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Abstract: Thousands of images are generated every day, which implies the necessity to classify, organize and

access them using an easy, faster and efficient way. Scene classification, the classification of images into

semantic categories (e.g., coast, mountains, highways and streets) 1s a challenging and mmportant problem

nowadays. Many different approaches concemning scene classification have been proposed m the last few
years. This study presents a different approach using invariant moments and support vector machines to scene
classification. Radial basis kernel function with p; = 10 used for SVM. The results are proving the efficiency of
this work with 83% classification rate. This complete study is carried out using real world data set.
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INTRODUCTION

Understanding the robustness and rapidness of
human scene categorization has been a focus of
investigation in the cognitive sciences over the last
decades (Guerm-Dugue and Oliva, 2000; Chella et al,
2000, Autio and Elomaa, 2003). At the same time,
progress in the area of image understanding has
prompted computer to  design
computational systems that are capable of automatic
scene categorization. Classification i1s one of several
primary categories of machine learning problems
(Serrano et al., 2004; Martin, 2005). This study gives a
systematic overview of moment mvariants for several
combinations of deformations and photometric changes
(Mindru et al., 2004). This study give very promising
results in the classification of indoor-outdoor scene
image and manmade-natural classification (Pietikainen et
al., 2004; Boutell and Luo, 2005; Payne and Singh, 2005).
Tan Stefan Martin (2005) presents in his doctoral work, the
techniques for robust learning and segmentation in scene
understanding. Moment invariants are iumportant shape
descriptors 1n computer vision. There are 2 types of shape
descriptors:  Contour-based  shape descriptors and
region-based shape descriptors. Regular moment
mvariant, one of the most popular and widely used
contour-based shape descriptors, 1s a set derived by Hu
(1962). Bicego et al. (2006) give a new approach to scene

vision researchers

analysis under unsupervised circumstances. Bosch ef al.
(2004) present a scene description and segmentation
system capable of recognizing natural objects (e.g.,
sky, trees, grass) under different outdoor conditions. In
this study, a computer vision system recognizing objects
in captured images 15 established using Geometric
Moment (GM).

INVARTANT MOMENTS FEATURES

Tnvariant Moment feature descriptors (Rizon et al.,
2006) were derived from the theory of algebraic invariants
and are used to evaluate seven distributed parameters of
an image. This techmique 1s chosen to extract umage
features since the features generated are Rotation Scale
Translation (RST) mvariant. In any process, the images
are processed to extract features that uniquely represent
properties of a given category. Invariant moment was
successfully applied in texture classification (Rizon et al.,
2006). The set of seven invariant moments (¢ ,-¢,) was
first proposed by Hu (1962) for 2D images. Two-
dimensional moments of a digitally sampled MxM unage
that has gray function f(x,y) (%, vy =0,...,M-1) is given as:

=M -1y=M-1

m, = Y, > XXy (1

z=0  y=0

Where, p,q=0,1, 2, 3.
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The moments f(x,y) translated by a position (a, b) are
defined as:

oy =2,

2 (xra) e (y+b) ' fxy)

¥

(2)

Thus the central moments u,, can be computed from (2)
on substituting a=-xX and b=-y where

My = 2, 2 (=K (y =TI Y) 3)

When a scaling normalization 1s applied the central

[

In particular, Hu (1962) defines 7 values, computed
by normalizing central moments through order three, that

moments change as,
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where v = {L; D

are invariant to object scale, position and orientation. In
termms of the normalized central moments, the seven
morments are giver
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SUPPORT VECTOR MACHINES

Support vector machine 1s a relatively new pattem
classifier introduced by Vapnik (1998). A SVM classifies
an input vector into one of two classes, with a decision
boundary developed based on the concept of structural
risk mimmization (of classification error) using the
statistical learmng theory. The SVM learmng algorithm
directly seeks a separating hyperplane that is optimal by
being a maximal margin classifier with respect to training
data. For non-linearly separable data, the SVM uses kernel
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method to transform the original input space, where the
data 1s non-lmearly separable, mto a higher dimensional
feature space where an optinal linear separating
hyperplane 1s constructed. On the basis of its leaming
approach, the SVM 1s believed to have good classification
rate for high-dimensional data. Consider the problem of
image classification where X 13 an input vector with n
dimensions. The SVM performs the following operation
involving a vector W = (w,....w,) and scalar b:
f(X)=sgn(WeX +h) (1
Positive sign of f{X) may be taken as MIT-street
images and negative value of f{X) may be regarded as
MIT-highways mnages. Consider a set of traimng data
with / data pomts from 2 classes. Each data 1s denoted by
(X Yo, where1=1,2,..., L X =(X,..., % and y, € {+1,-1}.
Note that v, 13 a binary value representing the two
classes. The task of SVM learning algorithm 1s to find an
optimal hyperplane (defined by W and b) that separates
the two classes of data. The hyperplane is defined by the
equation:
WeX+b=0 (2
Where, X 1s the mput vector, W 1s the vector
perpendicular to the hyperplane and b is a constant. The
graphical representation for a simple case of two-
dimensional input (n = 2) is illustrated in Fig. 1. According
to this hyperplane, all the training data must satisfy the
following constraints:

WeX +bz>+1forv,=+1

WeX +bx-1forv, =-1 (3
which 1s equivalent to:
viWeX +by21v,=1,2,.,1 {4

There are many possible hyperplanes that separate
the training data into 2 classes. However, the optimal
separating hyperplane is the unique one that not only
separates the data without error, but also maximizes the
margin, i.e., maximizes the distance between the closest
vectors m both classes to the hyperplane (Burges, 1998).
As shown in Fig. 1, the margin, p, 1s the sum of the
absolute distance between the hyperplane and the closest
data points in each class. It is given by:

WX +b|
= mn +
W

WX +b| 2
min =
W] W
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Fig. 1: Optimal separating hyperplane for 2-Dimensional
two-class problem

Here, the first min 1s over X, of one class and the second
min is over X; of the other class. Therefore, the optimal
separating hyperplane is the one that maximizes 2/|[W|,
subject to constraints Eq. 4. It 18 mathematically more
convenient to replace maximization of 2/|[W|| with the
equivalent minimization of ||W||*/2 subject to constraints
Eq. 4, which can be solved by the Lagrangian formulation:

1
min L = %Hwnz Sy wx +b)-1] O
1=1

Where, ¢; is the Lagrange multiplier (¢>>=0,1=1, 2,.., ).
The Lagrangian has to be minimized with respect to W
and b and maximized with respect to ¢;. The mimmum
of the Lagrangian with respect to W and b is given by:

L

oW

=0=>W=Y aXy, ™

cL

&b

:sz;aiyi =0 (8)

Substituting Fq. 7 and 8 into Eq. 6, the primal mimimization
problem is transformed into its dual optimization problem
of maximizing the dual Lagrangian L, with respect to ¢

max L = Z;UH *%Z;Zj:l“l“]ﬁyj (X, X)) ®)
subject to

PIARL 4o

o =0vi=1,.,1 (11)
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Thus, the optimal separating hyperplane is constructed
by solving the above quadric programming problem
defined by Eq. 9-11. In this solution, those points have
non-zero Lagrangian multipliers (¢;>0) are termed support
vectors. Support vectors satisfy the equality in the
constraint Eq. 4 and lie closest to the decision boundary
(they are circles m Fig. 1, lying on the dotted lines on
either side of the separating hyperplane). Consequently,
the optimal hyperplane is only determined by the support
vectors in the training data. Based on the o; values
obtained, W can be calculated from Eq. 7. b can be
obtained by using the Karush-Kulm-Tucker (KKT)
complementary condition for the primal Lagrangian
optimization problem:

o, [y, (WX, +b)-1]=0 7, =1,../ (12)

One b value may be obtained for every support vector
(with a; > 0). Burges (1998) recommends that the average
value of b be used m the classification. With this sclution,
the SVM classifier becomes

F(X) = sgn(W e X+ b) =sgn( T y,04(%; @ X)+b)

W0y =0

(13)

Note that, in Eq. 13, one only needs to make use of X, v,
and «; of the support vectors, while X is the input vector
to be classified. When a linear boundary 1s inappropriate
(i.e., no hyperplane exists to separate the two classes of
data), the extension of above method to a more complex
decision boundary 1s accomplished by mappmg the input
vectors XeR® into a higher dimensional feature space H
through a non-linear function ¢: R* - H. In H, an optimal
separating hyperplane is then constructed using training
data in the form of dot products $(X)*¢ (X)) mnstead of the
XoX, term in Eq. ©. To avoid the expensive computations
of LX) m the feature space, 1t 1s simpler te employ
a kernel function such that

K(X,.X) = (X)X (14)
Thus, only the kernel function is used in the training
algorithm and one does not need to know the explicit form
of ¢. The computation in {15} results in some restrictions
on the form and parameter values of non-linear functions
that can be used as the kemel functions. Detailed
discussions can be found in Vapkin (1998) and Burges
(1998). Some commonly used kernel functions are:

Polynomial function:

K(X,X) = (X, X, +1) (15)
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Fig Z: Fepresentation of (a) linearly separable (b) non-
lineatly separatle
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Sigmoid function:

K(X, %) = ! (17
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Where, d iz a postive integer and o, v and & are real
constantz. These four parameters must be defined by the
user prior to WL tmining With the use of a kemel
function, the WM capatle of perfonming non-linear
classification of input X hecomes,

3 (18)

LAY

f()= Sgn[ . o (g, ) + ‘DJ

The hyperplane and support wectors used to
separate the lineatly separable data are shown in Fig. 2a
And the hypemplane and support vectors used to separate
the nondineatly separable data are showm in Fig 2b
Fadial basizs kernel finction with pl = 10 used for this
nonlinear classification. Individual colors represents
particular each class of data.
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Fig 3: Detailed description of proposed work
FROPOSED WORK

In claszsification, a systermn is trained to recognize a
type of example or differertiate hetween esamples that fall
in separate categories. Inthe case of computer wision, the
examnples are representations of photographic irages and
the task of the classafier is to indicate whether or not a
specific object or phenomena of interest is present in the
image In order to siccessfilly accomplish this, the
clasaifier must hawe sufficient prior knowldedge ahout the
appearance of the object. This study is tying to recognize
the scenes of two different categories called WIT-street
and MIT-highways The detaled descripion of our
proposed wotk iz showm inFig 3.

The sample itrages of scenes are taken from the
Ponce Research Group (waarw-owral wivc edufponce gm/
data) which containg 15 different scene categories with
250 sarrples each Invariant moment 1z used for extracting
the features from the images/scenes. Monnalization is then
applied using Zero-mean nortralization method in order to
maintain the data within the specified mnge and to
itrprove the performance of the classifier. Support Vector
MMachine iz trained to recognize the scene categories.

IMPLEMENTATION

Fadial basizlkemel fonction iz ueed in SV for scene
clasasification wath pl = 10. Kemel function is trained to
find the optimal hyperplane to separate two different
categories of scenes and mestimize the margin between
the two claszes of data. In Tmining phase, 200 samples
are used incuding 100 samples from WIT-street and
100 samples fom MIT-lighways Intesting phase,
200 more sarrples are used including 100 samples fom
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Fig. 4: Optimal Hyperplane that separates MIT-street and
MIT-highways scene calegories

MIT-street and 100 samples from MIT-highways. The
input images are of (256x256) pixel size and it is divided
into 4 blocks of sub-images. Invariant Moments are
calculated [rom each single block of sub-image using the
equations mentioned in section 11. From each single block
seven moments are calculated. Thus (4«7 =) 28 values are
calculated and used as features for each image in each
scene category. Zero-mean normalization method is
applied to the extracted features. Normalized features are
given as input to Support Vector Machine for training to
recognize the scene category. The optimal hyperplane of
trained radial basis kemel function that separates two
different categories of data is shown in Fig. 4.

DISCUSSION

This study discusses the scene/image classification
problem using invariant moments and SVM. Image
Data is taken from Ponce Research Group (www-cvr.ai.
uiuc.edu/ponce_grp/data). Invariant Moment is applied in
all the scene categories by dividing the image into 4
blocks  of sub-images without any preprocessing.
Supporl Veclor Machine is trained 1o recognize scene
categories called MIT-street and MIT-highways. Radial
basis kernel function finds its optimal hyperplane with
the following data:

Execution lime 10.6 sec

Status = OPTIMAL_SOLUTION
Hyperplane = 13009.216875

Margi = 0.017535

Support Vectors = 79 (39.5%)

The final classification results are like this: True
Positive is 81%; True Negative is 19% and False Positive
85%; False Negative is 15%. Average classification rate is
83.0%. Total time taken including data preparation,
training and testing phase is 38.265 sec.

CONCLUSION

This study concentrates on the categorization of
images as MIT-street scenes or MIT-highways scenes.
Support Vector Machine with Radial basis kemnel function
are applied together to solve this classification problem.
We have achieved 83.0% as an overall classification
rate. This research can be further extended to classify
other categories (www-cvr.ai.uiuc.edu/ponce_grp/data) of
scenes (industrial, kitchen, inside-cily, mountain, [orest
and etc.) with other kemel functions in SVM. This
complete work is implemented using SVM Toolbox in
Matlab 6.5.
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