M International Journal of Soft Computing 3 (3): 205-211, 2008
We]l

ISSN: 1816-9503

Online

© Medwell Journals, 2008

A Novel Scheme for Candidate Generation for Mining Frequent Patterns

'P.C. Saxena, “Asok De and *Rajni Jindal
'School of Computer and System Sciences, Jawaharlal Nehru University, Delhi, India
*Delhi College of Engineering, Delhi, India

Abstract: With the explosive growth of data, mining information and knowledge from large databases has
become one of the major challenges for data management and mining community. Data mining 1s the extraction
of hidden unpredictive information from large databases. Tt is concerned with the analysis of data and finding
patterns that exist in large databases but are hidden among the vast amount of data. Association rules are one
of the most popular data mming techmques. The first step m mining association rules 1s mining frequent
pattemns. They are particularly useful for discovering relationships among data in huge databases. This study
proposes a novel scheme for candidate generation that generates all the candidate item sets in three iterations.
A new algorithm called AR-mine for association rule mining is also presented that uses the proposed scheme
for candidate generation. A distinet feature of this algorithm is that a candidate item set is generated only when
1t actually encounters an occurrence of that set in the database. Another important feature 1s that it requires
only three scans of the database. A simple hash table is used to store the candidate item sets, which speeds
up the searching process. Our experiments with synthetic data sets and real life data sets show that AR-mine

performs better than apriori, a well known and widely used algorithm for association rule mining.

Key words: Data mining, agsociation rules, candidate item set, frequent patterns

INTRODUCTION

Databases have been used in business management,
government administration, scientific and engineering
data management and many other important applications.
In order to extract potentially useful information from large
databases, a process known as data mining 15 used. Data
mining allows nontrivial extraction of implicit, previously
unknown information in terms of patterns or rules from
vast amount of data. This newly extracted information or
knowledge may be applied to information management,
query processing, process control, decision making and
many other useful applications. In addition to the existing
areas, the widely used new areas like world wide web also
need to use various data mimng techmques to understand
user behavior and his data requirements in a better way in
order to provide better service and to increase business
opportunities (Chen et al., 1996).

The typical data mimng techmques are classified as
association, sequencing and classificatory. Classificatory
algorithms partition output data into disjoint groups. The
results of this classification might be represented as a
decision tree. The sequencing algorithms find items or
events which are related in time such as events A and B
are usually being followed by an event C. Association
algorithms find sets of items that appear together in

sufficient frequency to merit attention. The problem of
mining assoclations from data has received a great deal of
attention.

The problem of mining for association rules was first
introduced in Aggarwal et al. (1993). An association rule
15 a rule that mmplies certain association relationships
among a set of objects in a database. Given a set of items
and a large collection of transactions, the task 1s to
discover the important associations or relationships
among items such that the presence of some items in a
transaction will imply the presence of other items in the
same transaction.

ASSOCIATION RULES

Given a set of transactions, an association rule is an
expression X = Y, where X and Y are subsets of A. Here
A={I.L.,....I} 1s aset of items. Each transaction T 1s
also a set of items. Such a rule means that the transactions
in the database which contain the items in X also tend to
contain the items in Y. Each association rule has a left
hand side known as antecedent and a right hand side
called consequent. Both antecedent and consequent can
contain multiple items. The rule X = Y holds with
confidence ¢, if ¢ % transactions in the database that
support X also support Y. The rule X = Y has support s

Corresponding Author: P.C. Saxena, School of Computer and System Sciences, Jawaharlal Nehru University, Delhi, India

Int. J. Soft Comput., 3 (3): 205-211, 2008

in the transaction set T if 8% of transactions in T support
X UY. Support measures how often X and Y occur
together as a percentage of the total transactions and
confidence measures how much a particular item 1s
dependent on other.

PROBLEM STATEMENT
The problem of mining association rules is,
essentially, to discover all rules, from a given set of
transactions of database D that have support and
confidence greater than or equal to the user specified
minimum support and minimum confidence. The problem

of association rule mining is usually broken down inte
two sub problems.

