M International Journal of Soft Computing 3 (1): 9-12, 2008
We]l

EAL . sl ¥ [SSN: 1816-9503
Online © Medwell Journals, 2008

An Efficient Algorithm for the Solution of Ackermann Function

Parviz Rashidian
Department of Mathematics, University of Kurdistan, Sanandaj, Iran

Abstract: One of the mam problems for running recursive functions with high rate of growth is execution time
and memory spaces, in which case we can not run the program. In addition many commonly used programming
languages do not allow recursive programs. This study presents an efficient algorithm for Ackermann recursive
function. The algorithm 1s tested by comparing with recursive fimetion m high level language such as Pascal.

Key words: Recursive function, execution time, procedure, memory, Ackermann function

INTRODUCTION

The Ackermanns function 1s an excellent
mathematical example to a recursive process, in which a
short term goals must be accomplished prior to attamment
of a long term goal. Recursive process in mathematics 1s
requiring the repetition of the basic function with its
succeeding output values until a primitive s obtained.
The primitive 1s then resolved and driven back through
the basic function until the answer for the original
variables 1s attained. If the function 1s truly recursive, as
15 Ackermanns fimetion, any values for the variables in
the function will eventually result in a simple valued
answer, this requires that the recursive function have a
primitive and that the function converges to a solution
after finite number of recursions. The Ackermanns
function 1s defined recursively for non negative integers
m, n as follows:

A(0n)=n+1
A{m,0)=A(m-11),ifm>0, (1
A{m,n)= A(m-l,A(m,n—l)),if mn=> 0

Equation 1 1s the primitive equation and when resolved
gives a simple value (Brassard and Bratley, 1990). The
special properties of the Ackermanns function are
consequence of its phenomenal rate of growth, which the
value of:

AM0,00=1, AL, =3,
A(2,2)=7 A3 3) =6l

And A(4,4) is greater than 10°" (Harry, 1987, Seymour,
1988). The Ackermanns function plays a major role in
computer science and computational complexity theory.
A more recent use of Ackermanns function as a compiler
benchmark is in computer language shootout which

Table 1: values of m and n

m n

0 1-100
1 0-100
2 0-100
3 1-11

compares the time required to evaluate this function for
fixed arguments in many different programming language
implementations (Gento, 2006; Benchmarks, 2005).

For the purpose of this study, the Table 1, showes
that the values of m and n used in the analysis.

MATERIALS AND METHODS

The approach used in this analysis i1s to code a
Fortran program resolving Ackermann’s function for
various values of m and n, the program constructed with
table (Look-up table) and without table the program
searches the table and extracts previously calculated
values of A(m,n) instead of recalculating each value,
comparison of a program using the table and program
without the table and the Pascal recursive function, gives
an 1dea of the difference between the necessary recursion
and execution times. Recursive procedures are not
handled in Fortran 77 due to the inability of a Fortran
routine, to call itself. However, this problem can be
accomplished using operating system stacking
capabilities in failure. Each time the ackermanns function
stores recursive all variables as well as the return address
in a last in first out (lifo) data type list.

To keep track of of changing values of the variables
during the recursions, a pointer or address keeper must be
used to indicate the variables locations in the stack.

The pointer 1s incremented to pop them. In addition
to a pointer (called t in the program), the number of
elements in the satack and the number of steps or
recursions performed in the program and execution time
are calculated by changing m and n (Fig. 1 and 2).

Int. J. Soft Comput., 3(1): 9-12, 2008

10000 1 2000 -
I
| 1
90001 __. Without look-up table 18001 __. Without look-up table fortran {
80004 — With look-up table 16004 — With look-up table fimefion H
7000] |
g 1400 /
§ 6000 3 1200 j
g 5000 2 1000- /
40001 g 8004 /
30001 B 6004
20004 400
1000 .
- 200
() iy T T T T T T T T 1 0 T T T T T T 1
0 10 20 30 40 50 60 70 80 S0 100 0 1 2 3 4 5 9 10
Value of n Value of n

Fig. 1: Recursions required to evaluated A(2, n)

Fig. 3: Time required to evaluated A(3, n)

20+ | 2000 i
i I
- 18004
189 __. Without look-up table | -- Without look-up table !
164 — With look-up table [16004 — With look-up table II
|
S 144 i 1400 i
g | g ;
g 121 ," % 12007 i
& 104 8 1000- j
Z s g 800 /
= /
6 600 f
41 400
21 200+
0 1 1 4 T ﬁﬂ_ﬁF—l__l—l_l 0 T T -1 T T T T T T 1
o 1 2 3 4 5 6 7 8 9 10 © 1 2 3 4 S5 6 7 8 9 10
Value ofn Value of n

Fig. 2: Recursions required to evaluated A (3, n)
RESULTS AND DISCUSSION

The values of the Ackermanns function using the
Fortran program versus its arguments are plotted in
Fig. 3 and 4. As can be seen m the figures, the function
increases extremely fast when m 1s greater than 3 and n 1s
ncreasing.

The look-up table was found to be beneficial
when m and n are increasing, Table 2, showes that
the result of problem along with the values of m and n
that can be wused. The number of recursions
required to solve the function both with and without
a look-up table are also recorded. The number of
recursions with and without table are plotted in
Fig. 3 and 4, respectively. We will notice that
considerable decreasing the number of recursions
reduce the problem to one we can solve very
quickly.

