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Abstract: Eleman Neural Network (ENN) have been efficient identification tool in many areas (classification and
prediction fields) since they have dynamic memories. However, one of the problems often associated with this
type of network 1s the local mimma problem which usually occurs m the process of the learming. To solve this
problem and speed up the learning process, we propose a method to add a term in error function which related
to the neuron saturation of the hidden layer for Elman Neural Network. The activation functions are adapted
to prevent neurons in the hidden layer from stucking mto saturation area. We apply the new method to the
Boolean Series Prediction Questions to demonstrate its validity. Simulation results show that the proposed
algorithm has a better ability to find the global minimum than back propagation ENN algorithms within

reasonable time.
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INTRODUCTION

Elman Neural Network (Elman, 1990) 1s a type of
partial recurrent neural networl, which consists of two-
layer back propagation networks with an additional
feedback connection from the output of the ludden layer
to its mput layer. The advantage of this feedback path 1s
that it allows ENN to recognize and generate temporal
patterns and spatial patterns. This means that after
training, nterrelations between the current mput and
mternal states are processed to produce the output
and to represent the relevant past mformation in the
internal states (Stagge and Sendhoff, 1999). As a result,
the ENN has been widely used in various fields from a
temporal version of the Exclusive-OR function to the
discovery of syntactic or semantic categories in natural
language data.

However, since ENN uses Back Propagation (BP) to
deal with the various signals, it has proven to be suffering
from a sub-optimal solution problem (Pham and Liu, 1993;
Shi et al., 2003). At the same time, for the ENN, it is less
able to find the most appropriate weights for ludden
neurons and often get into the sub-optimal areas because
the error gradient is approximated (Smith, 2004).
Furthermore, The efficiency of the ENN is limited to low
order system due to the msufficient memory capacity
(Adem and Seref, 2006). Therefore, several approaches
have been suggested in the literature to increase the
performance of the ENN with simple modifications

(Gao et al, 1996, Chagra et al., 1998, Huang et al., 2004).
Also these improved modifications attempt to add other
feedback commections factors to the model which can
increase the capacity of the memory in order to enhance
the memroy of the networls, but it can not avoid the local
minima problem essentially. So the local minimum problem
still 18 a serious problem and usually occurs m various
applications.

In this study, we explain the neuron saturation in the
hidden layer as the update disharmony between weights
comnected to the hidden layer and output layer from a
new angle of view. Then we propose an improved ENN
algorithm to help the network to avoid the local minima
problem caused by such disharmony. The new proposed
method 1s to ncrease the memory capacity of the network
by finding the essential question and resolving it rather
than adding other comnection among layers like the
references listed above. Besides, the modified error
function did not require much additional computation and
did not change the network topology. Fmally, simulation
results are presented to substantiate the validity of the
proposed algorithm by comparing with original ENN
(Elman, 1990) algorithm and improved ENN algorithm
(Pham and Liu, 1993). Since a three-layered network is
capable of forming arbitrarily close approximation to any
continuous nonlinear mapping (Schreiber et al., 1990;
Homik et al., 1989) we use three layers for all traming
networks.
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Fig. 1: The structure of the ENN

ENN'S STRUCTURE

Figure 1 shows the structure of asimple ENN. In
Fig. 1, after the hidden units are calculated, their values
are used to compute the output of the network and are
also all are stored as "extra mputs" (called context umit) to
be used when the next time the networls is operated. Thus,
the recurrent contexts provide a weighted sum of the
previous values of the hidden umits as input to the hidden
units. As shown in Fig. 1, the activations are copied from
hidden layer to context layer on a one for one basis, with
fixed weight of 1.0 (w = 1.0). The forward connection
weight 15 traimned between hidden units and context umts
as well as other weights. If self-comnections are
introduced to the context unit when the values of the self-
comnections weights (@) are fixed between 0.0 and 1.0
(usually 0.5) before the training process, it 1s an improved
ENN as proposed by Pham and Liu (1993). When weights
(a) are 0, the network is the original ENN.

Figure 2 is the internal learning process of the ENN
by the error back-propagation algorithm. From Fig. 2 we
can see that traimng such a network 1s not straightforward
since the output of the network depends on the inputs
and also all previous inputs to the network. So, it should
trace the previous values according to the recurrent
connections (Fig. 3).