To find all the sets of items whose support is greater
than or equal to the user specified minimum threshold
e, Such item sets are also called frequent item sets or
frequent patterns m the Literature. An item set x 18
said be a frequent item set in T with respect to «, if
s = a.

In example 1, {E, rice} 1s a frequent item set, if we
assume ¢ = 50%, as it is supported by 4 out of 8
transactions. We may note that the set of frequent sets
for a given T, with respect to a given &, shows followimng
properties.

Downward closure property: Any subset of a frequent
set 1s a frequent set.

Upward closure property: Any superset of an infrequent
set 1s an mfrequent set.

To generate the association rules desired from the
frequent item sets. Let A U B and A are frequent item
sets, then we can say that the rule A = B holds if the
ratio of support (A U B) to support (A) 18 greater
than or equal to the minimum confidence threshold [3.
ie.,

sSCAUB) -

s(A)

Here s(X) is the support of X in T. We may note that
the rule will have minimum support because A U B is
frequent.

The database D 1s considered as a Boolean relational
table. Each row in the table corresponds to a tuple and
each column corresponds to an attribute. The Tth entry in
a row contamns T or F depending on whether attribute I 1s
present 1 the corresponding tuple or not. This table can

206

be physically organized in a horizontal manner in which
each tuple is represented as a pair (tno, itemset) where tno
1s the tuple number and the item set contams a sequence
of attributes. An attribute 1s mcluded in this sequence if
its corresponding value for this tuple in the database is T.
The pair (tho, itemset) is also referred to as a transaction.

tno a b c d e tno itemnset
1 T T F T T 1 abde

2 F T T F T 2 bce

3 T T F T T 3 abde

4 T T T F T 4 abce

Database relational table Physical representation

Given a set of distinet attributes, we can represent
any subset of A as a sequence which 1s sorted according
to the lexicographic order of attribute names. For example,
1,24 and {2,1} represent the same subset of {1,2,3},
which 13 1dentified by the sequence 12. The transactions
in database D and the item sets in the candidate sets and
the frequent sets are all in the lexicographic order of the
attribute names.

Most of the research (Aggarwal er al, 1993,
Houstsma and Swami, 1995; Aggarwal and Srikant, 1994;
Park et al., 1995, Han et al., 2000, Sergery et al., 1997,
Berzal et al, 2001) has been focussed on the first
subproblem because the overall performance of mming
association rules 18 determined by the first step which
accesses the database. Discovering all frequent patterns
and their supports is a non-trivial problem if the database
1s large.

As the underlying databases are large and the
algorithms for mining association rules may require
multiple passes over the database, to find different
association rules, the algorithms are required to reduce
I/O operations and the run time to enhance the efficiency.

This problem can be solved by constructing a
candidate set of potentially frequent patterns and
identifying the frequent patterns within these candidate
sets.

PRIOR WORK

Several algorithms have been proposed in the
literature to solve this problem. Some of them are ATS
(Aggarwal et al, 1993), SETM (Houstsma and Swami,
1995), Aprionn algorithm, AprioriTid, Apriorihybrid
(Aggarwal and Srikant, 1994), Direct Hashing and pruning
(Park et al., 1995), Partition algorithm, Pincer-Search
algorithm, FP-tree Growth algorithm (Han et al., 2000),
dynamic itemset counting algorithm (Sergery ef al., 1997)
and TBAR (Berzal ef al., 2001). These algorithms, in
general except the FP tree growth algorithm, first
construct a candidate set of frequent itemsets based on

Int. J. Soft Comput., 3 (3): 205-211, 2008

some heuristic and then discover the subset that actually
containg frequent itemsets. The frequent itemsets found
in one iteration are then used as the basis to find the
candidate set for the next iteration.

Heuristic to construct the candidate set of frequent
itemsets is crucial to performance because the cost of
processing to discover the frequent itemsets mcreases as
the size of the candidate set increases. The heuristic
should only generate candidates that are likely to be
frequent itemsets because for each candidate, we need to
count its appearances m all transactions. Another
performance related issue 1s the amount of data that has
to be scammed during frequent itemset discovery.
Reducing the number of transactions to be scanned and
trimming the number of items in each transaction can
umprove the data mming efficiency.

