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Abstract: This study proposes a novel approach based on genetic algorithm optimized fuzzy logic controller,
for the design of a temperature control process, capable of providing optimal performance over the entire
operating range of the process. Since an optimum response of the Fuzzy Controller can be expected only for
a limited range of inputs, here tuning the mput , output gamns and the scaling factor are done for other ranges
of inputs. The proposed control system combines the advantages of Genetic Algorithm and Fuzzy Logic
Control schemes. In order to evaluate the performance of the proposed control system methods, results from

simulation of the process are presented.
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INTRODUCTION

Fuzzy logic control systems, which have the
capability of transforming linguistic information and
expert knowledge into control signals, as explained by
Lee (19904, b) are currently being used in a wide variety of
engineering applications. The sunplicity of desigming
these fuzzy logic systems has been the main advantage of
ther successful implementation over traditional
approaches such as optimal and adaptive control
technicues. Genetic Algorithm can be viewed as a general
purpose optimization methed and have been successfully
applied to search, optimization and machine learming
tasks. Karr and Gentry (1993) proved in their study that to
provide practical solutions to such complex problems as
those found in minerals and chemical industries GA
represents a technique that acts as a valuable resource for
the design of FL.C’s.

The application of GA’s to FLC holds a great deal of
promise in overcormng two of the major problems in fuzzy
controller design., design time and design optimality
Previous work has been done mainly in 2 areas, learning
the fuzzy rules and learning membership functions.
Shimojima et al. (1995) used GA to tune a type of Radial
Basis Function (RBF) based fuzzy model, with only
three fuzzy memberships for each variable. Abdollah and
McCormic (1995) has shown that a GA’s robustness
enables it to cover a complex search space in a relatively
short period of time while ensuring optimal solution.

Because of this capability, GA’s are a natural match
for fuzzy controller. Procyk and Mamdanmi (1979)
introduced an iterative procedure for altering membership
function using GA to improve the performance of an
FLC, but it 18 heuristic and still subjective. Jang (1992)
developed a self-learning FL.C based on a neural network
trained by temporal back-propagation. Rajani and Nikhil
(1999) developed a robust self tuning scheme for fuzzy PI
and PD controllers. Similarly, GA’s are also currently
being investigated for the development of adaptive or
self-tuning fuzzy logic control systems.

It 15 shown in this study, that the performance of
fuzzy control systems can be improved by incorporating
a GA based gain tuning. The GA facilitates the derivation
of the optimal input and output gains based on either a
random selection or on thewr mitial subjective selection.
The design process mnvolves determimng parameters such
as input and output scaling gains. For instance, if the
range of parameters is given, then the process includes
encoding the ranges to a bit code string , if the range of
parameters 15 unknown, the GA can still determine the
optimal gains, by defining a wider solution parameter
space.

PROBLEM FORMULATION

The continuous-time temperature control system is
described by Tanomaru (1992) as
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Where t denotes time, y(t) is the output temperature
m "C, f£(t) 1s the heat flowing nward the system, Y, 1s the
room temperature (constant, for simplicity), C denotes the
system thermal capacity and R is the thermal resistance
between the system borders and surroundings. Assuming
that R and C are essentially constants, obtaining the pulse
transfer function for the system m (1) by the step
regponse criterion results in the discrete-time system
vk +1) =a(Ts)y(k) + b(T:)u(k) (2)
Where k 1s the discrete-time ndex, u(k) and y( k)
denote the system input and output, respectively and T,
is the sampling period. Denoting by « and B some
constant values depending on R and C, the remaimung
parameters can be expressed by

alTH=e ™™  and

—a(Ts) 3)

b(Ts)= E(1 -e h]
a

The system described in Eq. 1-3 was modified to
mclude a saturating non-linearity so that the output
temperature cannot exceed some limitation.

The simulated control plant is described by

b(T:)

y(k + 1) = a(Ts)y(k) + Wu(k) + [1 - a(Ts)]YU (4)
+ [~

Where, a(T,) and W(T,) are given by (3). The
parameters for simulation are ¢ = 1.00151E-4, p =
8.67973E -3, y = 40.0 and Yo = 25.0°C, which were
obtained from a real water bath plant. The plant input u(k)
was limited between 0 and 5 volts and it is also assumed
that the sampling period 1s limited by

T,=10s (5

With the chosen parameters, the simulated system 1s
equivalent to a Single Input Single Output (SISO)
temperature control system of a water bath that exhibits
linear behavior up to about 70°C and then becomes
nonlmear and saturates at about 80°C. The Schematic
Diagram of the real water bath process is depicted as in
Fig. 1.