10

Fig. 4: Time recuired to evaluated A(3,n) Fortran program

Procedure 1: Ackermann function without look-up table.
Array stm(), stn():

¢ Putm,nsett=0,istep=0
» Ifm = 0then, goto 7
» Ifn>0then, goto 5
* Sett=t+1,st=t,istep =1step +1
Set stm(t) =m, stn(t) =n,m=m-1,n=1, goto 2
* Sett=t+1,st=t,istep =1step +1
* Setstm(t)=m, stn(t)=nn=n-1, goto3
¢« n=n+1
. t=t-1
If t <= O then, goto 9
If stm(t) = 1 then, goto 7
If stn(t) = O then, goto 8
m = stm(t) - 1 then, goto 6
» Write st, istep, m, n
* Retum.

Int. J. Soft Comput., 3(1): 9-12, 2008

Procedure 2: Ackermann function with look-up table.
Array stm(), stn(), table(, }:

* Inputm,nsett=0, step =0, table =0

¢+ If m =0then, goto &

* Ifn> 0then, goto4

* Setstm(t)=m, stn(t)=n
Sett=t+1,st=t, istep = step + 1
Setm=m-1,n=1, goto 2

* Sett=t+1,st=t,1istep =step+1
Iftable(m +1,n+1) <=1 goto §

* Setstm(t)=m, stn(t) =n,n=n-1, goto 3

¢+ Tablelm+1.n+1)=n+1

¢+ n=n-+1
. t=t-1

If t <= O then, goto 10

If stn(t) = O then, table(stm(t) + 1 , 1) =n, goto §

Table 2: Result of Fortran and pascal programs

If stm(t) = 1 then, goto 10

m =stm(t)- 1, goto 5
o Table(stm(t)+1,stn{t)+1)=n+1, goto 7
» Write st, istep, m, n
¢+ Return.

This study provided a procedure for the solution of
Ackermamns function and afforded an approach to
recursive routines. Using this technique of programming
reqires that should be taken care in keepmng up with
locations of the various elements of the stacks so that
they may be recalled later. Using procedure 2, result in
considerable decreasing execution time and memory space
necessary. Computing A(ln) takes linear time in n and
A(2,n) without a look-up table requires quadratic time, but
using look-up table almost takes linear time in n. Also

computing A(3,n) with Pascal recursive function takes

m n Ackermann function Recur (Fortran) with table Recur (Fortran) without table Recur (Pascal) using recursive function
0 0 1 1 1 1
0 5 6 1 1 1
0 10 11 1 1 1
0 20 21 1 1 1
0 40 41 1 1 1
0 a0 6l 1 1 1
0 80 81 1 1 1
0 100 101 1 1 1
1 0 2 2 2 2
1 5 7 7 7 12
1 10 12 12 12 22
1 20 22 22 22 42
1 40 42 42 42 82
1 a0 6l 6l 62 122
1 80 82 82 82 162
1 100 102 102 102 202
2 0 3 4 4 5
2 5 13 19 44 90
2 10 23 34 134 275
2 20 43 64 464 945
2 30 63 94 904 2015
2 40 83 124 1724 3484
2 50 103 154 2654 5355
2 a0 123 184 3784 7625
2 T0 143 214 514 10295
2 80 163 244 6644 13365
2 100 213 274 11344 207705

Table 3: Result of Fortran prograrns

m n Ackermann finction Recuresive (Fortran) with table Recuresive (Fortran) without table
3 0 5 4 9
3 1 13 24 52
3 2 29 60 263
3 3 61 136 1194
3 4 125 292 5101
3 5 253 603 21104
3 6 509 1244 85875
3 7 1021 2520 346486
3 8 2045 5076 1391993
3 9 4093 10192 5580156
3 10 8189 20428 22345087
3 11 16381 40904 89429378
3 12 32765 82984 357811565

11

Int. J. Soft Comput., 3(1): 9-12, 2008

Table 4: Result of fortran and pascal programs (times in seconds)

n Recuresive (Fortran) with table

Recuresive (Fortran) without table

Recuresive (Pascal) using recursive function

0.10
0.11
0.12
0.17
0.22
0.39
0.71

UJUJUJUJUJUJUJE

5
6
7
8
9
1
1

L]

0.16 0.10
0.66 0.28
2.58 112
10.32 3.03
41.36 12.14
166.09 46.20
0.66 185.26

exponential time in n, but using a look-up table, 1s almost
requires quadratic time.We found that using a look-up
table to store the values of the function as calculated will
save significant amount of time (Table 3 and 4).

CONCLUSION

The study lead us to conclude that another language
having the ability to automatically keep up with stack
would be much better suited to recursive routines.

12

REFERENCES

Benchmarks, X.G.C., 2005.

Brassard, G. and P. Bratley, 1990. Algorithmics Theory
and Practice. Prientice-Hall.

Gento, 2004. Tntel Pentium 4 computer language shootout.

Harry, F.S., 1987. Data Structures From and Functions.
Academic Press.

Seymoure, L., 1988. Data Structuers. McGraw-Hill.

