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Abstract: This study presents a contribution to the study of the robustness of RST controller obtamed via
the law of standard GPC (Generalized-Predictive-Control). The GPC is a very recent technique of control
system, 1t 1s the subject of many research during these last years and allready applied successfully in
industry. Tt is based on a predictive model CARIMA (Controlled Auto Regressive Integrated Moving
Average), his role is to predict the futire behavior of the system inan extended time horizon, thus it 1s
based on a minimization of a quadratic criterion (performance criterion) to obtain a control law minimizing the
error between the output of the system and the reference imnput. A considerable advantage of the law of GPC
is that we can transform it in a RST polynomial form, which allow us to have the possibility of checking the
robustness of the controller obtained via this law on the frequential domamn. There are several methods of
robust control which guarantee the robustness of stability and performances, among which: LQG:
Lmear-quadratic-Gaussian, the H, method, the H. method, these methods give very effective results but 1 a
limited frequential domain. In the following, we will stain to show that method RST-GPC can be as robust and
powerful as that mtroduced by the robust control methods (in particular the method H,. n the example which

will follow).
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INTRODUCTION
Tt is well-known that the behavior of the
modelizing system always differs from the real

model, according to a vamation at least important
(uncertainties of modeling) and all the methods of the
control system always do not take account of this
variation (Limit, 1993). Among the most recent
methods but also most promising of control systems
(Ogata, 1993; Dion et af., 1993; M’saad and Chebassiern,
1999), it there with method GPC and it would be thus
very interesting to study the behavior of the systems
controled by this method face of these uncertainties
(we will take a practice example), we will thus speak
about the robustness of this method The obtained
results will be to compare with those of another
method introduced by the robust control theory and
which 18 very popular to control this kind of systems: It
is the H_ method; we will not be delayed on this method
being given and we will use it as tools of comparison
(Francis and Doyle, 1997).

PROBLEM FORMULATION

Let the following CARIMA model:

A =B -+ S ey (D)
Alq)

Alq=1+vaq'+...+a.q

With:  piqy=b, +b,q " + ...+ byq™

Clq=l+cq ' +...+c q

Where, A, B and C are the monic polynomial, set C equal
to the unity. {(t) is an uncorrelated random process and
A(g™")=1-q', this from enable to introduce an integrator
in the control law. Y(t), u(t) are the process output and
control signal, respectively and q~ is the backward shift
operator.

The tole of A{q™") is to ensure integral action of
controller in order to cancel the effect of step varymng
output. As m all receding horizon predictive control
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strategies, the control law providing the control increment
Ap(t) 13 deduced mimmising a classical GPC criterion
defined as follow:

I- {Z (wit+ -9+ ) (wit+ - $t +j))}+
(2)

=M

1=1

{i A(Ault+j—1) (Aut+j- 1))}

The GPC must enable us to know with j steps m advance,
the value of the cutput ¥{t) te do it, we must introduce
and solve the following identity (Diophantine identity)
(Clarck et al., 1995):

Clq ) =E,(q AAQ D +q  Flg )
E(q™Blg™=G,(qHCq )+ q 7 H (g™

3)

Using the Eq. 1 with 3, there will have the output
predicator (Codron et al., 1993):

§(t+j)= %y(m %Au(t “D+GAu -1y @

Replacing the Eq. 4 m 2 and mimmizing the criterion
compared to |, we obtain the following GPC law:

u(ty=ut—1)-n’ (é.IF.y(t) + é.IH.Au(—l) - w} (5

W=[wit+N) .. wit+ N[
Where: 1p= [Fl(q’l) F, (q’l)}T
H=[H(q") .. H,q"]

And: n:[nl(q’l) n, T :(GTG+}\..IN“ )%GT

The Eq. 5 can be rewritten as following:

At C+n/IHg" |=Cof W-nlIFy(t) (6

Equation 6 represents a linear controller and its
polynomual from 1s found 1s the same way as if there were
no constraints. Comparing this previous relation to the
polynomial RST structure we want to deduce:

Au(t)8(q™)= T(q).wit)— R(q™).y(H ()

79

W(t) 1 Irl(t) ¥t
—>

Ti
@ T 250 —P»| System ]-D

Fig. 1: Equvalent polynomial controller

R

The polynomials RST can be identified in the following
form:

8(q")=C(q")+nf IHq
R(q')=n/IF
T(Q) = C(qfl).nf_[q’Nan qu2+ My +1

(8)

1]

For the particular case C(q™'); the parameters of the
controller RST can be given by:

8,(qHY=1+n] IHqg"
R, (g )=n]IF
Tn (q) _ n;r.[q—N2+Nl q—N2+N1+1

%)

1]

From the Fig. 1, we can be transformed without filter
Clq™) by.

STUDY OF THE ROBUSTNESS OF
STABILITY AND PERFORMANCES

Introduction: In all what preceded, we supposed that the
system does not present disturbances (parametric or
medelling errors, thus we dont have any idea on the
reaction of the system faces of these uncertainties and in
particular its capacity to reject them Thus we will study
the robustness of such systems, to do it, we have draws
up a comparative study between RST-GPC for the two
cases of C{g™") and a methed of the robust control (the
H. method), in what follows we will introduce notions of
the robustness of the systems (Fig. 2).

Concepts of the robust control of the systems: There
is always a difference between the system to be controled
and the real system, this difference results from the
modeling errors and of the parameters variations of the
systems.

Figure 3 represents the system requirements in the
presence of these disturbances:

Where, D,, 1s the multiplicative output uncertainty, it
deduced by the difference between the real system and
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Fig. 2: The general form of the preceding structure

W +

Fig. 3: Feedback system with multiplicative disturbance

K{s)

l-pl 6 | 1+D.s T

the mathematic model which as to be controlled and (s) 1s
the Laplace operator.