A personal computer reads the temperature of the
waterbath through a link consisting of a diode- based
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Fig. 1: Water bath control system

temperature Sensor Module (3M) and an 8- bit Analog to
Digital converter. The plant input produced by the
computer 18 limited between 0 and 5 and controls the duty
cycle for a heater via a Pulse-Width-Modulation (PWNM)
scheme.

DESIGN PROCEDURE

Main idea of the FLC: In this study, we present the main
ideas underlying the FLC. To highlight the issues
wvolved, Fig. 2 shows the basic configuration of an FLC,
taken from Lee (1990a) which comprises four principal
componernts:

A fuzzification mterface,
A knowledge base,

A decision making logic,
A defuzzification interface.

Fuzzification interface: Fuzzification is related to the
vagueness and imprecision in a natural language. In fuzzy
control applications, the observed data are usually crisp.
Since the data manipulation in an FL.C is based on fuzzy
set theory, fuzzification 18 necessary m an earlier stage.
The fuzzification module performs the following functions.

It measures the values of mput variable(s).

Performs a scale mapping that transfers the range of
values of input variable(s) into corresponding
umverse of discourse.

Performs the function of fuzzification that converts
input data into suitable linguistic values.

Knowledge base: The knowledge base comprises
knowledge of the application domain and the control
goals. It consists of a “data base” and a ‘linguistic control
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Fig. 3: Gaussian membership function

rule base’. The database provides necessary defimtions,
which are used to define linguistic control rules and fuzzy
data manipulation in an FL.C.

Decision making logic: The decision-making logic is the
kernel of an FL.C. Tt has the capability of simulating human
decision-making based on fuzzy concepts and of inferring
fuzzy control actions employing fuzzy implication and the
rules of mference in fuzzy logic.

Defuzzification interface: The defuzzification interface
performs the following functions.

A scale mapping, which converts the range of values
of output variables into corresponding universe of
discourse.

Defuzzification, which yields a non-fuzzy control

action from an inferred fuzzy control action.

Membership functions: For defining the fuzzy set here we
have used a functional defimtion of membership function.
Such functions are used in FL.C because they lead to
themselves to manipulation through the use of fuzzy
arithmetic. The functional defimtion can readily be
adapted to a change in the normalization of a universe.
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The Gaussian membership function shown in Fig. 3, is
used for defining the linguistic variables involved in the
construction of rule base of the FLC.

Rule base structures: In an FI1.C, the dynamic behavior of
a fuzzy system is characterized by a set of linguistic
description rules based on expert knowledge. The expert
knowledge is usually of the form.

TF (a set of conditions are satisfied) THEN (a set of
consequences can be inferred).

Since the antecedents and the consequents of these
IF-THEN rules are associated with fuzzy concepts
(linguistic terms), they are often called fuzzy conditional
statements. Tn our terminology, a fuzzy control rule is a
fuzzy conditional statement in which the antecedent is a
condition in its application domain and the consequent is
a control action for the system under control.

Basically, fuzzy control rules provide a convenient
way for expressing control policy and domain knowledge.
Furthermore, several linguistic variables might be
involved in the antecedents. Since in our case we have
used two inputs and one output for the controller, our
fuzzy system is denoted as Multi Input Single Output
(MISQ) system and the fuzzy control rules have the form:

Ryifxis A andy is B, then z is C,
Ry ifxis A, and y is B, then z is C,
Ry ifxis A, and y is B, then zis C,

Where x, y and z are linguistic variables representing
two process state variables and one control variable; A,
B, and C; are linguistic values of the linguistic variables x,
y and z in the universes of discourse U, V and W,
respectively, with 1 = 1,2; n and an mnplicit sentence
connective also links the rules into a rule set or,
equivalently a rule base.

Method of defuzzification: Though various methods are
there for converting the inferred fuzzy control action to
real value, we have used Centroid defuzzification method,
a strategy which generates the centre of gravity of the
possibility of a control action.

The following are the advantages of Centroid method
of defuzzification over the other methods as per Lee
(1990b):

» It yields superior results.
Tt yields a better steady state performance and
Yields lower mean square error.

Fuzzy inference systems: Mamdani type Fuzzy Inference
system is used and the rule base framed by .Chih-Hsun
Chou (2006) for the FLC is shown in Table 1, wherein E
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Table 1: Inference niles for mamdani type flc

E

AE CO NB NM NS Z PS PM PB
NB z NS NS NM NM NB NB
NM Ps Z NS NS NM NM NB
NS Ps PS Z NS NS NM NM
Z PM PSS PS Z NS NS NM
PS PM PM PS PS z NS NS
PM PB PM PM PS Ps Z NS
PB PB PB PM PM PS PS z

and AE refer to the two inputs error and change m error
to the FL.C and CO denotes Controller Cutput. By trial and
error approach 25 rules were considered out of forty nine
rules for constructing the controller.

