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Abstract: In this study a comparison between two approaches in MBPC is made, the first one based on

nonlimear programming NLP and the second based on a novel multi-agent controller for nonlinear models.
Although, a nonlinear model predictive approach can achieve good performance and constraints fulfillment,

its computational burden does not allow a real-time 1mplementation and restricting the application to slow
processes. In order to decrease the complexity of the controller, we propose a novel MPC scheme based on

multi-agent controller approach. Simulation results show the effectiveness of the novel MPC scheme in

reducing the computational burden, while achieving good results compared to NLMPC controller. Hence, the
proposed approach has the potential to be applied to systems with faster time constants.
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INTRODUCTION

Noenlinear Model Predictive Control (NMPC) 1s a
powerful approach to deal with the complexity of the
related nonlinear control problem, if an economic
objective function 1s employed. One major element of any
NMPC implementation takes difficulty into account to
solve nonlinear dynamic optimization problem to obtain
optimal control trajectories. During the past decade the
umnplementation strategies of NMPC has been successfully
applied to relatively slow plants and the most wmportant
problem discussed in the TFAC Workshop (2006) is how
to implement this control strategy on relatively fast
systems. In NMPC, the optimization problem of finding
the sequence of actions can be of large size, in particular
when the control horizon over which actions are
computed becomes larger, the number of variables of
which the controller has to find the optimal value
increases quickly. Also, the resources needed for
computation and memory may be high, increasing more
when the prediction horizon increases.

Finally, the feasibility of the solution to the overall
control problem of the system is not guaranteed.
However, fast dynamic systems cause the need of short

sampling time and the dynamic optumizer must solve the
problem in a time span less than the sampling time, a
necessary fast solution of the optimization problem 1s
then so difficult to obtain within the sampling time. Most
of the research has focused on computations carried out
by one agent. In Negenborm ef af. (2004) a survey how a
distributed multi-agent MPC setting can reduce the
computations of a single MPC agent. In Didier (2006) and
Aswin (2006), a distributed model predictive control is
considered and the proposed strategy allows dramatic
reduction of the computational requirement for solving
large-scale nonlinear MPC problem due to computation
parallelism.

The goal of this research is to develop a method that
minimize the computational time requirement in NMPC
strategy. The reducton of computational time 1s
approached by a novel structure of MPC scheme, in
which the concept of multi-agent 15 applied. An algorithm
for controller reconfiguration for non-linear systems
based on a combination of a multiple model estimator and
a generalized predictive controller is presented by Kanev
and Vergaegen (2000), in which a set of models is
constructed, each corresponding to a different operating
condition of the system and interacting multiple model
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estimator is utilized to yield a reconstruction of the
state of the non-linear system. A parallel controller
structure for system that shows multiple modes 1s
presented by Kamalasadan (2007) and in the multi-agent
model predictive control considered here, there are
multiple agents, each of which uses a model of its
subsystem to determme which action to take. The
proposed novel multi-agent controller reposes on the
fact that each system can be decomposed into a
sub-system and a control problem is associated with its
own goal. The action of each agent, can be performed
on the system has to be chosen in such a way that the
task of the system is achieved, keeping in mind the
dynamics of the system and possible constraints on the
actions. In this study, we show the reduction in
computational time in the case where only constraints are
input constraints.

MATERIALS AND METHODS

This study is the part of research works in thesis
carrying on predictive control of fast dynamics systems.
The whole approach has been illustrated by sunulation in
the Matlab 6.1 environment.

Novel multi-agent controller: The main idea of the
proposed concept model predictive control 1s to transform
the nonlinear optimization procedure used in a standard
way into sub-problems, in which the global task can be
resolved. To reduce on-line computational requirement
and improve control performance of the whole system, a
block diagram of the novel concept of model predictive
control is proposed in Fig. 1. The objective of this
approach 1s to regulate the system output to the expected
values and satisfying the above constraints. This can be
done as follows. The global system can first be
decomposed on sub-systems independent of one another,
for each sub-system an MPC unit sub-system is made
constituting the agent controller 1. Based on analytical
solution u; which correspond to the solution of the local
receding horizon sub-problem, a logic unit switching tries
to find the best sequence of actions given the desired
trajectory. A sequence of actions that bring the global
system 1n a desired trajectory are made and avoid any
violated constraints on actions. A fuzzy controller is also
made on , in objective to take handle the results of the
actions on the global system and momnitor the closed-loop
system 1if necessary.

