search techmque 1s
used for population mitialization. Repeated chromosomes
are removed in the initialization phase. So all the
chromosomes after the initialization are different with each
other, which helps to search the space quickly.

Fitness function: Weighted sum method 1s used for
the minimization of cost and end to end delay under the
constraints of bandwidth. Here equal weightage is given
to weights associated with fitness function.

Chromosome representation (Multicast tree): Fora given
source node and set of destination nodes {v,, v,, v,,.., v},
mdividual solution (chromosome) can be represented by
a bit string of length k Each bit in the chromosome
corresponds to path in the routing table from source to
the specific vertex. For a given multicast routing problem,
Chromosome representation 1s shown m Fig. 3.

Geno_ pheno function: This function returns the correct
row entry number from the routing table. If Gene Gj =1,
then Geno Pheno function gives the mteger value in
{0,1,2, ..., R-1} which is the routing table’s (s—v, ) route
number. From the routing table the path route from s to v
is taken and have constructed the multicast tree. This
coding method 1s first proposed by Shimamoto et al.
(1993) for the pomt-to-poimnt routing problem. Major
advantage of the method is that chromosome
representation requires only k bits (k = number of
destinations nodes). This method has the ability to solve
routing problem very quickly even for large size networks.
For example Gene: 100101 Geno Pheno Algorithm gives
the correct row entry numbers of routing tables s—v,,
s—v, and s—v, The corresponding path route 1s taken
from routing table s—v,, s—=v, and s—v, and constructs
the multicast tree.

Initial population (Multicast tree): The straightforward
mutial population is shown below. Repair function 1s used

G, G, G, G,

Fig. 3: Chromosome representation

at each bit to avoid the loop formation and to avoid
duplication. We have selected the path routes among the
rows 0 to R/3 rather than among rows 0 to R from the
routing table. This operation gives better initial
chromosomes and saves time since routing table 1s
already in sorted order based on fitness function.
Acceptable cost 13 the average cost m the given nput
cost matrix. A is the acceptable delay constraint for a link.
If the clromosome has unacceptable cost and end-to-end
delay then discard the chromosome during initialization
phase itself. Due to above two steps, diversity mcreases
and gives optimized results (increasing convergence rate).
Pseudo code for Population mitialization 1s described as
follows:

Initial Population ()

in=1,

While(n<Ps)
i
for (each gene g in 1" chromosome)
{k =rand number ();
if (feasible(k)) then g=k
else
g=1
H

If (Check feasibility (Tree)) {n + +; continue;}

if ((Acceptable cost® number of 15 in the chromosome)
>= %5 C,)and (Acceptable delay (A)* number of 1s in the

chromosome) > = X I3;))

n =n-1; where i, je X

Fitness function (multicast tree):
Objective function is given as follows:

L rw,— %A
Cix)  "D(x) (1)

A={[JeB®s,d)-B))

deT

f(x)=(w

Wh . 1h=0
{Wherep(h)= AR <0

w, and w, are weight factors and these values are
if (D, (X) < A) then

w, = 0.5and w, = 0.5
else

w, = 0.75 and w, = 0.25*(D, (X) -A)
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¢ (h) is the penalty functions (Ozgur, 2005) and A is
the penalty factor. Tn our protocol A value is taken as 0.56.
Penalty functions are used to handle the constraints
(Ozgur, 2003). These methods transform the constrained
problem to unconstrained problem and these are used to
penalize the individuals based on their constraint
violation. The penalty imposed on infeasible individuals
can range from completely rejecting the individual to
decreasing its fitness based on the degree of violation.

Heuristic local search function in multicast tree: This
function takes three chromosomes as parent and then
calculates the cost and delay for the two chromosomes
from source node to all destinations. Chromosome CT,,
CT,and CT, are calculated as follows:

CT,={p (s,dp), py (3.d) ... Py (s, dp}: €T, = {p, (5. dy),
pa(s.dy) . Py(s, d}s

CTy=1{ps (s, d). ps (s, dy) ... Py(s, d}
The sub-fitness value of the path is calculated as

follows in the Eq. (2).
Pi(s,d)=W* C(s,d) + W,* D (s, d) (2)
W, and W, are given the same values.

Next, this function compares the sub-fitness value in
the same destination for the above three chromosomes.
Higher fitness value of sub-fitness for every destination
is added (taken) and creates the new offspring. Best three
among the four is selected for next generation.

For example

CT, = {3—4, 3552622, 32527}, CT 5 § 384,
351522, 3=1-5-71,
CT,= { 3-1—4, 362, 3-6-5-7}

The sub-fitness value for the destination 4 in CT, is
less than CT, and CT, so we take 3—4 the sub-fitness
value for new offspring. Sub-fitness value of 3—+15—-2 in
CT, is better than other two. Similarly the sub-fitness
value of 3—5—7 gives better value than other two sub-
fitness values. So this function generated a new offspring
as {3—4, 3—15-2, 3—5-7} Best three chromosomes
among four chromosomes are selected for next generation.

Improved genetic algorithm for dynamic QoS routing:
The main purpose of our algorithm is to find dynamic Qos
routing to multiple destinations (IGADQoS), which
simultaneously optimize cost and end-to-end delay under
the constraints of bandwidth and delay.