Apriori algorithm (Aggarwal and Srikant, 1994) is a
landmark in association rule mining. This is the most
popular algorithm to find all the frequent sets. It makes
multiple passes over the data. To reduce the combinatorial
search space, this algorithm makes use of the downward
closure property and at each pass prunes many of the
sets which are unlikely to be frequent sets.

We may note that the apriori algorithm operates n a
bottom up, breadth first search method. The process
starts from the smallest set of frequent item sets and
proceeds upward till it reaches the largest frequent item
set. The number of times the database 1s scarmed 1s same
as the size of the largest frequent item set.

This algorithm uses an efficient candidate generation
method. It uses only the frequent item sets at a level to
construct the candidates at the next level. But it requires
one pass over the database of all transactions for each
iteration. Therefore, the number of passes required 1s as
many as the longest item set. The hash based technique
DHP tries to reduce the size of the candidate k-item sets
by collecting approximate counts in the previous level.
Another version of this algorithm tries to reduce the
number of transactions to be scanned at higher values of
k. but the number of passes over the database remains as
in apriori algorithm. Since these algorithms mine
sequential patterns by scanning the database multiple
times, the CPU and I/O times increases with the mcrease
in the size of the database.

In AprioriTid, a modification of apriori algorithm,
reading the complete database after the first iteration is
avolded. The transaction i1d’s and candidate frequent k-
item sets present in each transaction are generated n each
iteration which is used to determine the large (k+1) - item
sets present in each transaction during the next iteration.

Research (Berzal ef al., 2001; Zaki, 2000) has shown
that in the mitial stages, apriori 18 more efficient than

aprioriTid as there are too many candidate k-itemsets to
be tracked during the early stages of the process.
However, for the later stages aprioriTid is better than
apriont. Another algorithm apriorihybrid, a hybrid of these
two algorithms shows better performance, in general. Tt
has the option of switching from apriori to aprioriTid after
early passes for better performance but it 1s difficult to
determine the switch over pomnt to operate the hybrid
algorithm.

The partition algorithm partitions the database into
small parts such that each part can be managed m the
memory. It generates the set of all potential and local item
sets in the first pass and counts their global support in
the second pass. However, it is quite possible, that item
sets which are locally frequent in some partition may not
be globally frequent. Therefore, partition may emumerate
so many false candidates i the first pass. Also, if the
local frequent set does not fit into memory, additional
database scans will be required.

The DIC algorithm is able to reduce the mumber of
scans over apriori by dynamically counting the
candidates of various lengths as the database progresses.
But it gives good performance only if the data is
distributed fairly uniformly and stop pomts are chosen
reasonably close.

The DLG algorithm uses a bit vector per transaction.
It writes the Tids where the itemn set has occurred. Then,
it generates the frequent item sets by performing logical
AND operations on the bit vectors. This algorithm
assumes that the bit vectors fit in the memory. But
databases are generally very large contaming millions of
transactions. Therefore, scalability could be a problem.

TBAR algorithm uses an efficient data structure to
represent the sets of candidate and frequent item sets. Tt
requires less memory and produces less memory
fragmentation. It 1s faster than apriori. But the nmumber of
passes over the database remains same as in apriori
algorithm.

PROPOSED SCHEME FOR CANDIDATE
GENERATION

The proposed scheme generates all the candidate
item sets in 3 iterations irrespective of the length of the
longest frequent item set. In the first iteration, it generates
candidate item sets and frequent item sets of length 1. In
the second iteration, it finds candidate item sets and
frequent item sets of length 2 and in the third iteration, it
finds all the remamming candidate and frequent item sets of
all lengths upto the longest frequent item set. Now we
present our new algorithm AR-mine (Association Rule
mimng) which uses the proposed scheme of candidate
generation for mining association rules.

Int. J. Soft Comput., 3 (3): 205-211, 2008

AR-mine: AR-mine requires only 3 scans of the database
at the most. Tn the first scan , it counts the support of all
the length 1 itemsets and finds all length 1 itemsets which
are frequent. In the second step it finds all the
combinations of length 2 for each transaction in the
database D and inserts in the C2. A combination is
mcluded in C2 only if it follows the upward closure
property ie. the support of both the items constituting
the length 2 itemset are above threshold. To msert a
combination i C2, it checks whether that particular
combination 1s already there in C2 or not. If it 1s present,
then it increases the support count of that item set
otherwise, 1t inserts it in C2 and sets its support count to
one. The pseudo code is given in Fig. 1.

