M International Journal of Soft Computing 3 (2):134-138, 2008
We]l

EAL . sl ¥ [SSN: 1816-9503
Online © Medwell Journals, 2008

An Adaptive Approach for Parallel Simulated Annealing

A Ivemperumal and 23.P. Rajagopalan
'Department of Mathematics, *School of Computer Science and Engineering,
Dr. M.G.R. University, Chennai-95, India

Abstract: In this study, we analyse alternatives for the parallelization of the simulated annealing algorithm
when applied to the placement of modules in a VI.ST circuit considering the use of PYM on an Ethernet cluster
of workstations. It 15 shown that different parallelization approaches have to be used for lugh and low
temperature values of the annealing process. The algorithm used for low temperatures is an adaptive version
of the speculative algorithm. Within this adaptive algorithm, the mumber of processors allocated to the solution
of the placement problem and the number of moves evaluated per processor between synchronization points
change with the temperature. At high temperatures, an algorithm based on the parallel evaluation of
independent chains of moves has been adopted. Tt is shown that results with the same quality of those
produced by the serial version can be obtamned when shorter length chains are used m the parallel

implementations.

Key words: Adaptive algorithm, parallelization, speedup analysis, PVM, VLST

INTRODUCTION

We propose a new adaptive technique for the
parallelization of the Simulated Annealing (SA) algorithm
applied to the placement problem in VLSI design,
considering the use of PVM (Geist et al., 1994) and a
dedicated Ethernet cluster of homogeneous workstations.
SA was mitially proposed by Kirkpatrick for the solution
of complex optimization problems and has shown to be
effective in the solution of a large set of applications
(Huang et al., 1986, Laarhoven and Aarts, 1987).

Within SA, the temperature parameter can deeply
affect the algorithm behaviour during its execution. In
this research it 13 shown that such dynamic behaviour
offers new adopted parallelization approach consists of
changing the used algorithm according to the optimization
process phase. In fact, different parallelization techniques
are used for high and low temperature values. This aspect
can be regarded as the first level of adaptation mtroduced
1n the algorithm.

The algorithm used for low temperatures itself is an
adaptive version of the speculative algorthm proposed
by Sohn (2005). In this adaptive algorithm, the number of
processors allocated to the parallel machine and the
number of moves evaluated per processor between
synchronizations change with the temperature.

At high temperatures, an algorithm based on the
parallel evaluation of independent chains of module
moves has been adopted. It 13 shown that results with the

same quality as those produced by the serial version can
be obtained when shorter length chamns are used m the
parallel implementation.

THE SPECULATIVE ALGORITHM

Let S be the set of parallel moves and 3" 3 be the
subset of all non-conflicting moves belonging to S. The
application of concurrent moves in S* to an initial
configuration must produce the same final result as the
application of any sequence of these moves. Therefore, it
15 always possible to seralize the moves m S The
speculative algorithm proposed by Sohn (2005) is based
on the idea of suing serializable sets of moves to avoid
the generation of parallel conflicting moves.

In the implementation proposed by Sohn, the
sequence of moves processed by the serial algorithm 1s
strictly reproduced in the parallel version.

To ensure that the parallel version will generate the
same decision sequence as the comesponding semnal
version, the processors use the same speed to generate
the sequence of pseudo random numbers. Figure 1 shows
the speculative algorithm rumning 11 (not 16) iterations
in 3 steps. The first step shows N = 7 processors running
7 simultaneous iterations. In this step, processors 4, 5 and
7 accept their moves (shaded boxes indicate accepted
states). In this case a processor 4 acceptance is taken and
the decisions taken processors 5, 6 and 7 are mistaken.
When proposing a move, each processor speculates that

Corresponding Author: A. Iyemperumal, Assistant Professor Department of Mathematics, Dr. M.G.R. Umversity, Chennai-95,

India

Int. J. Soft Comput., 3 (2): 134-138, 2008

Pl Pl Pl Pl
Processor number
Pl Pl Pl Pl Pl
Step 1 5 [7 8 “ 11
Tteration number
Pl Pl Pl Pl Pl
Step 1 10 1 12 . 14 . 16

Fig. 1: The speculative algorithm

all previous moves in the same step will be rejected. To
follow the serial algorithm path, the moves generated by
processors 5-7 should have been applied to the data base
with the modifications introduced by the accepted move
generated by processor 4.