Multicast Tree Construction Algorithm (MTC)

Step1: Input () -- Number of nodes, C;, D;, B;, destination
nodes v, v2, v3,.,., vi}, o, By, number of generation Ns

and source s.
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Step 2: Initialization of Parameters: Pm=0.1, Pc=0.52, Ns
=150.

Step 3: Routing table is constructed as in previous study.

Step 4: Chromosomes for multicast tree construction are
initialized according to the procedure m previous study
For(1=1toNs)

d

Step 5: Evaluate the fitness value of all chromosomes
using the Eq. 1.

Step 6: Genetic operation

Use tournament selection method for selecting the
individual for next generation.

Elitism — Elitism can be used for keeping the best
feasible scolution in the population. In each
generation, 5% of best mdividuals are transferred
from one generation to next with out modification.
We have avoided the removal of ghfitted
individuals during GA operations.

Crossover —Perform ‘m’ point cross over operation
with a probability of P..

Heuristic local search function- Select high fitted
three individuals and create a new individual from
three using local search method. Then selects best
three among fourthigh fitted three individuals and
newly created one) and adds to next generation.
Generate new chromosomes based on mutation
probability P_.

Heuristic Local search function: Perform local search

function at a probability of 0.25.

Step 7: Repawr Function: Used to avoid the infeasible
chromosomes which is formed during cross over and
mutation. Also this function avoids the formation of loop.

Step 8: Check feasible function-In each generation, we
check the feasibility of chromosome using feasible
function. After genetic operation, there is very less
chance for occurrence of the chromosome, which 1s best
in one parameter (cost) and worst in another parameter
(end-to-end delay). This 13 avoided by comparing
acceptable cost and delay values with cost and delay of
the chromosomes.

i

Step 9: Use Geno pheno algorithm and Routing table to
construct the multicast tree. Above nine steps give the
optimized static multicast tree. The dynamism of our
algorithm is described as follows:



Int. J. Soft Comput., 2 (3): 471-481, 2007

Dynamic algorithm (): In case of real time multimedia
application the following situation are occurred

*  Dynamic change in the multicast group.
¢ Destined node failure/Link failure.

For the given input, call the MTC algorithm to
construct the multicast tree. Then our dynamic algorithm
always solves the dynamic situation (destination group
change at run time or nodeflink failure) with out
reconstruction of tree. Our protocol automatically updates
the information in O (1) time to O (n) time. In case of real
time application there is a chance for the occurrence of
following three situations: situation one is either any new
destination v wants to enter into destination group or any
already participated destined node wants to leave from
the multicast group (). Second situation is either
destined node failure or intermediate node failure. The
third situation is either connection failure between any
two nodes or connection failure between any destination
node and intermediate node.

In the first situation, if any new node v enters into
the multicast group then checks whether v 1s already part
of the multicast tree for transmitting messages (not for
user, only mediator). Tf it is so, then initiate v to participate
in multicasting and it is allowed to send information to its
users. Otherwise find the shortest path from any node in
X to v from routing table and add those hinks mto the
multicast tree such that loop is not formed. In case of any
destined node leaves from the multicast group, then
remove the connection between the destined node and its
parent by assigning NULL to the corresponding chuld
field.

In the second situation, if the destination nede 1s
failed, then remove the node from X and broadcast that
mformation to all vertices (to run the routing table
algorithm). If the intermediate node v, is failed then find
the next optimal route from v,’s parent (proper ancestor)
to v,’s chuld (proper descendent) and connect it to X after
removing the old link.

TIn the third situation, connection failure (link failure)
between any destination node and intermediate node is
replaced by finding the best route among the following
two routes: one 1s next optimal route between destination
node and intermediate node, second is optimal route
between intermediate’s parent and destination node. That
particular route 1s added to multicast tree. Similarly
connection failure between any two mtermediate nodes 1s
handled and that route is added to multicast tree. If that
alternate route is not optimal then it runs the MTC
algorithm. If the failed link is not present in X, there 1s no
change in the multicast group but that information is
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[ Construct routing table ]

Y
MTC algorithm
= Initialization of population
~ Fitness calculation
» (Genetic operation
= Elitism and repair function
» Heuristic function
» Geno_pheno algorithm

v

=

Fig. 4: IGADQoS algorithm

broadcast to all routers that help the associated nodes to
run their routing algorithm.

IGADQoS easily finds the alternate optimized path
and updates the information in O (1) time to O (n) time,
since our protocol takes the routes from routing table,
which was constructed during first stage of our algorithm.
And this table always contains the optimized paths. Flow
of our complete algorithm is depicted in Fig. 4.

Time complexity: During the first time construction, the
time complexity is O (PS* generation™® nklogn). Dynamic
group change in the multicast group needs only constant
time. Link/node failures requires O (n) at the worst case.
SIMULATION RESULTS

In this study we have used the simulation
experiments to compare the proposed algorithm and other
existing algorithms. Simulation was done on Pentium IV
512MB PC in C + +. The following parameters have been
used for this study. Size or Routing table = R/3; Number
of generation = 150; Tournament size = 2; Group size =
35% of Network size.