Genetic algorithm for input and output gain tuning:
Genetic Algorithms (GAs) are adaptive heuristic search
algorithms premised on the evolutionary ideas of natural
selection and genetic. The basic concept of GAs 1s
designed to simulate processes 1n natural system
necessary for evolution, specifically those that follow the
principles first laid down by Charles Darwin of survival of
the fittest.

As such they represent an mtelligent exploitation of
a random search within a defined search space to solve a
problem.

Though GA can be used as a flexible method for
mput space partitiomng, it has the major disadvantage of
consuming much time, we have proposed here to use GA
to tuning of input output gains based on Wang et al.
(2002) so that the convergence will be quicker and better
result will be obtained compared to the plant without GA.
Grain scheduling using GA’s is shown in Fig.4, wherein G,
and G represents proportional error gain and derivative
error gains, respectively in the input side of FL.C and G, is
the output scaling gain.

Characteristics of genetic algorithms: GA’s perform on
the coding of the parameters and not on the exact
parameters, therefore, it does not depend on the
continuity of the parameter nor the existence of
derivatives of the functions as needed in some
conventional optimization algorithms.

The coding method allows GA’s to handle multi
parameters or multi model type of optimization problems
easily, which is rather difficult or impossible to be treated
by classical optimization methods.

The population strategy enables GA to search the
near optimal solutions from various parts and directions
within a search space simultaneously. Therefore, it can
avold converging to the local mimmum or maximum points
better.

GA processes each chromosome independently and

makes it highly adaptable for parallel processing. Tt needs

GA gain scheduler

Fuzzy logic e \\_>
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A
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X

Fig. 4: Structure of the GA tuned FLC

no more than only the relative fitness of the
chromosomes; thus, it is rather suitable to be applied to
systems that are ill defined. GA’s can also work well for
nondeterministic systems or systems that can only be
partially modeled. GA’s use random choice and
probabilistic decision to guide the search, where the
population improves toward near optimal points from
generation to generation.

Basic evolutionary processes: GA’s consist of three basic
operations reproduction, crossover and mutation which
muimic the natural evolutionary processes.

Reproduction is the process where members of the
population reproduced according to the relative fitness of
the individuals, where the chromosomes with higher
fitness have lgher probabilities of having more copies in
the coming generation. There are a mumber of selection
schemes available for reproduction, such as “roulette
wheel,” “tournament scheme,” “ranking scheme,” etc.
referred by Teo and Khalid (1999).

Crossover in GA occurs when the selected
chromosomes exchange partially their information of the
genes, Le., part of the string 1s mterchanged within two
selected candidates.

Mutation 1s the occasionally alteration of states at a
particular string position. Mutation is essentially needed
in some cases where reproduction and crossover alone
are unable to offer the global optimal solution. It serves as
an insurance pelicy, which would recover the loss of a
particular piece of information

Parameters used in GA: The GA used here 15 called
simple GA. We consider the problem to find the mitial
values of PD gains. In order to apply GA to find the initial

values of PD gains, we use GA parameters as given in
Table 2.

Procedural steps to do a simple GA:

»  Imitialize population with randomly generated
individuals and evaluate the fitness value of each
individual.

s Select two members from the population with
probabilities proportional to their fitness values.
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Table 2: Genetic parameters used in gain scheduling

GA Operators Values
Number of variables(N) 3
Population size 10
Range of error(c) 0.05-0.07
Range of change in error (ce) 0.05-0.07
Range of output gain(G, ) 440-460
Number of bits for ¢ and ce 20
Number of bits for output gain G, 40
Crossover probability 0.8
Mutation probability 0.05
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Fig. 5. Performance of the simulated system using
conventional fuzzy logic controller(Ts=25s)
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Fig. 6: Performance of the simulated system using GA
tuned fuzzy logic controller (T,=25s)

Apply cross over with a probability equal to cross
over rate.

Apply mutation with a probability equal to mutation
rate.

Repeat the above three steps until the stopping
criterion is met.

SIMULATION STUDY

Using the mathematical model of the real water bath
plant our proposed approaches has been tested. From the
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Genetic Algorithm tuned fuzzy logic controller
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initial condition y(0) = Yo = 25°C, the target is to follow a
control reference set to 35.0°C for 0 <=t <=30 min, 45.0°C
for 30 <t <=60 min, 55.0°C for 60 <t <=90 min., 65.0°C for
90 <t <=120 min., 75.0°C for 120 <t <=150 minand 80.0°C
for 150 <t <=180 min with sampling time T, =25 s.

