M International Journal of Soft Computing 3 (1): 44-49, 2008
We]l

ISSN: 1816-9503

Online © Medwell Journals, 2008

Data Flow Testing of Inheritance Property in JAVA Software

"MLE. Geetha, *V. Palanisamy and *K. Duraiswamy
'Department of Computer Sciences and Engineering, K.S.R. College of Technology,
Tiruchengode-637215, Namakkal District, Tamilnadu, India
*Government College of Technology, Coimbatore, India
*K.S.R College of Technology, Tiruchengode, India

Abstract: The overall goal of testing is to provide confidence in the correctness of a program. Testing of
object oriented software presents challenges due to property bugs in well-written programs. Which will give
a run time behavior of a program and property checking of a language especially object oriented programs
like TAVA, C+t, Small talk, Objective-C and precision to the developer about a software. Object oriented
software development different from traditional development products. Tn this polymorphism, inheritance
;dynamic binding are the important features. An inheritance property is the main feature. Data flow testing is
an appropriate testing method. This test analyzes structure of the software and gives the flow of property.
This study is designed to detect the hidden errors with reference to the inheritance property. Set of classes
and packages are analyzed and output are hierarchies of the classes, methods, attributes and a set of
inheritance related bugs like naked access, spaghetti inheritance bugs are automatically detected by using this
testing. The testing by 4 major analysis such function model, class model, variable model and interface model.
Tt is a Static testing. In this study tool is created for JAVA programs.

Key words: Software testing, data flow analysis, testing tools, inheritance property, inheritance related bugs,

adjacency matrix

INTRODUCTION

Software is the execution of the software with actual
test data. On average even well- written programs have
one to three bugs for every statements. Tt is estimated
that testing to find those bugs consumes half the labor
mvolved in producing a working program. Traditionally
there are two main approaches of testing software:
Black-box (or functional) testing and white-box testing
(structural Testing) (Alexender, 2001).

Tn black-box testing , software is exercised over a full
range of inputs and the outputs are observed for
correctness.

In white-box testing include every line of source
code is executed at least once or requiring every function
to be individually tested White-box tests can be done
without modifying the program, changing values to force
different execution paths, or to generate a full range of
inputs to tests a particular function.

DATA FLOW ANALYSIS TESTING
Control structure testing is a white box testing. This

improves the testing coverage. Data flow testing is a one
of the control structure testing. Data flow analysis

extracts semantic information which can be used for code
optimization, program slicing, semantic change analysis,
program restructuring and code testing.

Data flow testing selects test paths of a program
based on a definition and use of a variable in the program
(Binder, 1993). Define (D) actions occur in a statement
that changes the concrete state of an instance variable.
Use (U) actions occur in a statement changes the value of
an instance variable without changing it.

Inter procedural data flow analysis is needed to
obtain information about program properties that
depend on the interaction between different procedures.
Inter procedural data-flow analysis designed to analyze
whole programs (Rountev, 2002). Define in one part of
the program and it may be used in another part. But it is
different in traditional approach and object oriented
approach.

WHOLE PROGRAM ANALYSIS AND
FRAGMENT ANALYSIS TESTING

Traditional inter procedural data flow analysis is
performed on whole programs. That is testing of very
large programs with hundreds of thousands lines of code.
Inter procedural whole program analysis takes as input an

Corresponding Author:

M.E. Geetha, Department of Computer Sciences and Engineering K.S.R. College of Technology,

Tiruchengode-637215, Namakkal District, Tamilnadu, India

Int. J. Soft Comput., 3 (1): 44-49, 2008

entire program and produces information about the
possible run-time behavior of that program. This analysis
model 1s that the source code for the whole program 1s
available for analysis. Such analysis topically treats the
entire program as a homogeneous entity and does not
take into account the program's modular structure. Whole
program analysis 18 based on the mnplicit assumption that
1t 1s appropriate and desirable to analyze the source code
of the entire program as a single unit.