The multi-agent controller consists of synchronizing
the outputs of the sub-models with the output of the true
system at every decision step. In fact, at every decision
step an MPC agent send its action, observes the true
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Fig. 2: Model based reflex agent

system and updates its control. Based on the model based
reflex given in Fig. 2, each agent should strive to do the
right thing, based on what it can perceive and the actions
1t can perform. The right action 1s the one that will cause
the agent to be the most successful. In the multi-agent
context, the controllers are the agents and the non linear
plant is the environment.

A performance measure J, used as an objective
criterion for success of an agent's actions, based on the
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Fig. 3: Lingwstic values and membership functions (a)
MF for error, (b) MF for rate of change error, (¢)
MF for modified control action

Table 1: Fuzzy rules used in the infernce system

It And Then

e Ae A

Negative Negative Positive big
Negative Zero Positive
Negative Positive Zero

Zero Negative Positive
Zero Zero Zero

Zero Positive Negative
Positive Negative Negative Big
Positive Zero Negative
Positive Positive Negative Big

output errors €, for each agent’s action and choosing that
corresponds to the mimimum. The performance measure
used is given by: I, = g,-¢,, ™, 4>0.

Where: €, = Vp.rVa. Yoo Lhe desired set point and y,;:
The plant output after agent’s action i.

A Mamdani-type FIS is used as fuzzy inference
system (Sanjuan ef al., 2006) it is designed as multi-input,
single-output system where error (e) and rate of change of
error (Ae) are the imputs, added control action (Au) 1s the
output. Triangular membership functions are used to
relate variables with the degree of membership to
linguistic values of their corresponding fuzzy variables.
Three linguistic values are defmed for both error and rate
of change error: Negative (N), Positive (P), Zero (Z). Five
linguistic values are defined for change control action: Big
Negative (BN), Negative (N), Zero (Z), Positive (P) and
Big Positive (BP). Figure 3, shows the membership
relating input variables with degree of
membership of the fuzzy variable to each linguistic value
and Table 1 presents the nine rules in the rule base used
to construct the FIS.

functions

Sub-system decomposition: In the proposed concept, the
global problem is typically broken up into a number of
smaller problems. By decomposing the system into
sub-systems and sub-problems, the computational burden
can be lowered. A procedure of fuzzy modeling based on
TS fuzzy model is then considered (Abonyi, 2003), in
witch the rule has the following form:

Ri:if z(k)is A, and ... and z,(k)is A,
Then
Y+ =Y a, yik—i+D+ S butk—i-n, +1)
i=1

i=1

Where the element of z(k) are a subset of {y (k),..., y
(k-n),...u(k-1),... u (k-n,)} A (z) is an antecedent fuzzy
set for the 1 = 1... nth input in the jth rule and a;, b, are
linear model parameters. The TS model is than linear
combination of linear models A triangular membership
function used and arranged by Ruspim-type partition
keeping the sum of the membership degrees equal to 1.
Therefore the global output can be expressed as:

3
v, k+ =Y yk+D

1=1

With fixed order equal to two, the local model has the
following regressors:

yik+Dh=ayk-D+a,yk-2)+buk-1+bulk-2)
which can be rewritten in to state space form of:

x,(k+1) = A x(k)+ Bu(k)
vk =Cx (k)
A
A =
aZ

MPC unit sub-system: A block diagram of MPC unit for
each sub-system 1s shown m Fig. 4. This scheme

Where:

1
O}Bi—[bl b,]:C=[1 0]

constitutes the work of each agent in which the action 15
sent to the nonlinear system and modified with a feed-
forward neural network i order to mimimize the control
error g by changing the regressor value nputs action
using a Least Square Estimation.