Dencted G,(s) the transfer function of the perturbed
system given by:

G,(s) =[1+ D, ()].G(s) (10)

From the relation (10) the maximum standard of the
disturbance D_(s) is given by:

G,(s)-G(s)
G(s)

D, (s)|= (11)

ROBUSTNESS CONDITIONS OF STABILITY
AND PERFORMANCES

Robustness of stability: By supposing that the feddback
nominal system is stable when the distwbance D, (s) is
null (D, (s) = 0), then the perturbed system is stable if the
following mequality is checked:

1

(12)
W,(5)|

S, (5)] <

Where, S(s) is the complementary sensitivity function
given by:

8.(5)= _G(s).Kis) (13)

1+ G(s3).K(s)
And the transfer D,(s) should be verified the following
mequality:

D, (s)] < [W,(s) (14)

80
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Fig. 4: The augmented system
Ws) : The weighting specification of stability.

The inequality (12) constitutes the robustness
condition of the stability of the feddback system.

Performances robustness: Let W(s) the weighting
specification of system performances; the performances
robustness condition of the feedback system is given by
(Lewing, 1989, Chiang and Safonov, 1999):

1
8, (5) <« ——— (15)
8405 W)
S4(s) 18 the direct sensitivity function given by:
1
§,(s)= (16)

1+ G(8).K(3)

The problem of the robust control is to design a
controller K(s) such as the conditions of the robustness
of stability and of the performances (12) and (15) are
checked.

Let us notice that the transfer function S(s) and
sensitivity S,(s) are complementary:

S.(s)+8,(3)=1 (17)

In other words all change n the sensitivity fumction
will have these consequences on stability and vice versa
(dilemma stability-performances).

Standard Hee Method: The goal of the method is to find
a robust controller who minimizes the He norm of the
feedback system transfer function augmented by the
specifications weightings on stability and performances
(Fig. 4).

We call cost function the transfer T, given by:
_ {Wp'sd} 1s)

WS,

yu
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The optimization standard H_ problem is to find a
controller who satisfies the following inequality:
T (19)

ol =1

Where, ||*]]..1s the H, norm of (*)
The K. controller is generally found by using the

software Hinf available in the Robust toolbox of Matlab®,

STUDY AND COMPARISON OF THE
CONTROLLERS RST-GPC AND Hee
(PRACTICAL EXAMPLF)

With an aim of checking the robustness of the
controller obtained by method RST GPC and of
comparing 1t with that obtamed by the H_ method we will
precede of a comparative study on a concrete example
(a process used in (Matlab/Robust/actdemo. m) that we
mvite the reader to consult for more details).

Our objective being specified; we will not be delayed
on the design of a controller by the H_, method
(Lewing, 1989; Chiang et al., 1999).

Our study will be based on the checking of the
satisfaction of the two robustness conditions.

The process we will study is described by the
following data:

*  The transfer function 1s:

9000

G(s)=
(s) s* +30s? + 700s + 1000

¢ The weighting specification of performances w(s) is
given by

0.01(1+s)’
'}’[1+ [%J }

Where v 1s the positive coefficient used in the H. method

W, (s)=

¢ The weighting specification of stability is given by:

31614 ——
[ 300}
1+[ij

10

¢ The frequencies band is chosen of 10~ Hzupto
107" Hz with sampling period T, = 0.01 sec.

W (s)=

81

¢ The discrete model we should be controlled is given

by:

q B{qg") _ 0.0014q" +0.0051q +0.0012q"
Alg™) 1-2.6802¢q7" +2.4219¢q72 —0.7408¢

»  The polynomial C(q™") is chosen as follows:

Clq™y=1-2.5449q"" + 2.3093q2 —1.0828q +
0.5042q7" —0.1842q7 + 0.0003q”°

+  The parameters of the GPC are selected like follow:

(N, N, A)=(6 1 0.04)

And the parameter of H.. method 1s selected: y = 0.75.
For C(q ") = 1, the parameters of RST controller are:

R{g™")=155.58q" —365.52q " +295.26q~ —81.73q"
Siq ) =1+0347q"
T(q)=2.022q +1.13q> + 0.51q’ + 0.16q" + 0.02¢°

and for C(q™") chosen, the parameters of RST controller
are:

R,(q7")=3.86q"' -10.35q" +9.36q" —2.86q"
S(qh=1-268q"+2.21q7% -1.22q7 +0.80q "' -0.16q"°
—0.09q"°

T,(q) = 2.022q - 4.28q" + 2.38q" + 0.015¢" - 0.0043¢" —
0.0405q" - 0.0691q" — 0.016q°

The numerator and the denominator of K controller is:

mmK,_ =5-12.14q" + 4.17¢* +10.64q " - 9.5q"* +
1.14q7 + 0.68q~°

denK _ =1-2.04q" + 0.87q7* + 0.36q™ - 0.16q~ -
0.03q~ +0.001g"°

RESULTS AND DISCUSSION

In the Fig. 5, for the value v = 0.75. the robustness
stability/performance 1s verified and we can note the
satisfaction of the performances robustness, which leads
in the temporal plan, to a fast stability with a very
umportant rise time.
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The sensitivity function

The complementary sensitivity function
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Fig. 5: The robustness stability/performance
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Fig. 6: The step response and the control signal
CONCLUSION REFERENCES

In the case of the system controlled by the H.
method, the robustness stability/performances is directly
dependant on the good choice of the value of v, thus
method offers very satisfactory results, but with a very
large controller order.

For a system controlled by RST-GPC, the robustness
stability/performances, depends directly on the choice on
parameters of GPC (N,, N, A), moreover we can note that
the intreduction of the polynemial Clg™), allow increased
robustness of stability and performances (Fig. &).
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