AR-mine generates the candidate set C, and counts
its support simultaneously in the second scan. This
algorithm generates candidate set from the transactions of
the database D, unlike apriori which generates C, from
L., thus reducing the size of the candidate sets
drastically. This step ensures that an item set 1s included
i the candidate set only if it 13 actually present m a
transaction T of the database D.

Once L, 1s generated, our algorithm generates C, form
L, . At this stage, to avoid multiple database scans, AR-
mine generates C, from C,, instead of L., for all k > 3
using gen function (Fig. 2). Function gen takes as input
a 2 dimensional array C, which is a candidate set of item
sets of length k and generates the set C,,, which is the
candidate set of item sets of length k+1. Ck though is a
2D array is addressed as a linear array. Any element C[i][j]
1s addressed as C[1*k+]] where k 1s the number of columns
mn 2D array. Our algorithm prunes the candidate item sets
by checking for upward closure property i.e. an item set
is included in C, if all its subsets are included in C, .
Therefore, once C,,, 18 formed, the algorithm checks
whether all subsets of the candidate item set are m C, or
not. The pseudo code for the pruning step is given in
Fig. 3. At the end of this step, we have candidate sets C;,
C,, C;, Now, our algorithm scans the database for the
third and last time and counts the support for all
candidate sets C, for k >= 3.

After the third scan, we have support count of all
candidate sets C, for k == 3. The items of C, whose
support count 1s greater then the threshold are included
in L. At this stage, we have found all the frequent item
sets L, for | >= 1 from which, we can generate the
association rules.

In order to do an efficient search, AR-mine uses a
hash based dynamic array to store the candidate item
sets. The hash function used is

a,’+a,’ +... +a’ % number of candidate item sets
Here, {a, a,...,a,} 1s an item m the candidate item set

208

for each transaction t in D do
for each item t[i] int do
if t[i] is frequent length 1 item then
for(k=i+1;k<t len;k++)
if k] is frequent length 1 item
combination = (t[i], k])
it combination already in C2
C2[j].support ++
else C2[j].item = combination
C2[j].support =1;

L2 =null

for each item set ¢ in C2 do

if c.support > threshold

L2=12Uc

Fig. 1: Pseudo code for second scan

for (k =3; Ck=®; k++) do
Ck+1=NULL,
for each itern i of Ck do
for each itern j=i+ 1 of Ck do
flag=1;
for(int 7=0;z<k-1;z++)
if Ck[i*k+z] 1=Ck[j*k+z])
flag=0;
else
Ck+1[z]=Ck[i*k+z];
end
if(flag)
Ck+1[k-1]=Ck[i*k+(k-1)];
Ck+1[K]=CK[j*k+(k-1)];
end

Fig. 2: Pseudo code for gen function

for each itemset ¢ of Ck do
for each subset s of ¢ do
if not ¢s in Ck-1) then
Ck=Ck-c
end
end

Fig. 3: Pseudo code for pruning

whose support 13 being counted. In case of a collision,
this algorithm puts a pointer at the hashed address. This
pointer pomts to a link list which contains the items that
are hashed to this address. We will use the example 3 to
llustrate our algorithm.

Example 1: Suppose that after some preprocessing, we
obtain the simple horizontally organized database as
shown in Table 1. This database contains 10 transactions
and 10 items per transaction. Further, let us set o« = 30%
which means 3 tuples out of 10 must support the frequent
item sets.