The performances of the simulated water bath
temperature process using the proposed approaches for
T,=25s are shown in Fig. 5 and 6.

Sampling time Tg is varied and the performance
of the system is observed. Figure 7 and 8 show the
response when Tg is set as 75s. When Tg is set as
25s, the response tracks the step input almost ideally.
But when T is increased, response shows deviations
from the desired step input and large oscillations are
seen. We have tried and got results for various sampling
times.
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RESULTS

The comparison of the proposed approaches 1s made
by calculating the performance index absolute error over
the entire simulation period and is shown in Table 3.
Results show that the absolute error is minimized in the
design using GA tuned fuzzy controller compared with
comventional fuzzy approach and self tuned fuzzy
controller.

Table 4 shows the comparison of the proposed
approaches choosing percent peak overshoot as the
performance index. GA tuned FLC gives less percentage
overshoot for all temperature ranges.

Table 5 and 6 shows the comparison of the
proposed approaches choosing steady state error
and settling time as the performance indices,
respectively.

Table 7 shows the values of Gain scheduling
parameters obtained in GA for a maximum generation
of 10.

Table 3: Comparison of absolute error among the proposed methodologies

T; =25s
Methodology Absolute error
Conventional filzzy 306.2182
GA-tned fuzzy 302.8760

Table4: Comparison of peak overshoot among the proposed methodologies
for different temperature ranges T =25s
Temperature in degree centigrade  Conventional fuzzy  GA tuned fiizzy

25-35 1.9739 0.6517
35-45 1.3515 0.9771
435-55 0.5205 0.3166
55-65 0.6715 0.4490
65-75 0.6199 0.5577
75-80 0.2518 0.1111

Table 5: Comparison of steady state error among the proposed
methodologies for different temperature Ranges Ty, =255

Temperature in Conventional fuzzy GA tuned fuzzy
degree centigrade Controller Controller
25-35 -0.2198 -0.0325

35-45 0.0261 0.0065

45-55 -0.0231 -0.0277

55-65 -0.0518 -0.3080

65-75 0.0399 -0.0841

75-80 0.0478 0.0479

Table 6: Comparison of settling time among the proposed methodologies
for different temperature ranges Ty =255
Temperature in degree centigrade  Conventional fuzzy  GA tuned fuzzy

25-35 4.1667 4.1667
35-45 4.1667 4.1667
435-55 4.1667 4.1667
55-65 4.1667 4.1667
65-75 4.5833 5

75-80 2.5000 2.9167
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Table 7: Gain scheduling parameters in ga for a maximum generation of 10

Ts =255

GAING , GAIN Gy GAINU J

0.0690 0.0546 452.1369 3.2394
0.0597 0.0678 455.2419 3.2448
0.0591 0.0504 456.4281 3.2475
0.0589 0.0623 455.8387 3.2830
0.0684 0.0648 443.5253 3.2424
0.0581 0.0687 458.3381 3.2701
0.0582 0.0679 441.1578 3.3023
0.0571 0.0663 440.1972 3.2834
0.0528 0.0541 443.9744 3.2390
0.0513 0.0675 448.7844 3.2392

CONCLUSION

This study has presented a comparison performance
of a conventional fuzzy and a GA tuned fuzzy controller
where all of its gain parameters can be simultaneously
tuned for a water bath temperature process. By
appropriate coding of the FL.C parameters, it can achieve
self-tuning properties from an imtial random state. By
employing dynamic crossover and mutation probability
rates, the timing process by GA was further improved. In
the simulation study, the control performance has been
compared to a GA tuned FLC controller and the
conventional FL.C. Though it can be argued that in the
proposed FLC, before GA can be used to optunize its
parameters, initial encoding and settings are required,
such procedures are somewhat relatively simpler and more
systematic than heuristic.

In addition, this study shows the flexibility of the
proposed methodology in applying the different types of
performance mdices (Le., absolute error, steady state
error, percentage overshoot etc.) for our simulated water
bath process. The controller is adaptive for all temperature
conditions and significantly improves the performance of
the system, which are the effectiveness of the proposed
approach. In addition to the above mentioned facts since
gains are scheduled, the system will be a stable one
whatever may be the gain values applied both on input
and output sides and 1t was observed that the applied GA
tuned FLC performed relatively better than the
Conventional fuzzy logic controller.
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