M International Journal of Soft Computing 3 (3): 254-259, 2008
We]l

ISSN: 1816-9503

Online

© Medwell Journals, 2008

A New Genetic Algorithm Based on Neighborhood
Search and Tabu List (GTNS) for Task Scheduling in Multiprocessor

"Hadi Shahamfar and 2Schrab khanmohamadi
"Department of Computer Engeneering,
Islamic Azad University Science and Research Branch, Tehran, Iran
*Department of Control Engeneering,
Faculty of Electrical and Computer Engeneering, Tabriz University, Tabriz, Iran

Abstract: Task scheduling is a crucial and complex problem in Multiprocessor systems and is defined
NP-complete problem. Nowadays, with increasing size of programs and information. The multiprocessor
Systems are widely used mn parallel computing. In Many cases we can divide a huge problem into some small
portions and assign these small problems to processors. This would result in a considerable reduction in the
execution time of programs. Previous Algorithms have various restrictions in their assumptions such as tasks
considered independent, task graph produced randomly or the zero considered communication delay. On the
other hand the complexity of algorithms has been ignored. This is important since there should be a balance
between the quality of solutions and execution time of algorithm. Comparison studies with realistic assumptions
on scheduling algorithms have shown that some algorithms prefer quality of solutions to execution time of
algorithms. This has caused them not to be applicable n realistic situations. In this study we present a new
genetic algorithm that employs neighborhood search and tabu list for performing task scheduling (GTNS). This
newly proposed algorithm has solved the mentioned problem, as well as having a reasonable execution time

versus the makespan.

Key words: Task scheduling, genetic algorithm, tabu search, multiprocessor

INTRODUCTION

Scheduling for a set of dependent and independent
task that execute parallely on a set of processors is
umportant and computationally complex. Multiprocessor
systems have widely been used in parallel computation.
Appropriate scheduling for performing parallel programs
to reach a higher efficiency is essential (Wu ef af., 2004).
This means that makespan must be set at the minimum
level. Another objective of the scheduling is to provide
precedence relationship among the tasks when allocating
them to processors.

In this context there are a lot of issues that should be
addressed in terms of dependent or independent tasks,
task graph produced randomly, commumnication delay or
the homogeneity or heterogenity of the multiprocessor
systems (Parsa et al., 2007).

Various studies have been performed in this area
(Kwok and Ahmad, 1999). Almost all of them have
considered the easiest assumptions and have proposed
arespective scheduling (Correa et al., 1999). However, in

the realistic environment, the problems are not always
compatible with such simple assumptions and all the
aspects should be considered.

Reaching an efficient solution is not easy. A lot of
proposed algorithms have suggested a partial efficient
solution with simple assumptions and majority of them
have preferred complexity of algorithm (increase execution
time) to the quality of solutions. However, execution time
of the algorithm is not scalable to quality of solution. In
this study we proposed a scheduling algorithm for
allocation of tasks to set of processors which computes
the commumication cost between dependant tasks when
these tasks were not executed in the same processor.

This algorithm is proposed for homogenous
multiprocessors since this model 15 more compatible with
a realistic world which user frequently works with. A
comparative study between nine task scheduling
algorithms, Min-min, Chaining, A*, Genetic algorithms,
Simulated Annealing, Tabu search, Highest Level First
Known Execution Time (HLFET), Insertion Scheduling
Heuristics (ISH)? Duplication Scheduling Heuristic (ID'SH),

Corresponding Author:

Hadi Shahamfar, Islamic Azad University, Science and Research Branch, No.15 Golestan 4,

Pezeshkan Street, Abressan Avenue, Tabriz, Iran

Int. J. Soft Comput., 3 (3): 254-259, 2008

showed that genetic algorithms and tabu search have a
better performance compared with the other algorithms
(Jin et al., 2008).

This has motivated us to propose a new
neighborhood search and Tabu list based genetic
algorithm and compare it with a previous study (Jin et al.,
2008) of multiprocessor scheduling. In this study, we
had employed two widely used bench marks namely
Gauss-JTordan elimination, 1.U decomposition in order to
evaluate the proposed algorithm.

The mmportance of task scheduling in multiprocessor
system has resulted in various related studies i this
regard.

In a previous comparison study, Jin ef al. (2008) has
compared 9 previously mentioned algorithms, using G-
and LU benchmarks. The results of that study showed
that genetic algorithm and tabu search due to their
nondeterministic structure are appropriate candidates for
NP-complete problems. Few genetic algorithms have been
proposed for solving such problems and each suggestion
has some advantages and disadvantages. The main
difference between these algorithms is on chromosome
encoding and generic operators. This 1s mainly because
chromosome encodings have important effect on genetic
operators. Doing a comparison between these algorithms
is difficult because of 2 reasons: First Majority of

Stepl:

Create initial population

Produce a quarter of the population rabdomly

Produce the rest of the population as follows:
Find the earliest start tirne (EST) for each task
Tdentify all the tasks on the critical path
Sort the task according to their EST in a linear list
Repeat

algorithms are based on Authors assumptions and do not
consider all aspects of the problem. Second, there exists
no standard benchmark for evaluation of algorithms
(Parsa et al., 2007). The current study a partially standard
benchmark G-I and LU was used for the evaluation.