Whole program analysis is not feasible for large or
mcomplete programs. The time required to build a whole
program representation and the space need to store it 1s
preohibitive. Finding bugs are very difficult because of
side effects when we changing the variables or value of a
variable.

So, Fragment data flow analysis as an alternative
approach which compute data flow information for a
specific program fragment. Fragments
procedures, methods, libraries, components. In some
cases the analysis results are not need for the whole
program, but only for a relatively small part of it. Tnstead
of addressing the problem of computing data flow
mformation for the whole program, addressing the
problem of computing data flow information for a specific
program fragment (Rountev, 2002). Output of the fragment
analysis is wsed by software development team for
further enhancement or correcting on the current version.
It will reduce the time and memory spaces occupied by
unnecessary variables, unwanted flow between data
definition and usage.

Fragment analysis computes mnformation about only
the portion of the program, which can be smaller than the
program itself. Fragment analysis extracts several kinds of
mformation like data flow framework, entry nodes of
procedures called from outside of fragment, call nodes to
procedures outside of fragment, return nodes from
procedures outside of fragment, summary information
about at boundary entry nodes, summary information at
boundary call nodes.

The following points are advantages by using
fragment analysis testing:

are set of

* Precision 1s easy by using fragment static analysis in
coverage tools. By using fragment analysis specific
language property is tested before deliver to the
customer.

* This 1s very useful in object oriented software for
testing the properties like polymorphism, inheritance,
remote procedure calls etc.

¢+ Component is a set of related procedures or classes.
The interaction between components 1s through calls
to methods and procedures and through access to

45

shared variables. A component level analysis
processes the source code of a single program
component given some nformation about the
environment of this component. The analysis mput 1s
the source code of the procedure together with
summary rest of the
components. From the pomt of fragment analysis
running time and memory usage 1s desirable instead
to reanalyze a component every time this component

is used as part of a new system.

information about the

Object oriented software 18 different from traditional
software development. Object oriented development is a
way to develop software by building self contained
modules or objects that can be easily replaced, modified
and reused. Each object had attributes and methods.
Objects are grouped into classes. Basic concepts of
object oriented programs are data abstraction and
encapsulation which 1s wrapping up of data and methods
n to a single unit. Inheritance is the process by which
objects of one Class acquire the properties of objects of
another class. Tt supports the concepts of hierarchical
classification. Polymorphism means ability to take more
than on form. Testing this properties in particular
fragment is different from traditional software.

There are a number of testing tools perform white-
box testing on executables, without modifying the source
and without mcurring the overhead of an mteractive
debugger. These tools speed testing and debugging
because there is no need to wait for support code to be
inserted 1n to the program. Most white-box testing tools
change the executable in one way or another, or check for
certain classes of failure. Tools provide a high level
programming nterface for writing code that patches the
executable and performs a specific function or obtains a
particular type of information, other features include
patches that executes as part of the application.

Static analysis is concerned with algorithms for

analyzing the possible behavior of software. By examine
the software source code, static analysis can determine
various software properties. These properties are
fundamental importance for many software engineering
tasks and tools.
Tools for software understanding use static analysis
identify interactions and dependencies between
different parts of complex programs. This information is
valuable for software development team may be used for
next version development.

Unwanted code, variables, assignments, unnecessary
call and returning between one place to another place are
avolded. Coverage tools use static analysis to evaluate
and improve the quality of software testing.

to

Int. J. Soft Comput., 3 (1): 44-49, 2008

Dynamic analysis that is performed by observing
software behavior while the program 1s executing.

Previous work was Polymorphism properties are
analyzed and dynamic binding of concepts are verified
(Rountev et al., 2004).

Inheritance property 1s an important feature n object
oriented program. A testing tool developed for C++
language in previous worl. Here level to level relationship
found up to ‘n’ levels and matrix formed for their
hierarchy.

This study focus on design of data flow testing of
inheritance property in JAVA software. There is
difference between JAVA and C++ mheritance property
unplementation. This 1s a static analysis tool.