Figure 3 shows that a three layers ENN where a back
propagation is used to calculate the derivatives of the
error (at each output unit) by unrolling the network to the
beginning. In Fig. 3, when the next mmput (tune t) 1s
represented, the input source of the hidden layer inclues
two parts which are input part from outside and recurrent
part from context umt Moreover, the comtext units
contain values which are exactly the hidden umit values at
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Fig. 3: Unroll the ENN through time

time t-1 and t-2... untill the initial start state. Thus these
context units provide the network with memory through
tracing all the process of the learning by continuous
iteration. Therefore, the ENN network 1s converted imto
a dynamical network that is efficient in the use of
temporal information of the input sequence, both for
classification as well as for prediction (Lawrence ef af.,
2000, Commer et al., 1994). However, the calculation of the
functional derivatives is not straightforward and it leads
the network easily to a sub-optimal situation.

THE PROPOSED ALGORITHM

In the original ENN, usually the sigmoid function is
used to process the network. Our proposed method is
based on the same understanding of the current sigmoid
function shown as Eq. 1.

(1

f(x)=

-x

1+e

The derivative of the sigmoid function is shown as
Eq 2.

f1(x) = g(1 - £(x)) *f(x) 2

Since we use the Sigmoid function, saturation
problem 1s mevitable. Such a phenomenon 1s caused by
the property of the activation function (Cybenko, 1989).
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The shape curve of the sigmoid function is shown as
Fig. 4. In Fig. 4, we can see there are two extreme
areas A and B which are called saturation fields and the
scope of the value for the sigmoid function is between
Oand 1.

From Fig. 4 we can see that once the activity level of
all hidden layer approaches the two extreme areas A and
B (the outputs f'(x) of all neurons are in the extreme value
close to 1 or 0), '(x) will almost be 0. For the ENN, the
change mn weights 15 determined by the sigmoid derivative
(Eq. 2) which can even be as small as 0. So for some
traiming patterns, weights comnected to the ludden layer
and the output layer are modified inharmoniously, that is
all the hidden neuron's output are rapidly driven to the
extreme areas before the output start to approximate to the
desired value. Thus the hidden layer will lose their sense
to the error. The local minimum problem may occur.

To overcome such a problem, the neuron output in
the output layer and those in the hidden layer should be
considered together during the update
procedure. Motivated by this, we add one term
concerning the outputs m the hidden layer to the
conventional error function for the BP algorithm. In such
way, welghts comnected to the hidden layer and the
output layer could be medified harmoniously. And we
apply the algorithm to the ENN to avoid the local mimima
problem caused by this disharmony.

For the original ENN algorithm, the error function is
given by

iterative

3)

Il
11

Where p indexes over all the patterns for the traming
set in the time interval (0, T). In our study, the time
element is updated by the next input of the pattern from
traiming set. So we can get the follwing equation.

T P
E,=>E,=YE, (4)
t=0 p=1
E, is defined by
RSP
E, :Ez(tpj _091)2 (3)
1

Where t° is the target value (desired output) of the
j-th component of the output for pattern p and o, is the
j-th unit of the actual output pattern produced by the
presentation of input pattern p in the time k and j indexes
all the output units.

To minimize the error function E,, the ENN algorithm
uses the following delta rules as back propagation
algorithm:
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Fig. 4: The curve of sigmoid function

(6)

Where w, is the weight connected between neurons
i and j and ., is the learning rate. For the proposed ENN
algorithm, the modified error function is given by:

Enew = EA + EB

1 P

>t —0,)
2; il yl

+%Z(Z {t, =0, ) % Z(ym -0.5)%)

9

We can see that the new error function consists of
two terms, E, is the conventional error function and Ej is
the added term. Where y, is the output of the j-th neuron
1n the lidden layer and H 15 the number of newrons in the
hidden layer.

i(yw -0.5)° (8)

Equation 6 can be defined as the degree of saturation
1n the hidden layer for pattern p. This added term 1s used
to keep the degree of saturation of the hidden layer small
while E, is large (the output layer have not approximate
the desired signals). While the output layer approximates
to the desired signals, the affect of term Ep will be
diminished and becomes zero eventually. Using the above
error function as the objective function, we can rewrite the
update rule of weight w; as:

éE,
aw

71

O,

B
0w,

@)

AWJl =-1,

For pattern p, the derivative E,/w, can be computed
as the same as the conventional error function does. Thus
we can easily get Ey/w; as following:



Int. J. Soft Comput., 2 (4): 549-554, 2007

For weights connected to the output layer:

poJ

OEL  OE

S -0.5)° (10)
v ow g(ym )
For weights connected to the hidden layer:
GEL  CEE - 2 dy
= -0.5) + t.—o -05)—%
v, ow ;(ym ) Zj:( b~ 0 (v —0.5) ow
(1
Because y,; = f(net) and net; = w;0,, so
%y = Oyy omet, =f'(net)o (12)
Ow, Onet  ow, "

Where o,;is the i-th input for pattern p and net; is the
net mnput to neuron j produced by the presentation of
pattern p.