Since the iterations 5-7 of the first step are discarded,
m the second step the seven processors evaluate
iterations 5-11. The processors receive the index of the
accepted move and based on that information, update
their local database and evaluate the ndexes of the next.
Note that at each step all the processors generate the
complete sequence of pseudo random numbers which can
locally modify the data base by receiving only the index
of the accepted move at the previous step.

Let N be the number of processors and M the size of
the serializable set S at each step. At temperature T, the
acceptance probability of an individual move is given by
a(T). The probability Pr{M = m) for the set S to have size
m, 18 given by,

Pr(M = m) = a(T)*[1-a(T)*'*m (D

The expected size of the serializable set S 13 given by:
W N

E[s]=[1-a(T)] *N+ S a(T)*[1-a(TF " *m ()
m=1

THE ADAPTIVE ALGORITHM

The technique proposed to achieve an efficient
parallel implementation of the SA algorithm in low
temperatures 1s an adaptive version of the speculative
algorithm. In high temperatures, a techmque based on
assigning independent move chains to different
processors has shown to be more effective. The number
of accepted moves gives a clue on the ideal point where
a change of approach should be performed.

The restriction imposed by Schn’s algorithm,
concerning the generation of exactly the same sequence

135

of moves produced by the serial version, is too strong.
The wnportant 1ssue 1s in fact to keep the same proportion
of accepted and rejected moves which occurs in the
serial algorithm. In this way, the first modification
introduced in the original speculative algorithm was to
relax the need for the parallel algorithm to execute the
same sequence of moves that the serial algorithm does.
With this modification, each processor generates its own
independent sequence of pseudo-random numbers. At
each step, the winner processor sends to all others its
accepted move.

The second modification 1s related to the process of
deciding when to reduce the temperature during the
algorithm iterations. In the original speculative algorithm
the master has a counter which stores the summation of
the sizes of the serializable sets at each step. When a
sufficient number of states is detected, the master reduces
the temperature and broadcasts a message for all slaves to
do the same. The modification introduced is based on the
determination of the expected size of the serializable set at
each step. Let nsteps be the number of moves that should
be tested at each temperature to reach an equilibrium
condition. Equation 2 gives the value of E[S] at each step.
Therefore, if it 1s possible to determine the acceptance
probability a(T), the number of steps (1)) that need to be
processed at each temperature can be evaluated as:

_ nsteps

~ E[S] 3)

Whenever a new temperature value 1s determined, the
value of h is evaluated by the master and sent to the
slaves. The value of a(T) is obtained by extrapolating the
known values corresponding to the last processed
temperatures. Tn addition, the policy of validate the
accepted move proposed by the processor with the
lowest index has been relaxed. The first accepted more
notified to the master by a slave 1s validated. With this
scheme, all subsequent acceptance messages can be
discarded by the master.

A first version of the algorithm with the introduction
of these modifications has been implemented. The quality
of the solutions produced by the parallel algorithm was
sumnilar to that achieved with the serial version. However,
very disappoint results were achieved for the execution
time, confirming that the commurmcation cost within the
environment of an Ethernet cluster of workstations is not
negligible at all. In fact, for small circuits, the times spend
on the proposition and evaluation of a new move is
certainly much smaller than the time spent on message
communication. Therefore, to achieve an effective
speedup, it 18 necessary to analyse the adaptive algorithm
taking the communication cost into account.

Int. J. Soft Comput., 3 (2): 134-138, 2008

SPEED ANALYSIS

Let t, be the time spent on the processing of the
serial SA algorithm at a single temperature value. t, is
given by:

t, = nsteps™t, (4)

t,= Processing time for a single move.
The time spent by the parallel version of the
algorithm (t,) is given by:
_ nsteps

= W(t1+t2 +Pr(M = O)t,) (5

Commurnication time between the master
and the slaves.