DESIGN OF DATA FLOW TESTING
OF INHERITANCE TOOL

The idea behind mheritance is creation of new
classes that are built on existing classes. When inherit
from an existing class (or inherit) methods and fields are
reused and possible to add new methods and fields to
adapt to the new situations. This new technicque is
essential in TAVA programming.

The object oriented , inheritance implementation may
appear similar to those in other object oriented languages
like C++, small talk ete, but there are many differences
have to consider .

The mheritance in JAVA 1s basically carried by using
the keyword “extends”. Here 1s a simple example showing
the use of the keyword “extends”.

E.g. Class Manager extends Employee {added methods
and fields}

The existing class 1s called super class and the new
class is called subclass. JAVA does not support multiple
inheritances as is supported by C++. To implement
multiple inheritances JAVA uses interfaces.

A method in a JAVA program may be private, public,
protected or it may not have any scope defined. A method
can also be static, final or abstract.

To develop a software testing tool for inheritance

JAVA programs, first need to analyze the given
source code. The various steps followed for the tool
design are

for

¢ Accept the JAVA filename as input from the user and
then locate the file. In case of a missing file, an error
message is displayed.

¢« Tnany JAVA source code, the source code may work
perfectly even if there are multiple spaces or new
lines between any executable mstructions.

46

E.g.: int a=10; // a valid statement to assign 10 to an
integer named “a’
int a=10; // works fine though having numerous
spaces
inta =10 /fthis will perform the same function
as the above statements like int a=10; or the

second statement with numerous spaces.

These kinds of statements may hinder the proper
execution of scamming and parsing. To avoid such
statements a method named format 1s called. This method
“format” prepares the source code file for testing by
indenting the file and removing multiple spaces and
multiple new lines. Here also separate the identifiers,
literals, keywords and the separators.

Separators play an extremely important role for
analyzing the source code for any program. The
parentheses ‘(*and®)’ is used to contain the list of
parentheses mn method definition and invocation. It 1s also
used for precedence containing
expressions in control statements and surrounding cast
type. In this tool parentheses are used to search for the
method defimtions in a class or an mterface. The
semicolon and the opening brace © {‘separators are used
to mark the end of a statement.

m expressions,

» The scanning of the formatted source code is
performed character by character, this leads to
creation of the various tokens used in the program.
The characters join together to form strings which
may either be a variable, a function name, a keyword,
a separator etc. This 13 analogous to building words
n the English language.

For example the word “JAVA™ 1s built by the union of
alphabets ‘J°, "A’, V" and ‘A" . The word built has a
meaning but it does not communicate anything. Similarly
the tokens created here are just standalone tokens and
they do not express any meaning.

| 3 |+| A |+| v |+| A |=| TAVA |

¢+ Move on to the joining of the various tokens to
decipher the information related to every token. The
placing of various tokens in respect to each other is
observed, this placement provides the basis for
building up the various information which is used
for testing the authenticity and the security of the
givenn JAVA program. This 1s one of the most inport
parts in architecture framework of the JAVA tool
created. The amount of data mined in this step 1s

Int. J. Soft Comput., 3 (1): 44-49, 2008

directly proportional to the quality of testing and
security analysis. This 1s analogous to creating
sentences in English language. In this language, to
understand the meaning of any complete sentence
has understanding the relationship between the
words and the position of the various parts of speech
used in the sentence.

For example the sentence “We love TAVA.” is
composed of four tokens- “we” , “love”, “JAVA™ and the
period <. .

|We |+|Love|+|]ava|+| . |=|We]..ove]ava.

¢ Next linked list is created for every executable
staternent, each node contains the various tokens
forming the executable statement.

1 1
We Love Java .
* | Y ° .

¢ This linked list is analyzed based on the different
probabilities of the placement of tokens to form
meaningful statements, this in turn leads to the
creation of the various objects of the models defined
above. The information extracted from the statements
15 used to fill the mstance variable details of the
objects created.