SIMULATIONS

In order to verify the effectiveness of the modified
error function for ENN, we compare its performance with
those of the original ENN algorithm (Elman, 1990) and
improved ENN algorithm (Pham and Liu, 1993) on a series
of BSPQ problems including "11", "111" and "00"
problems. In order to mamtain the similarity for all
algorithms, the learning rate of .,=;=0.9 are used in all
experiments where as the weights and thresholds are
mutialized randomly from (0.0, 1.0).

Two aspects of training algorithm performance

("success rate” and "iterative") are assessed for each
algonthm. Sinulations were inplemented i Visual C++6.0
on a Pentium4 3.0GHz (1GB)). A training run was deemed
to have been successful if the error precision E was
smaller than the requested 0.1 or 0.01, For all the trials, 200
patterns were provided to satisfy the equilibrium of the
training set and at the same time to ensure that there was
enough and reasonable running time for all algorithms.
The upper limit iterative were set to 2 0000 for three
algorithms.
The "11" questions: Boolean Series Prediction
Questions 1s one of the problems about time sequence
prediction. First let us see the definition of the BSPQ.
Suppose that we want to train a network with an P input
and T targets as:

P=10111011
and
T=00011001
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Here T is defined to be 0, except when two 1's occur
in P 1in which case T is 1 and we called this problem as
"11" problem (one kind of the BSPQ ). Also when "00"or
"111" (two O's or three 1's) occurs, it is named as the "00"
or "111" problem.

Furstly, we deal with the "11" question and analyze
the effect of the memory in the context layer of the
network. In this paper we defne the prediction set P
randomly as stated in the 20's figures below.

Pb=11101000101101110011

Andwe used the well trained network (error precison
1s attained) to do the final prediction about sequence P, to
test the prediction capability of it. Table 1 compares the
siunulation results of the three methods, we can see that
our proposed algorithm not only almost 100% succeeded
but quickly got the convergence pomt Of course, the
original ENN was able to predict the requested input test,
but the traimng success rate was slow. Furthermore, it
succeeded only 73% when E was set to 0.1. And the
improved ENN has increased the abality of the dynamic
memorization of the network because of the self-
commection weights element (a = 0.5). Although improved
ENN could accelerate the convergent of the learning
process (time was less than original ENN), it could not
essentially avoid the local minima problems because of
the characteristics of the gradient descent.

Figure 5 shows the learning characteristics for the
three methods with the same 1mtialization weight for the

Table 1: Experiment results for the “11” question with 5 neurons in the
hidden layer
Success rate(100 trials)

Average iterative

Methods
{1-5-1 network) E=01 E=0.01 E=01 E=10.01
Original ENN 73% 63% 260 331
improved ENN 83% 82% 198 251
propose ENN 100% 99% 89 135
3.59
3
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Be |
1y
1.54 \ \ Proposed ENN
11
{ A\
\i
os] N
\ \J B Improved ENN
et
) | 1 | 1 1
1] 50 100 150 200 250 300
Iterative

Fig. 5: Training error curve of the three ENN algorithm
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network (1-5-1), when E was set to 0.01. From the
simulation results we can see that the proposed ENN
algorithm only needed about 80 iteration steps to be
successful, but the original ENN and the improved ENN
algorithm do not have goal value and gets trapped into
local minima point A and B, respectively. The improved
ENN have accelerated the learning process but it could

17 _
0.81 — Prediction ling
—T1 line
8 0.6
0.4
0.21
c 1 ] 1 1
5 10 15 20
T1
Fig. 6: Expected output T, and prediction result with
proposed ENN
Table 2: Experiment results for the “11” question with 7 neurons in the
hidden layer
Successrate(100 trials)  Average iterative
Methods
(1I-7-1networky E=0.1 E=001 E=01 E=0.01
Original ENN 82% 70% 355 509
Improved ENN 91% 85% 278 454
Proposed ENN 100% 97% 222 329

not escape the local minima problem. However, with our
proposed ENN algorithm it could get the convergent poit
by avoiding the local mmima.