A lot of algorithms do not have an appropriate
chromosome encoding. Further more they use simple
genetic operators for producing generations which do not
provide genetic diversity in the genetic population.
Therefore, a string encoding was used in the proposed
algorithm.

TASK SCEDULING PROBLEM

In this study, we formulate the scheduling problem
(Dhodhi and Ahmad, 1995). Let P = {P,: 1=1, ..., m! bea
set of m homogeneous fully connected processors and let
the application program be modeled by directed acycle
graph T = {T,: 7 =1, ..., n} of ntasks. For any 2 tasks 1,
16T, 1<7 means that task j cannot be scheduled until 1 has
been complete, i is a predecessor of j and j is a successor
of i. Weights associated with the nodes represent the
computation cost and the weights associated with edge
represent the commumication costAn example of a
Directed Acyclic Graph (DAG) consisting of 11 tasks
shown in Fig. 1. The multiprocessor sceduling is to assign

Select randomly a task amont the tasks ready to schedule at the beginming of the linear list

If the selected task resides on the critical path then

Assign the task to the processor on which the previous task on the critical path resides

Else

Assign the task to the processor including a task with highest interconmections with the task

Remove the selected task from the linear list
Until the linear list of the task is empty
Step2:
‘While termination criteria not satisfied do
For each choromosome in current population do
Calculate its fitness value
Create intermediate generation as follow:

Add the fittest choromosome to the intermediate population

Repeat.

For all chromosoms that fitnesses >2/3 avvrage fitness
Apply all crossover for this cromosome considering nmaxmoves and calculate fitness for these chromosoime
Replace the best cromosome in the population and put it parrents to tabu list

Apply toumarnent selection to selected two cromosome

Apply crossover opperator
Calculate fitness value

Apply mutation and calculate fitnesses of thes cromosom

Until the intermediate population size is commplet
Copy the interrmadiate population over current population

Fig. 1: Structure of proposed genetic algorithm

Int. J. Soft Comput., 3 (3): 254-259, 2008

the set of tasks T onto the set of processor P in such a
way that precedence constramn are maintained and to
determine the start and finish time of each task with the
objective to minimize the completetion time. We assume
that the communication system is contention free and it
permits the overlap of commurnication with computation.
Task execution is started only after all the data have been
recived from its predecessors. The communication links
are full duplex.duplication of same task is not allowed.
Commurication 1s zero when two tasks are assigned to the
same processor, otherwise they incure the communication
cost equal to the edge weight.

NEW GENETIC ALGORITHM BASED
ON NEIGHBORHOOD SEARCH AND TABU
LIST (GTNS)

In this study we propose a new genetic algorithm
based on neighborhood search and Tabu list. In this
Algorithm 1n order to accelerate evolutionary process and
to reach an efficient Solution with a reasonable execution
time, several techniques are used: Firstly the use of an
initial population in which chromosome are produced in
the basis of the earliest start time of each node (task)
(Parsa et al., 2007). Secondly, using neighborhood search
(Tian and Sammonmiya, 2000) for those parents whose
fitness value is more than 75% of mean population fitness.
Thus 13 because the possibility of finding the best solution
from doing genetic operators on these parents is higher
than that of rest of population. Therefore, this algorithm
performs all the crossovers with considering an
nmaxmoves constant. Thirdly, a tabu list (Thesen, 1998)
is used for preventing the repetition of the parents in
the next generation whose children have been searched
n the previous stage.

This prevention is because performing operation on
such chromosomes will not produce children whose
fitness 1s better than current generation.

Furthermore, in order to perform a more precise
evaluation of ftmess value of chromoscmes, ancther
parameter other than makespan i.e waiting time has been
used. The coincident use of these parameters evaluates
fitness of chromosomes more precisely. Another
umportant factor in scheduling algorithms 1s the execution
time of algorithm which should be scalable to solution
quality. We have addressed this objective by restricting
searches to those solutions which do not result in the
considered value.

Structure of proposed genetic algorithm is shown
mFig 1.