In this research, the neural network is represented by
feed-forward single-input single output neuron (Liu, 2001)
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Fig. 5: Neural network architecture

and it is consisted of three hidden layer nodes with
tangent sigmoid transfer function and one output layer
with linear transfer function. The architecture of the neural
network is given in Fig. 5 and described by the following
function:

fip (A, 8) =W, tanh (Wg, + b))
My
+b, = Z:(V\szf(wljs1 +b)+b,

=1

Where:
N, : The number of hidden neuron.
g The nput of the network.
W, The weight of hidden layer.
B, The bias of hidden layer.
W, The weight of output layer.
b, The bias of output layer.
W The jth element of W .
W The jth element of W,.
by The jth element of b,.
During the identification procedure these

parameters are collected into the B parameter vector, that
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is: 6 = {w,, w,, b, b,}. In the optimization procedure, the
first and second layers are selected randomly. They are
uniformly randomly distributed between 0.5 and -0.5. The
input and target are normalized with a mean value of zero
and standard deviation of 1. The neural network tries to
optimize the parameters 8. The method of Levenberg
Marquardt was designed for the optimization due to its
properties of fast convergence and robustness. Tt leans
on the techniques of the nonlinear root mean square
answering to:

Min Z((Fu (A0, —£))

The main incentive of the choice of the algorithm of
Levenberg Marquardt rests on the fast guarantee of the
convergence toward a minimum. The method of LM
consists in determining once again 0, according to:

6, =0~ (I +p) ' JE
Where:

Oy
a0

J=

is the Jacobian matrix that contains first derivatives
of the network errors with respect to the weights
and biases and E i1s a vector of network error. The
Tacobian matrix is computed through a standard back
propagation. The recursive least square method is used
on line has end to express the tracking error in control in
order to optimize the control law (Wenzhi et al.,, 2006). In
order to find the action of each agent, the model of each
sub-system 1 1s represented by a discrete model of the
form:

x(k+1)=Ax &) +Bu k)
y.(k)=Cx (k)

(1)

The control action sent to the nonlinear system
consists of its local optimal control taken after mimmizing
a local cost function given by:

Hp 2

V.ik)=3

1=Hw

2 Hu-1

2

1=0

v (k+i/k—t(k+1) Au,(k+i/k)

Q1) Ri1)

Where, H,, H, are the minimum and maximum
prediction horizon, H, is the control horizon and Q, R are
a suitable weighting matrices. Consider the sub-system
given by (1), the best prediction of x (k + H,|k) can be
written as:
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And the prediction local predictive sub-system for future time instants as:

(k+1ky ] ) ) .
YI( ‘ ) C1Ai CIBI
. H, -1
CAH“ C1 Z A1B1
y.(k+H,|k) o

= CAMT x| L
C.SAB,

=0

yi(k+H, +1/k)

H,-1
. C S A'B

C1A1 ' [ 1.l:Zﬂ ' J7
_yl(k+Hp‘k) |- .

w(k-1)+

Which can be written m the following matrix form as

follows:

Y(k) = Px(k) + Tulk — 1) + ®@AU (k)
And the cost function can be expressed as:

V() = [Y() - Tt} + AU,

Where:
V() = |y + Ho K)o v+ Hy [0 [ ;
T(k) = 1+ Hy[K) k+ 1, 0)]
Au(l) = [ Au(k]k)e Auk+ H, -1K)]

By defining the tracking error:
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(0 = 0
CUAB, + B 0
Au, (k|k)
H,-1
Co Y AB CB,
1=0
H,o ’
CYAB C,(AB, +B) || A (k+H, —1]k)
1=0
H, -1 H,-H,
Co O AB C, > AB,
j=0 i=0 ]

e(k) = T(k) - Wx(k) - Tulk — 1)
The cost function can be rewritten as:
V(k) = |@Au(k) - s(1<)||2Q +[|laud|;

Which 1s mmimal to the following optimal action given by
Maciejowski (2002):

Au(k)=(@"Q®+ R) '@ Qe(k)

The constraints are considered as input saturation
constramts of the type:

u(k)<u(k)<u k)
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Where u, constitutes the action of each agent tuned
by a neural network and u,, u; constitute respectively the
lower and the upper limits. The control designer used in
the proposed concept has to select the tuning parameters,
H,. H, H, and R to meet certain stability and performance
objectives.

