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Abstract: Effective discovery of classification rules for the high dimensional data is becoming one of the hard
search problems and hot research area. Heuristic search algorithms provide an approximate solution to hard
search problems within the reasonable time. Inspired by the biological life cycle of nature, we introduce a Novel
Adaptive Life Cycle Model (INALCM) which applies both Memetic Algorithms (MAs) and Particle Swarm
Optimization (PSO) to create a well-performing hybrid heuristics for the discovery of rules. In the proposed
model, candidate solutions are represented as individuals and based on the fitness, they can decide to become
either a MA individual, a particle of a PSO. Results are compared with other search algorithms such as Particle
Swarm Optimization and Genetic Algorithms. The proposed model achieves better performance.
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INTRODUCTION

In biology, the term life cycle refers to the various
phases an individual passes through from birth to death
(Lawrence, 1996) often leads to drastic transformations of
the individual with stage specific adaptations to a
particular environment. This phenomenon is particularly
amazing in considering the genome remains the same
within each cell and life stage, whereas the morphology
and behaviour of the phenotype can change drastically in
accordance to the requirements of the life stage mche.
Some life cycle changes in nature are one-time events
such as sexual maturity. Other changes are re-occurring,
such as mating seasons. These stages are genetically
determined and the individuals have little or no influence
on the change of the life cycle stage. The transitions
between life cycle changes are often triggered by
environmental factors. Environmental changes often
determine transitions from one life cycle stage to another.
Some animals are able to sense and predict these changes
and can actively decide to alter their life cycle stage. The
mspiration of this study 1s obtamed from the ability of an
individual to actively decide about its kind of life
form in response to its success in its current environment
and the Darwin’s evolution theory.

The main 1dea belind the Novel Adaptive Life Cycle
Model is to create a self-adaptive search heuristic in

which each individual (containing the candidate solutiomn)
can decide whether it would prefer to belong to a
population of a Memetic Algorithm or a Particle Swarm
Optimization. The decision of the individual depends on
its success in searching the fitmess landscape. The
motivation for this hybrid approach was that each of
these search techniques on its own has its specific
problem dependent strengths and weaknesses. MAs, for
instance, are widely applicable and particularly powerful
when domain knowledge can be incorporated in the
operator design and high probability to optimum solution.
However, PSO (Kennedy and Eberhart, 1995) can achieve
clearly superior results in many mstances of numerical
optimization, but there is no general superiority compared
to GAs (Kennedy, 1999, Shi and Eberhart, 1998,
Suganthan, 1999; Angeline, 1998; Lovbjerg et al., 2001).
Local search algorithms such as tabu Search and
hill-climbing are good for local search with a high
probability of finding the closest optimum. However, for
highly
dependent on their starting position and hill-climbing
techmques often convergence prematurely at local
optima. Their main weakness compared to population
based approaches, such as GAs and PSOs, is that
candidate solutions neither compete nor cooperate
(Michalewicz and Fogel, 2000). The mam goal of the
proposed Novel Adaptive Life Cycle Model is to make

multimodal functions, their performance is
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a self-adaptive hybrid heuristic approach towards a
problem mvariant search technique that can further take
advantage of the changing search requirements during
the optimization, such as imtial exploration and local
fine-tuming towards the end of the run.

METAHEURISTICS MODEL

Metaheuristics have been used to construct efficient
models which are capable of finding high-quality
solutions for many optimization problems with large
search spaces. This is applied to the process of rule
discovery from the large amount of data as it 1s bemng
considered as a hard search problem. The classification
rules are the combination of logical conditions and the
prediction classes. The above fact has
researchers to apply heuristic models from evolutionary
algorithms and swarm intelligence to classification rule
discovery (Parpinelli et al., 2002).