Pr(M=#0) = Probability for at least one of the N
processors to accept a move.

t, =

Pr(M'0) [1-{1-a(T))"]

The last term in Eq. 5 is included to take mto
consideration the need for all the processors to update
their copies of the data base when at least one move is
accepted. Therefore, the speedup is given by:

t,*E[S
speedup = s _ it (6)
t, t+t +Pri(M=z0)*t
Ift, = K*t, @)
E(3
speedup = ¢ (8)
1+ K+ Pr{M = 0)

If the communication cost is negligible, the value
of K is zero and the speedup will be in the range given
by E[S]/2 at ligh temperatures and by E[S] at low
temperatures.

SPEEDING-UP THE ALGORITHM

For the environment under consideration in this
study, where the communication cost can be high
compared with the cost of proposing and evaluating a
move, there 1s a potential great benefit in increasing the
number of moves evaluated between synchromzations.
An alternative to achieve this effect is to increase the
nmumber of processors in the parallel machine. However,
this should be wiser to increase the number of moves
evaluated per processor between synchromzations. This

solution does not increase the value of K (Eq. 7, 8) since
each processor will still send a single accepted move (if
any) at each step.

Let n be the number of evaluated moves per
processor between synchromzations. Eq. 5 can be
rewritten as:

_ nsteps
B8]

(n*t + t,Pr(M = 0) *t,) ()

P

Pr’(M=#0)= Probability that at least one of the N
processors accepts a move,

Pr(M # 0} = [17 (1- a(T))“*“]
and
ES]=[1-a(T)[" *n*N

n* N -1 (1 0)
+> a(T)*[1-a(T)|" *m
m=1
The speedup equation can then be written as:
t, *E*[S
speedup = s _ E'S] (1D
te 0¥+t +PrM = 0)*t
or
E|S
speedup = [] (12)

1+ K+ PriM # 0)

It 13 important to note that for very small values of
K, the speedup tends to be reduced. Therefore, it 1s not
effective to have each processor evaluating more than
one move between synchronizations in these cases. On
the other hand, if K>>n, the speedup value increases
linearly with E’[S].

From Eq. 12 we can see that, for a constant K, the
optimal value of n is dynamic and changes with the
acceptance probability a(T). This conclusion suggests the
sue of an adaptive scheme where the value of n changes
with the temperature.

Since, E’[S] and n are functions of the acceptance
probability, it 1s reasonable to think that the speedup can
be optimized by changing the value of K. Since, only a
single message can flow through the Ethemet at any
particular time mstant, the value of K 1s clearly a function
of the number of processors exchanging messages.
Therefore, Eq. 7 can be rewritten as:

K[N]= tZEN] (13)

1

Int. J. Soft Comput., 3 (2): 134-138, 2008

Table 1: Results for the circuit with K =50

Table 3: Results for the parallel chain method

Serial Adaptive

Cost Time(s) Cost Time(s)
Average 1915 63.78 1942 86.02
Std. Deviation 28 0.60 20 746
Table 2: Results for the circuit with K =38

Serial Adaptive

Cost Time(s) Cost Time(s)
Average 61929 10.343,17 62261 2671.00
Std. Deviation 1193 107.84 1288 32.01

The measured values of t,[N] for N between 2 and 10
have shown that the communication time varies linearly
with the number of processors mn the virtual machine.

Since, the Ethernet cluster used in the experiments
consists of 10 workstations, the optimization of the
speedup value has been calculated exhaustively for all
values of N between 1 and 10 and for all values of n
between 1 and 20.

The following Table 1 and 2 show the results
achieved with the optimal choice of N and n after several
runs of the SA algorithm for the circuits with K = 50
(100 modules, 300 nets) and K = 3,8 (1024 modules, 3000
nets). These results refer only to the domain of utilization
of the proposed adaptive algorithm (a(T)<0,2).