RESULTS AND DISCUSSION

In this study, simulations are conducted to illustrate
the validity of the proposed identification and predictive
control concept. A nonlinear process with output
dynamic nonlinearity (Wang, 2000) is considered and
described by the following equation:

v(k)=0.9vik—1)— 0.4vik—2) + 0.9u(k— 1)+ 0.1lulk —2)
—wik-1+v(k)
1+ y(k— 1Y

vy = Y&

This model 1s used to generate output data for a
random input distribution from -2 to 2 and a Least square
estimation 1s applied to the identification of a Volterra
model given in Table 2.

The procedure of identification and modeling have
been applied to the whole measures input /output come
out of the global system, driving to the different following
sub-system models with an order equal to 2. The modeling
performance was measured by the Variance of Accounted
For (VAF) index, defined by:

var(y - §>]

VAF = 100%[1—
var(y)

Where y is the true process output and ¥ is the
model output obtained by simulation of the overall model.
In our case study it is evaluated for 99.9998 %.

Jomw 1) [o ], Jozxw 1] [o31]
A= 0328 0 B= 00328 = 04386 0 B= 00122

1 1 0 0o93 1 09463
A3 = ,E% = ;A4: ;B4 = )
-1.0882 0 1.0882 Q1791 0 —-01774

C_,=[10L

The proposed concept 1s used to control the
nonlinear system given by the regressor
Table 1 subject to: 0 < u (k) < 0.35. The tuning parameters
are Hw = 1, Hp =35, H,= 5,R=0.1 for all agents. In
Fig. 6 and 7 we present respectively the closed loop
respense in the unconstraint and constraint case.

value m

3(2): 147-154, 2008

Table 2: Volterra regressor value

Regressor Value
1 0.2616
y k1) 0.2116
y k-2) 0.1314
k-1 0.2859
u k-2 0.4579
u (k17 0.2616
u k-1 uk-2) 0.4822
u (k20 0.2616
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...... Setpoint
n — NMPC
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Fig. 6: Closed-loop response unconstraint case. (a)

Outputs: Dotted line (setpoint), solid line (NMPC),
Dashed lmne (proposed concept), (b) Control
signals: Dashed line (proposed concept), Solid

line (NMPC)
27 — NMPC
— Proposed concept
1.51 --- Setpoint
]-
A 1
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(b)0.4'-
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Fig. 7. Closed-loop response constraint case. (a)

Outputs: Dotted line (setpoint), solid line (NMPC),
Dashed lmne (proposed concept), (b) Control
signals: Dashed line (proposed concept), Solid

line (NMPC)

Based on the final error and rate of change error
evolution, the action of the fuzzy supervisor is given by
Fig. 8.
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Fig. 9: Closed-loop response to disturbance and added
noise. (a): Outputs: Dotted lne (setpoint), solid
line (NMPC), Dashed line (proposed concept), (b):
Control signals: Dashed line (proposed concept),
Solid line (NMPC), (¢): Fuzzy action supervisor

In order to verify the proposed concept ability of
rejecting disturbances, an output load disturbance of
value 1.5 1s introduced at the instant k = 150. An additive
sequence of random noise with a zero mean value and a
variance of 0.5 increase the nonlinear system under
action. The results of simulation are reported in Fig. 9.

In the novel concept ,we can see the disturbance 1s
elimmated, showmg a satisfactory ability to reject
disturbances better than in the standard way. The fuzzy
supervisor presents with his intelligent action a good
performance in control error for the global nonlinear
system. In Fig. 10, the time required to compute the
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Fig. 10: Computation time comparison
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Fig. 11: CPU time comparison (Solid line: NMPC, Dashed
line: proposed concept)

control input at each time step for the two approaches 1s
plotted. On average, the NMPC method was about 10
times slower than the novel approach. The simulations
results presented in the following have been obtained in
the Matlab 6.1 environment running on a 2GHz Pentium IV
Intel where the clock precision is 0.016 s.