Eg: The creation of any class A can be done as any one
of the following ways:

s class A{

+ class A extends B{}

* private class A extends C implements I {}
¢ class A extends B implements T {}

The creation of any variable A may be done as any
one of the following ways:

s inta;

+ mta=l,

* private inta=2;

* protected it a;

s static int a=0;

e static int a=(2%3/4%5);...

These are just a few of the numerous ways by which
a class or a variable may be created. Similarly possible to
show numerous ways for functions and interface creation
also.

47

s After this create different classes
class _model
variable model
Function model
interface model

These objects of classes are used to store the
various details of the classes, variables, functions and
interfaces. The object of class model has instance
variables which store detail like the name of the class, the
procedure followed during defining the class for
implementation, i.e. it is either extended or implemented.
The mterface or the package in which the class 1s defined
1s also recorded for future references. The objects of the
class model are used to store detail of the various classes
which are encountered during the execution of the
program.

The objects of variable model class are used to store
the details of the various attributes related to a variable,
like the name of the variable, the type of the variable, the
access granted for the usage of the variable which might
be public, private or protected and the last attribute is the
class in which the variable 1s declared. The objects of thus
class are created when we encounter any variable
declaration in the program.

The function model forms an essential part of the
program by keeping track of the details of the various
functions which are created either m a class or an
interface. The function name is recorded This model
stores the access granted for each function and it also
stores 1f the statement scanned 1s just a function
prototype or the complete function definition. One of the
most attribute of any method is its signature, this model
stores the signature of any function using a linked list,
this linked list contamung the signature 15 used in
determining inheritance.

The interface model objects are used to store the
details of the interface name and the various function
prototype which should be defined once a class
implements the mterface. The objects of this model are
created once possible to scan any interface definition.
The mterfaces which are already defined m the JAVA
development kit are also mcluded in the array with the
method names which are defined abstract e.g. When
implement the

KeyListener interface, there should give the method
definition for the methods keyPressed, keyReleased
and keyTyped. Hence, the mterface name KeyListener
and the 3 mentioned metheds are stored in an object of
this class.

Int. J. Soft Comput., 3 (1): 44-49, 2008

Class model
Class name
Extended by
Implemented by
——
Fonlon e
Function name Datatype
Access Variable narme
Class name Access
Interface name Classname
e -

¢ Next, create four object arrays, one for storing the
variable _model objects, one for class_model objects,
third stack for storing function model objects and
the fourth for mterface model objects. These array
objects serve as data banks by storing the objects
contaming the details. These are referred for
checking the different kinds of errors.

¢ Once all the object arrays are made its ready for
testing the various kinds of errors like an mnheritance
sensitive parser should connote. The following are
eITOrS

Class not defined error: This is one of the most common
errors that people often do, while dealing with
inheritance. This error can occur in 2 cases:
Missing override: Here a subclass specific
umplementation of a super class method 15 omaitted. As a
result, that super class method be incorrectly bound to
subclass object and a state could result that was valid for
the super class but mvalid for the subclass owing to a
stronger subclass invariant. This is also possible when a
class extends a class defined m JAVA development kit
but does not override the method necessary to inherit it.
For example if a class extending the class thread does not
override the run method then it may be called a missing
override error.

If consider the following code snippet, we will see the
missing override error.

class cls_object extends Thread {

mt1;

cls_object(){
1=5;
1

48

When we have a super class method defined private
and some where down the inheritance hierarchy we try to
override the method, then the function will not show
polymorphism. In that case we should suggest the user to
either remove the private modifier from the super class or
provide his own method definition with the same
signature as that of the super class method.

Incorrect initialization: Super class mitialization 1s
omitted or incorrect. Deep hierarchies may lead to
iitialization bugs. Determining how mmtialize 1s used in
a subclass requires examination of the super class
that defines new. The imtialize method must be sent to
super, not self. Suppose that new 1s refined and does not
send initialize to self. Super’s initialize will not be
executed.