For the prediction set P,, we can get
corresponding expected results (for “11” question) with
below T,.

its

T,=01100000000100110001

Figure 6 1s the simulation prediction result of P, for
the "11" question with our proposed ENN algorithm. In
Fig. 6, the two lines represented the T, line and the
prediction results line, respectively. From Fig. 6 we can
see that the tolerance for every pattern was less than 0.05.
So the network has enough ability to do the prediction of
the given task as desired.

For the same problem, as we gradually increased the
mumbers of the neuron of the hidden layer, the original
ENN and improved ENN have encreased the success rate
of the learning, however, with our proposed ENN it was
able to get more high success rate within less iteration
steps by enhancing the search'capacity of the network.
The results are shown in Table 2.

The "111" and "00" questions: As we change rules of
the mput sequence, we can continue to testify the validity
of our proposed ENN algorithm. The specific parameter
set of the network was same as the "11" questions.

Table 3 is the specific comparison results from the
"111" question for the three algorithms. From Table 3 we
can see that, for the network (1-7-1), the success rate of

Table 3: Experiment results for the “111” question with different neuron units in the hidden layer

Success rate (100 trials)

Average iterative

Structure of

the netwark Items/Methods E=0.1 E=0.01 E=0.1 E=0.01

1-7-1 network Original ENN 50% 45% 789 1031
Improved ENN 81% 71% 623 822
Proposed ENN 90% 85% 370 584

1-10-1 network Original ENN 72% 70% 669 801
Improved ENN 91% 79% 571 633
Proposed ENN 100% 98% 421 530

1-12-1 network Original ENN 81% 7% 845 1002
Improved ENN 93% 86% 609 799
Proposed ENN 100% 98% 479 700

Table 4: Experiment results for the “00” question with different neuron units in the hidden layer

Success rate (100 trials) Average iterative

Structure of

the netwaork Items/Methods E=0.1 E=0.01 E=0.1 E=0.01

1-5-1 network Original ENN 83% 76% 333 417
Improved ENN 92% 86% 220 319
Proposed ENN 100% 97% 93 152

1-7-1 network Original ENN 87% 75% 493 802
Improved ENN 93% 88% 395 643
Proposed ENN 99% 97% 201 305

1-10-1 network Original ENN 90% 85% 600 887
Improved ENN 94% 92% 578 780
Proposed ENN 100% 97% 500 662
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the proposed ENN was lower (only 90% when the error
criterion was set to 0.1) because of the insufficient
capacity with less hidden unit nodes. As the umt nodes
of the hidden was increased, our proposed ENN algorithm
could almost attain 100% succeess than original ENN
and improved ENN algorithms. The proposed ENN has
successfully escaped from the local minima problems
through adjusting the saturation area of the sigmoid
function.

Table 4 1s the specific comparison results from the
"00" question for the three algorithms. From Table 4 we
can see that as the complexity of the problem was
mncreased, the training time also increased for three
algorithms, but our proposed algorithm was much more
effective on the complicated BSPQ problem for the
requested error criterion.

Although the BSPQ problem is only a simple
prediction task for the ENN, the other problems such as
the detection of the wave amplitude can also be repeated
with the proposed algorithgm to test the effectiveness.
We feel there 1s a posibility for the proposed algorightmn
to be applied as well as m the Jordan network or other
partially modified recurrent neural networks since the
structure of the ENN and the above mentioned networks
are almost similar.

CONCLUSION

In this study, we proposed a modified error function
with two terms for ENN algorithm. This modified error
function was used to harmomze the update of weights
connected to the hidden layer and those connected to the
output layer mn order to avoid the localmimma problem in
the training learning process. Finally, the algorithm has
been applied to the BSPQ problems including "11", "111"
and "00" problems. Simulation results shows that the
proposed algorithm 1s more effective at getting rid of local
minima problem with less time and getting good prediction
results than original ENN algorithm and improved ENN
algorithm. Although the proposed algorithm 1s only been
experimented with ENN, we somehow feel that there are
posibility for it to be mplemented m Jordan network or
other partially modified recurrent neural networks due to
the similarities of the structure. This area of research
would be one of our foregoing efforts in expanding the
effectiveness of local search algorithm mn networks similar
with ENN.
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