After the first scan we get

L, = {I1,12,13,15,16,17, 18,19, 110}

I4 1s not meluded m L, as its support count is less
than 3. Now instead of taking the natural join of 1., with

Int. J. Soft Comput., 3 (3): 205-211, 2008

Table 1: Sample data

tno Transaction
357910
123456
146
13568
3910
123506
3568
137910
17910
1268

Ll =~ JC I QL P PR O Ry

k=

itself to get C, AR-mine scans the database for the
second time to form the length 2 item sets from the tuples
in the database itself. So after the second scan we get

L= {11,12)(11,13), (11, 15), (11, 16), (12, 16), (13,15), (13, 16),
(I3,19), (13,110), (15, 16), (16, IR), (17, 19), (17, 110), (19, 110) }

It we follow apriori technique, C, includes item sets
like (16, 17), (16,19), (16, 110), (I8,19), (I8, 110) etc. which do
not oceur even once mn the database. Our algorithm
prunes all these item sets as we include an item set only
when 1t actually oceurs m the database.

Now AR-mine finds C,

C, = {(11,12,16), (T1,13,15), (T1, 13,16), (11,15, T6), (13, 15,
16), (13,19,110), (17,19,110) }

We may note that (11, 12, I3) 1s not included in C; as
its subset (12, T3) is not a frequent item set. Now from C,
using upward closure property, we find C, and then C..

C,= { (11,13,15,16) }
C, =@

We now scan the database for the last time to get the
support of the candidate item sets i C, and C,. At the end
of the third scan we get

L,={(1,12,16), (11,13, 15), (I1, 13, 16), (I1, 15, I6), (I3, IS,
16), (13,19,110), (I7,19,110) }

L.={(11,13,15,16) }

L.=®

So, mn the three scans, our algonithm could find all the
frequent item sets. We can find all the frequent items in
two scans also, but in that case the number of candidate
sets generated will be very large and there will be large
memory required to store all those candidate sets.

RESULTS
To evaluate the efficiency of AR-mine, we have

performed experiments ona 1.13 Ghz, P3 machine with 128
MB RAM and 40 GB hard disk running Microsoft

Windows. AR-mine and apriori are implemented by us
using Visual C++ 6.0 package. To compare the results in
the same runtime environment, we have implemented
apriori algorithm on the same machine to the best of our
knowledge based on the published work, as different
machine architectures may differ greatly on the absolute
runtime for the same algorithm.

We have performed experiments on the real datasets
as well as synthesized datasets. Both AR-mine and
apriori have been applied to various datasets. The real
datasets used are Mushroom dataset and chess dataset.
The results of the experiments are presented in Table 2.

Mushroom dataset: This is a dataset taken from the UCIL
Machine learmng Database Repository at http:/www.
ics.uci.edu/~mlearn/MLRepository. html. Tt includes
descriptions of 8124 hypothetical samples corresponding
to 23 species of gilled mushrooms in the Agaricus and
Lepiota Family. Each species 1s identified as defmitely
edible, definitely poisonous or of unknown edibility and
not recommended. The last class was combined with the
poisonous one. The samples have 22 predictor attributes
and 2480 missing values.

Chess dataset: This dataset 15 taken from
www.cs.rpLedu/~zaki. This dataset includes description
of 3196 hypothetical transactions. The samples have 74
predictor attributes.

We have used the synthetic databases that are used
as benchmark databases for many association rule
algonthms (Aggarwal and Snkant, 1994; Park et al., 1995,
Han et af., 2000, Sergery et al., 1997, Zaik, 2000). We have
taken them from www.cs.rpi.edu/~zaki. These databases
mimic the transactions in the retailing environment in
which customers tend to buy sets of items together. Each
such set 15 potentially a maximal frequent itemset A
transaction may contain moere than one frequent item set.
Transaction sizes are typically clustered around a mean
and a few transactions have number of items. Typical
sizes of large item sets are also clustered around a mean
with a few frequent item sets having a large number of
itemns.

In this synthetic data D denotes the number of
transactions, T denotes the average transaction size, I
denotes the maximal potentially frequent itemset and N
denotes the mumber of items. We have done experiments
on data sets T10I4D100K and T40I10D100K. Both data
sets contains 1,00,000 transactions. Each transaction
contains 1000 items m the data sets. In the data set
TA40I10D100K, the average longest frequent item set 1s 10
items and the average transaction size is up to 40 items. Tt
is a relatively dense data set. The results of the
experiments are presented in Table 3.

Int. J. Soft Comput.