Naked access: A super class mstance variable 1s visible
in a subclass and subclass methods update these
variables directly. This can be done in C++, JAVA, or
objective C, where any public or protected base class
data member will allow naked access. Naked access
creates the same problems as unrestricted access to
global data. Changes to the super class implementation
can easily induce subclass bugs or side effects.
bugs or side effects, in tun, can cause
failures in super class methods. If a super class is

Subclass

changed, we should retest both the super class and
its subclasses. If we change the subclass, we should
retest both the subclass and the super class feature
used in the sub class. If we consider the following code
snippet

class superclass{
static mt 1=5;
void display() §
System.out.println (“i valueis “+1); }}
class subclass extends superclass { mt j; subclass(
1=0;
=1}
class prog §
public static void mam(String args[]){
superclass sp=new superclass(),
subclass sb=new subclass();
sp.display().
3

Here output may expect 3 but actually it will be O
since the value will be changed during the constructor call
while sub class object creation.

Int. J. Soft Comput., 3 (1): 44-49, 2008

Daia type: Int

Var name; i

Access: Null

Cls name: Super

| S

! Class model I I Class model l

Name: Superclass Name: Subclass
Ext: Null Ext: Superclass
Imp: Null Imp: Null

Possible to check for numerous inheritance related
errors because of the implementation of graph theory in
inheritance. The adjacency matrix provides us with an
excellent understanding of inheritance till any depth. The
rows and columns of the matrix represent the classes used
in the program, be it user defined or the inbuilt classes,
like the Thread class, etc. If a class subclass extends the
class superclass then the matrix element (r,c) is 1 provided
r 18 index of subclass m class array and ¢ 13 mdex of
superclass in the class array.

E.g.: If we consider the following code snippet :
class a{}
class b extends a{}
class ¢ extends b {}
class d extends a {}

Then the adjacency matrix is of the form.

a b ¢ d
a V] 0 0 0
b 1 0 0 0
c V] 1 0 0
d 1 0 0 0

49

CONCLUSION AND FUTURE WORK

In this researech whole TAVA program 1s an input
and program 1s divided m to fragments example Classes.
Every line of codes is analyzed by using compiler
techniques and attributes, Methods are found All
gathered information about fragments is stored in
knowledge base. From that inheritance property 1s
checked. If there 1s mheritance, parents and children are
traced. By using this information possible to developed a
data flow analysis testing tool which diagnose the
inheritance related bugs like incorrect initialization,
missing override, naked access, naughty children, worm
holes, spaghetti inheritance, fat interface.

The polymorphism related errors may be stated by
obtaiming the signatures of the various functions defined
1n a class. Whenever a function defimtion 1s encountered
the signature linked list entity of the function model array
15 analyzed and checked with the new encountered
function’s signature. On obtaimng an object which shows
the same function name but different signature as
compared to the obtamed function, occurrence of
polymorphism 1s 1dentified. In case we find two methods
with the same signature and name but with different return
type an error 1s reported. Finding property bugs m JAVA
software for example Exception handling, multiple
threading, testing generic classes in JAVA 1.5 are
possible in future. This work focus on particular structure
of the program. Testing for common structure 15 a g
general difficulty.

Dataflow testing will useful during Software
development and software maintenance.

REFERENCES

Alexander, R., 2001. Testing the Polmorphic
Relationships of Object-Oriented Programs. Ph.D
dissertation, George Mason Umniversity.

Binder, R., 1996. Testing Object-Oriented Software:
Survey. I Software Testing, Verifivation and
Reliability, 6: 125-252.

Binder, R., 1999. Testing Object-Oriented Systems:
Models, Patterns and Tools, Addison-Wesely.

Chun-Chia Wang and Wen C. Pai, An Automated Object-
Oriented Testing for C++ Inheritance Hierarchy.
Department of Information Management Kuang Wu
Institute of Teclnology and Commerce.

Rountev, A., 2002, Dataflow Analysis of Software
Fragments. PhD Dissertation Rutgers University,
Available as Technical Report DCS-TR-501.