The results of simulation show that the execution
time varies from a meanimngful way of a step to another
step and these variations are owed to the change of the
reference essentially and long prediction horizon. We
have reported in Fig. 11 and 12, a comparison study of the
CPU-time consuming for both approaches. We remark that
the novel concept presents a good performance m time
consuming for long prediction horizon and the nonlinear
MPC controller is too CPU time consuming as well as a
number of samples are increased which cammot be
implemented m real time.
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8
Prediction horizon

Fig. 12: CPU time comparison as a function of the
prediction length (Solid line: NMPC, Dashed
line: proposed concept)

However, in practice each MPC problem of the
mndividual agent in multi-agent model predictive control
can run in parallel, i.e, at the same time, instead of in serial,
i.e., one agent after another. To estimate how much time
we can gam by performing the computations m parallel
mstead of mn serial, the following procedure 1s adopted. By
timing the time it takes to perform the computations of
each agent and then take the maximum over that as
approximation of the time 1t would require for all agents to
solve their problems n parallel, the maximum time have a
value of 1.1507 s which is typically small than the serial
computing and thus improving a strong points approach
that can solve problem computation for fast dynamics
systems. Let T (equal to 4.438s for 300 samples) be the
time used for serial jobs and t (equal to1.1507s) be the time
used to calculate in parallel in C (equal to 4) computers.
The efficiency of the parallel computer is defined by
T/(t=xC). The performance 1s high as the efficiency
approach 1 which is equal to 0.9642 in our study.

CONCLUSION

This study has dealt with the problem of MPC for
nonlinear discrete-time systems when a limitation on
control taken into account. The design method proposed
here is based on multi-agent model predictive centrol
techniques. Tt has been shown that this proposed concept
is effective for solving the global goal subject to
constramnts. The computation of the predictive control law
15 easy and does not need an on line optimization
procedure. The contributions of this work show the
performance of the multi-agent controller in time
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computing and enhance the disturbance rejection better
than the classical approach. Numerical example have been
considered to illustrate and discuss the advantages and
limitations due to the complexity of the proposed method.

REFERENCES

Abonyi, T.A., 2003. Fuzzy Model 1identification for control.
Birkhauser Boston.

Abonyi, I.L., F. Nagy and Szeifert, 1997. Takagi Sugeno
Fuzzy Control of Batch Polymerization Reactor. In
Proc. 2nd On-line World Conf. Soft Comput. (WSC2),
pp: 23-27.

Aswin N. Venkat, 2006. Distributed Model Predictive
Control: Theory and applications. Theses. University
of Wisconsin-Madison.

Didier, G., 2006. Distributed model predictive control via
decomposition-coordination techniques and the use
of an augmented lagrangian. TFAC. Workshop on
NMPC, pp: 111-116.

TFAC, 2006. Workshop on Nonlinear Model Predictive
Control for fast Systems NMPC-FS Grenoble, France.

Kamalasadan, S., 2007. A Novel Multi-Agent Controller
for Dynamic Systems based on Supervisory Loop
Approach. In  Press, Special Issue on Soft
Computing on Artificial Intelligence. J. Eng. Lett.,
14: 2-EL. 14 2 10.

Kanev, 8. and M. Vergaegen, 2000. Controller
Reconfiguration for Non-Lmear Systems. Control
Eng. Practice, 8: 1223-1235.

Liu, G., 2001. Nonlinear identification and control, a neural
network approach. Advances in industrial control.
Springer-London.

Maciejowski, TM., 2002. Predictive Control with
Constraints. Prentice Hall, Harlow, England.

Negenborn, RR., B. De Schutter, M.A. Wiering and
I. Hellendoorn, 2004. Experience-based model
predictive control using remnforcement learming.
Technical report 04-020. Delf Center for systems and
control.

Sanjuan, M., A. Kandel and C.A. Smith, 2006. Design and
implementation of a fuzzy supervisor for on-line
compensation of nonlinearities: An instability
avoldance module. Eng. Application of Artificial
Intelligence, 19: 323-333.

Wang, F., 2000. Modeling and control pf processes with
Output Dynamic Nonlmearity. Proc. Am. Control
Conf. Chicago, pp: 240-243.

Wenzhi, G. and R. Rastko, 2006. Neural Network Control
of a Class of Nonlinear Systems With Actuator
Saturation. IEEE. Trans. Neural Networks, Vol. 17.