Table 2: Experimental results for real data sets

, 3(3): 205-211, 2008

Database No. of transactions Threshold suppoit = No. of frequent item sets Timing (in sec)

Mushroom database 8124 1000 123277 615.01
1500 56693 243.37
2000 6623 20.53
2500 2365 7.01

Chess database 3196 2000 166580 1530.12
2250 45862 224.15
2500 11493 41.96

Table 3: Experimental results for synthetic data sets

Database No. of transactions Threshold suppoit = No. of frequent itern sets Timing (in sec)
T10I4D100K 1,00,000 250 7703 27.41
500 1073 4,22
750 561 3.08
1000 385 2.36
1500 237 1.82
2000 155 1.08
TA4011 0D100K 1,00,000 1000 65236 2134.00
1500 6539 950.00
2000 2293 190.00
2500 1221 55.69

1200 {a) Mushroom
10007 -=— AR-mine
2 300 —e— A priori
600

400

200

0+ A T T T 1

2500 2000 1500 1000
Threshold

Time (se

60+ (¢) T1014D100K
50+ -=—AR-mine

gw_ == A priori
'3 30
Ig?.()-
104
0'_. T - T = T T T 1
2000 1500 1000 750 500 250
Threshold

Fig. 4: Run time versus support threshold

We have compared AR-mine with apriori for
increasing values of o on different data sets. As o
mncreases, the number of frequent item sets decreases and
the time for finding the frequent item sets also decreases.
Experiments show that AR-mine performs better than
apriori in all cases (Fig. 4).

CONCLUSION

In this study, we have proposed a new scheme for
candidate generation that generates all the candidate
item sets in three iterations. We have also presented
an algorithm AR-mine which uses this new scheme

250077
20001
—
& 1500-
Hio00-
500

2500 2250 2000
Threshold

45007 (d) T40110D100K
4000
_ 35001
% 30001
25001
2000
F 15001
10001
5004
c - T T T 1

2500 2000 1500 1000

Threshold

-a- AR-mine
—e— A priori

for candidate generation for mining frequent item
sets. A simple hash table is used to store the frequent
item sets which speeds up the searching process. A
distinct feature of this algorithm is that a candidate
set 18 generated only when we actually encounter
an occurrence of that set in the database. Itis
shown by the experiments that AR-mine has better
performance than apriori on real datasets as well as
synthetic datasets with very limited space overhead.
This algorithm finds all the frequent item sets of any
length in 3 database scans. AR-mine can be scaled upto
very large databases due to limited run time memory
overhead.

210

Int. J. Soft Comput., 3 (3): 205-211, 2008

REFERENCES

Aggarwal, R., T. Lmielinski and A. Swami, 1993. Mining
association rules between sets of items in large
databases. ACM SIGMOD.

Agrawal, R. and R. Srikant, 1994. Fast algorithms for
mining association rules in large databases. Proc.
20th Int. Conf. Very Large Databases, 478-499.

Berzal, F., J. Gubero, N. Morm and J. Serrano, 2001.
TBAR: An efficient method for rule mimng
relational databases. IEEE Transactions
Knowledge and Data Engineering, pp: 47-64.

Chen, M.S., I. Han and P.5. Yu, 1996. Data mining: An
overview from a database perspective. TEEE
Transactions on Knowledge and Data Engineering,
8(6): 866-883.

orl

211

Han, J., J. Pei and Y. Yin, 2000. Mining frequent patterns
without candidate generation. Proceedings of ACM-
SIGMOD, International Conference on Management
of Data, pp: 1-12.

Houstsma, M. and A. Swami, 1995. Set oriented
mining of assosiation rules m relational databases.
International Conference on Data Engineering, TEEE.

Park, T.85., M.S. Chen and P.S. Yu, 1995. An effective
hash based algorithm for mining association
rules. Proceedings of ACM-SIGMOD, International
Conference on Management of Data, pp: 175-186.

Sergey, B., R. Motwam, T. Dick and J. Ullman, 1997.
Dynamic item set counting and implication rules for
market basket data. ACM SIGMOD.

Zalki, M., 2000. Scalable algorithms for association
mining. [EEE Transactions on Knowledge and Data
Engineering, 12(3): 372-390.