Results presented in Table 1 and 2 confum that
the method is not effective for small circuits, even
though an improvement by a factor of 5 has been
achieved in relation to the non-adaptive speculative

algorithm.
THE ALGORITHM FOR HIGH TEMPERATURES

The adaptive algorithm described is inefficient for
high temperatures because, at this phase of the annealing
the cardinality of the serializable set 1s too small To
overcome this difficulty, for each temperature, each
processor runs the full serial annealing algorithm on its
local database. After computing the different chaing of
moves, a global synchronization s performed and the
lowest cost chain is chosen as the starting point for the
next temperature value. The expectation to achieve
speedup is based on the assumption that, within the
parallel algorithm, shorter move chains can be used at
each processor without impairing the solution quality.

In all previously descrnibed algorithms, the equilibrium
at a particular temperature is achieved through the
processing of a big enough number of proposed moves.
This number (nsteps) is directly proportional to the
number of modules in the circuit to be paced (mmodules).

nsteps = KSTEP * nmodules (14

137

Circuit_1 Clircuit._ 2

Serial Parallel Serial Parallel

tirme(s) time(s) time(s) time(s)
Average 26.16 14.96 232994 808.47
Std. Devin. 0.54 0.26 37.75 10.68

The constant KSTEP has been determined through
the analysis of the quality of the generated solution in a
large number of runs of the algorithm. To the circuits
tested, the value KSTEP = 15 has been selected as a good
trade-oftf between solution quality and the computational
cost of the algorithm. The possibility of reducing the
value of KSTEP is the basis for expecting some
speedup m the parallel version of the algorithm.
Experimental results have shown that this hypothesis 1s
true: results similar to the serial version were achieved
using KSTEP = 5.

Table 3 the results achieved with the
application of the parallel chain method for 2 circuits:
CIRUCTIT 1 with 100 modules and 300 nets and
CIRCUIT 2 with 1024 modules and 3000 nets. The values
shown are the average results after 20 runs of the
algorithm considering the use of KSTEP =5, aand N = 10.
The quality of the results achieved has always been
similar to that obtained with the serial version of the
algonthm. From Table 3 we can see that, for large circuits,
the speedup gain is very close to the adopted reduction
factor applied to KSTEP.

shows

CONCLUSION

The parallelization of the SA algorithm is non-trivial
and considering its use to solve the placement problem on
an Ethernet cluster of workstations, produces reasonable
speedup only for large circuits.

The temperature parameter has a big impact on the
SA algorithm; for an effective
implementation of a parallel version of the algorithm
different approaches had to be used for high and low
temperatures.

The adopted approach for low temperatures is based
on an adaptive version of the speculative algorithm
proposed by Sohn (2005). Within this adaptive algorithm,
the number of processors allocated to solve the problem
and the number of moves evaluated per processor change
with the temperature. In the practical experunents
performed, the adaptive algorithm started to be used when
the acceptance probability fell below 20%. Considering
the use of 10 processors within the Ethernet cluster and
the placement of a circuit consisting of 1024 modules and
3000 nets, a speedup of 3,87 has been achieved. For small

behaviour of the

Int. J. Soft Comput., 3 (2): 134-138, 2008

circuits the speedup achieved was below 1, but it
improved by a factor of 5 the speedup obtained with the
non-adaptive speculative algorithm.

The algorithm wused in high
processes independent chaing of module moves in
parallel. The speedup resulted from the use of shorter
chain lengths then would be necessary to achieve results
of the same quality with the serial version of the
algorithm. Within its domain of operation (acceptance
probability greater than 20%), a speedup factor of 2,88
has been produced considering the use of 10 processors
and the placement of a circuit with 1024 modules and
3000 nets.

temperatures

REFERENCES

Geist, A. et al., 1994. PVM3 User’s Guide and Reference
Manual. Oak Ridge National Laboratory.

Huang, M.D., F. Romeo and A.S. Vincentelli, 1986. An
Efficient General Cooling Schedule for Simulated
Amnnealing. IEEE International Conference on CAD.

Laarthoven, PJM. and E. Aarts, 1987. Simulated
Annealing. Theory and Applications, D. Reidel
Publishing Comparny.

Sohn, A, 2005. Parallel N-ary Speculative Computation of
Simulated Annealing. IEEE. Trans. Parallel Distribu.
Sys., 6: 10.

138