Chromosome encoding: In this algorithm, a new string
encoding for chromosomes is used which employs the

256

s | WIEF |

Fig. 2: Chromosome encoding

f,
[P

LU R O S
A A EA BN A A A EA KR EA KT

t,
[

Fig. 3: An example for graph Fig. 1

t t,
5 10
3] 2 5
10
t, t, t
20 20 10
8
6 8 10 "/
A 4
1 4 1 t 6
5 15 30
_/ sl
. %
10 10
\/
e
10

Fig. 4. A directed acycle graph

advantage of clear global precedence of each task. In the
previous chromosome encodings, only the precedence of
the tasks that are executed on the same processor were
clear while the global precedence of tasks was not
achievable and an additional string should have been
used for achieving the global precedence.

The new string encoding for chromosome 18
demonstrated in Fig. 2.

Each element of array indicates the allocation of a
task to the corresponding processor. One advantage of
such encoding 1s the constant length of the chromosome
during the genetic operation. This chromosome encoding
provides the possibility of a more precise Computation of
chromosome fitness value by incorporating two fields,
S and W which indicate makespan and waiting time,
respectively.

F represents the fitness value which 15 achieved
through S and W fields.

For instance, Fig. 3 demonstrates an examplitory
chromosome for task graph demonstrated in Fig. 4.

Int. J. Soft Comput., 3 (3): 254-259, 2008

Parent 1

L t, L t, L 1 L & 1 by

BR|P|P|P|P|P|[PF|PB|P|P
Parent 2

L b L 1A L I L & L b

R|BR|PRH|PR|B|P[PR|[BK|P|R
Offspring 1

L 4 L |4 &) b b b b

E|PR|P®|R |P|P [B B |P |PR
Offspring 2

t t L | & ts 1 t; & t to

| P [B[P|[P|P |PB|B|PBI|E
Fig. 5: Performing crossover

t, | 6 |] &] &t] &]t] &] &t | te

B | P | P |P |P |B [P |PR|P|P
After mutation

L b L 1A L i L & L Lo

E|B|P|PR|B|P [P [PF|P |R®

Fig. 6: Performing mutation

Production of initial population: In order to produce mtial
population, first, a sequential queue containing the
number of tasks 1s made. This queue 13 organized on the
Basis of ascending order of Earliest Start Time (EST) of
each task. In this algorithm the nodes on the critical path
as well its length are calculated. For each node a reference
count which imtially equal the number of its parents is
considered. Starting from the initial point of the queue, a
task whose parents has finished execution is chosen
randomly and allocated to a processor. Consequently the
reference belonging to all children of the chosen task is
reduced by one mark. Thus the reference counts of the
ready tasks equal to zero.

This cycle is repeated unit all the tasks are
scheduled. It 1s noteworthy that the processor allocated
to each task is not selected on a random basis. In this
algorithm the task belonging to critical path is allocated to
processor that the previous task on the critical path is
operated on.

If the task does not belong to critical path it is
allocated to a processor which the presented task on it
has the maximum communication cost with. In case if there
were several equal communication cost, one of them were
chosen randomly. This algorithm tries to minimize the
commumnication and produce a better solution. However,
if all the members of the initial population are produced
with this algorithm, there will be the possibility of
premature convergence and repeated identical solutions.
Therefore, it would be better to produce some imitial
populations randomly.

257

Genetic operators: The operators of selection, crossover
and mutation are described as follow:

Selection operator: The selection operator used in this
algorithm 13 the tournament algorithm.

Cross over operator: In the proposed algorithm for
performing combination of two chromosomes, the two
point crossover method is used. This operator is
performed on the basis of crossover rate (denoted by P,).
On this operator two point of chromosome is selected
randomly. The mtervals between these 2 points are
exchanged while the sequence of tasks remains intact. Tt
noteworthy that the
chromosome should be n identical position compared
with the other. This is necessary so that the crossover

is selected points on each

operator can produce valid chromosomes. Figure 5 shows
an example of random crossover.

Mutation operator: The mutation rate (denoted by P
provides variation and possiblity of avoiding local
optimum. If a task is selected to be mutated, then its
processor number will be randomly changed. This will
result in production of a valid chromosome. Figure 6
shows an example of mutation.

Fitness function: In order to achieve a more precise
fitness function, waiting time as well as makespan is
considered. Waiting time focuses on the time 1n which the
task could be executed but is delayed due to scheduling
policy. This waiting 1s either because of precedence of
task graph, the way of allocating tasks to processors, or
the communication delay between tasks. In other words,
no task can be executed unless all the ancestor tasks are
executed. If 2 communicatory tasks do not executed on
the same processor, then the communication cost has to
be spent.

If the related chromosome involve fitnesses of F, F,,
..., Fyand each one share aportion of 100% as C, C,,
..., Cythen general fitness can be considered as FHq. 1

m
Fitness — Z CE (1)

i=1

In this study 2 fitesses are used in each chromosome,
which can be extended without losing generality. The
makespan and waiting time are S and W, respectively.
According to the importance of 3 and W in scheduling
problem, one can assign a value to C, for S and C, for

Int. J. Soft Comput., 3 (3): 254-259, 2008

This has been taken
genetic algorithms have been evaluated on random
graphs that have not considered communication cost.
We have used G-J, LU benchmarks to evaluate the

W. For example if share portion of 5 is 70% and share into account since most
portion of W 1s 30% then general fitness can be calculated

as Eq. 2.