Population size = 33; Crossover Probability = 0.52;
Mutation Probability = 0.1.

Delay associated with link 1s randomly chosen with
inrange (0. 55 m), the cost of each link is generated within
range (0. 350), bandwidth is within range (50-100 kbps)
and A 1s 45 m. We have randomly selected the network
topology to perform the simulation. For simulation random
network of size 20 to large sized network of up to 450 was
generated. Performance of our protocol is compared with
NGA (Bao et al., 2006), GAMDR (Leung et al., 1998),
NDA (Naryaez et al, 2000), SGA (Vyyalakshmi and
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Radhakrishnan, 2005) (our previous algorithm) heuristics.
Our performance metric measures include convergence
rate, cost, end-to-end delay, search success rate and
dynamic request success rate. In all the sunulation
experiments, the average connection degree of the node
considered is 6.

Figure 5 and 6 show the convergence rate of our
protocol. Cantu (2000) suggests that the number of fitness
function evaluations directly measure the excellence of
convergence only if all GAs converge to identical of
quality solutions. In Fig. 5 it 13 observed that the
proposed algorithm extubits fastest convergence rate than
other algorithms for various group sizes. Other algorithms
require more number of fitness function evaluations than
our method for obtaming the similar selution. IGADQoS
quickly converges to optimal solution than existing
algorithms. Increasing the number of generation leads to
better fitness values. From Fig. 6 it is observed that our
proposed algorithm gives optimal values and did not
converge to same constant value prematurely that 15 with
in few generations. After 60th generation our protocol
gives optimal converged solution. Because Local heuristic
function increases the convergence rate. For Fig. 6 the
network size 1s 200 (Group size 13 70).

Figure 7 shows the comparison of tree cost
performance of our algorithm with existing algorithms. As
shown mn Fig. 6 and. 7, IGADQoS produced better tree
cost performance for large sized networks also. For Fig. 7
and. 8, multicast group size is 35% of network size. As
shown in Fig. 8, ITGADQoS has produced better end-to-
end delay than SGA. This 15 because many routes which

900 1

700 '\*’\
g * - + .
B
a GO0 -

- & ] k- F £ 3 -
500 -
400 T T T T T 1
30 60 90 120 150 180 210
Number of generation

Fig. 5: Convergence rate in terms of Fitness function
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Fig. 7. Comparative analysis of Tree cost

satisfy the required delay constraint exist in the routing
table and that optimized routes are used for multicast tree
construction.

Search success rate 1s nothing but how often an
algorithm could find a route that can satisfy all the QoS
constraints. Figure 9 shows the search success rate of our
method for different multicast group sizes. Our algorithm
produced an average search success rate of 99.5% for
both small sized and large sized networks. Next we have
analyzed the dynamicity of our protocol by measuring the
dynamic request success rate. Dynamic request success
rate (D,.,) of our protocol for different delay constraints is
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shown in the Fig. 10 Dynamic request Success rate is the
ratio of total number of dynamic requests success to the
total munber of dynamic requests. In Fig. 10 the multicast
group size considered 13 60 and bandwidth constramt 1s
80 Kbps. When the delay constraint (A) is around 50 m
then the D, is about 91%

Figure 11 shows the dynamic property of our
protocol for different sized networks. In Fig. 11 the degree
constraint is 45 m. Tt was observed that 91% of dynamic
request success rate is achieved. This is because it uses
the routes from already optunized routing table, which was
created during the first stage of our protocol. Since
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Fig. 10: D, Versus delay constraint
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Fig. 11: Dynamic property of our algorithm

improved GA is used in both unicast and multicast many
routes which satisfy the required delay constraint exist in
the routing table.

From Fig. 12, it 1s observed that tournament
selection method gives much better result than the
roulette wheel and truncation selection methods. The
experimental results are shown in the graph. In case of
truncation selection method, the objective function values
are quite high through out the generations and do not
lead to convergence (high variations in the objective
function values thorough out the generations). In case of
roulette wheel method, the average objective function
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Fig. 12: Comparison of objective function values using
different selection methods

values are quite hugh but leads to convergence. But
tournament selection method converges during 60th
generation and average objective function values are
better than truncation and roulette wheel selection
methods.

CONCLUSION

This study has proposed an improved genetic
algorithm to solve the Dynamic QoS multicast routing in
Multimedia applications. Our proposed algorithm
optimizes the cost and end-to-end delay simultaneously.
The results obtained from the simulation prove that it has
minimal cost, minimal end-to-end delay and better
convergence rate than the conventional algorithms. It also
has high search success rate and dynamic request
success rate. Heuristic local search function embedded in
our protocol helps to increase the convergence speed and
to get the optimized results. Our proposed algorithm also
adapts to dynamic changes (both dynamic group
membership and node/link failure). Our experimental result
shows that tournament selection method is the best
choice for dynamic QoS routing problem. Simulations also
prove that our IGADQoS is relevant and efficient even in
large size networks. In the forthcoming months, we plan
to apply this technique to wireless and MANETS.
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