F=07* 3+0.3* W (2) proposed algorithm. Tn owr implementation the number
of processors 13 assumed to be four. The number of tasks
RESULTS we have chosen for G-J and 1.U algorithm is shown in

Table 1.

In this study, the proposed algorithm is compared
with a previous algorithm (Jmn ef af., 2008) in which both

have considered communication cost.

The proposed algorithm is implemented on Matlab
programming language. The achieved makespan are
shown in Fig. 7.

9009 o GA () 10007 o GA ®
B Tabu B Tabu
g004 m GTNS 90604 m GTNs
700- 800
7004
600-
600
% 500 %
500
2 400 |
400
300-
300
200+ 2004
100 160-
0 T 0 1 ¥ T
15 21 28 36 14 20 27 35
Problem size (tasks) Problem size (tasks)

Fig. 7: Makespan for G-J elemination (a) and LU factorization (b), problem for variable task sizes

804 g GA @ 707 O GA ()]
H Tabu H Tabu
704 B GINS 60 @ GINS
60 50
£ 5o H
£ £
g 40- F
g k=1 30+
g 304 §
& & 204
20
0 T) 0 L T
15 21 28 36 14 20 27 35
Problem size (tasks) Problem size (tasks)

Fig. 8: Execution time for G-J elemination (a) and LU factorization (b), problem for variable task sizes

Table 1: Experimental setup

Problem No. of tasks Consumption time Communication time
Gauss-Jordan elimination 15, 21, 28, 36 40 sec task™! 100 sec
LU factorization 14, 20, 27, 35 10 sec bottom laver task, plus 10 sec for every laver 80 sec

258

Int. J. Soft Comput., 3 (3): 254-259, 2008

One important point in most scheduling algorithms
1s the execution time of the algorithm which should be
reasonable. Comparative results of execution time in
GTNS and the previous algorithms are shown mn Fig. 8.

CONCLUSION

Task graph scheduling is an NP-hard problem,
therefore nondeterministic approaches e.g., genetic
algorithms, tabu list and neighborhood search are
applicable to this context. Therefore, mn this study a new
genetic algorithm (GTNS) based on neighborhood
Search and Tabu list 1s proposed. The GTNS algorithm 1s
capable of achieving an appropriate scheduling whle
spending less execution time since there should be a
balance between solution space and execution tine of
algorithm. The GTNS algorithm is based on reduction
of cost between processors
neighborhood search for parents whose fitness are more
than 75% of mean current population fitness. Furthermore,
the Tabu list 18 used for avoiding repetition of the parents
whose children have been already searched in previous

communication and

generation.
Finally,
calculation, an additional parameter except makespan i.e.

for achieving a more precise fitness

waiting time, 15 also used. Experimental result from
implementation of the GTNS indicated that better
solutions with less execution time are feasible by a
combination of Tabu search and genetic algorithm.

259

REFERENCES

Correa, R., A. Ferrewra and P. Rebereyend, 1999.
Scheduling multiprocessor tasks with genetic
algorithms. TEEE. Trans. Parallel and Distrib. Sys.,
10: 825-837.

Dhodhi, MK. and I. Ahmad, 1995. A Multiprocessor
Scheduling Scheme Using Problem-Space Genetic
Algorithms. Proceeding of TEEE International
Conference on Evolutionary Computation

Iin, 8., G. Schiavone and D. Turgut, 2008. A performance
study of multiprocessor task scheduling algorithms.
I. Supercomput, 43: 77-97

Kwok, YK. and 1. Ahmad, 1999. Benchmarking and
Comparison of the Task Graph Scheduling
Algorithms. J. Parallel Distrib. Comput., 59: 381-422.

Parsa, S., S. Lotfi and N. Lotfi, 2007. An Evolutionary
Approach to Task Graph Scheduling. Lecture Notes
m Computer Science, 4431: 111-119.

Thesen, A., 1998. Design and evaluation of tabu search
algorithms for multiprocessor scheduling. J. Huristic,
4: 141-160.

Tian, Y. and N. Sannomiya, 2000. A tabu search with a
new neighborhood search technique applied to flow
shop schedulig problems. In: Proc. 39th TEEE. Conf.
Decision and Control, 5: 4606-4611.

Wu, A.S., H. Yu, Sh. i, K. Ch. Lin and G. Schiavone,
2004. An Incremental Genetic Algorithm Approach to
Multiprocessor Scheduling. TEEE. Trans. Parallel and
Distrib. Sys., 15: 824-834.