Each of the metaheuristic, has relative strengths and
weaknesses. For example, population based methods are
better space but
intensification can be more effective in tabu search. Over
the years, researchers have developed new algorithms by
hybridizing different metaheuristics in order to get a

motivated

in  exploration of the search

combmation of the benefits of their relative strengths.
Talbi (2002) who proposed taxonomy of the hybrid
metaheuristics, provided the classification (Fig.1) based
on algorithm design. In a low level hybndization, a
particular feature of a metaheuristic 1s replaced by a
feature from another metaheuristic. In a high level hybrid
model, each individual operates in a self contained
manner. Relay versus teamwork distinctions address the
type of interaction between the metaheuristics. In a relay
hybrid model, individual heuristics run one after another
by using output from previous one. In the case of
teamwork hybridization, parallel agents performing
different metaheuristics run at the same time in the search
space.

The life cycle model: The Life Cycle Model proposed by
Krink and Lovbjerg (2002) consists of individuals starts
with PSO particles, which can tumn into MA mdividuals,
then back to particles and so on. The structure of the Life
Cycle model is illustrated in Fig. 1. In all these heuristics,
one fitness evaluation per individual per iteration is used.
A Life Cycle individual switches its stage when it has
made no fitness improvement for more than 50 iterations.

Adaptive life cycle model: The Novel Adaptive Life Cycle
Model applied to classification rule discovery m this

298

| Relay I [Tesm work| | Relay |  [Team work|

Fig. 1: Classification of hybrid metaheuristics

Procedure Adaptive Life Cycle Model
Begin
Initialize each PSO particle of population size 10
Initialize each MA individual of population size 0
Cormpute fitness value for each particle and MA individuals
Repeat
Repeat
For each particle
Cornpute the velocity of the particle
Move the particle to its new position
End
Compute fitness value for each particle
Tdentify the particle with best fitness
Until no improvernent for best fitness for N iterations
Convert particles to MA members
Repeat
Perform Selection on MA population
Perform crossover on MA population
Perform rmtation MA population
Compute fitness values for each member of MA
population
Identify the number with best fitness
Until there is no change in the best fitness for N
iterations
Convert each mermber of MA population PSO particle
Perform PSO algorithm
Until a certain number of iterations
Retum the member of particles or MA with best fitness as the
rule
End

Fig. 2: Novel adaptive life cycle model

study 18 inspired from the Life Cycle model developed by
Krink and Lovbjerg (2002). Based on the classification
provided by Talbi (2002) above, the proposed life cycle
model is a high-level, relay hybrid of particle swarm
optimization and memetic algorithms. The model uses a
simple self adaptive transition relay method between
heuristics in order to mmprove performance as outlined in
Fig. 2. Tt has been applied to various combinatorial
optimization problems and delivered better results than
non-hybrid single methods in some numerical optimization
problems (Krink and Lovbjerg, 2002). The proposed model
is different from lovbjerg model since the local search
algorithm 1s mbuilt in memetic algorithms.

The fitness function: The quality of a rule set 15 the
number of instances correctly classified (true positives).



Int. J. Soft Comput., 3 (4): 297-301, 2008

But in the Michigan approach individual rules are
evaluated mdependently rather than the entire rule set.
This makes the false positives, number of instances
classified incorrectly, also an important factor. As the
individual rules of the rule set are applied in the order that
are added to the rule set, a high number of false positives
will negatively affect the quality of the following rules.
Sousa et al. (2003) suggested the following fitness
function which takes, not only true positives and true
negatives, but also false positives and false negatives

nto consideration:

TP, TN
TP+TN FP+TN

(1)

Fitness =

Where:
TP True Positives: Number of instances the rule

classified correctly.

FP - False Positives: Number of mstances the rule
classified incorrectly.

TN - True Negatives: Number of instances the rule
"not classified" correctly.

FN - False Negatives: Number of mstances the rule

"not classified” incorrectly.

Increasing the penalization of false positives has
also been tested by simply increasing the weight of false
positives. The fitness function (Eq. 1) explained above
has been used in the heuristics of all the algorithms tested
in this study.

The PSO model: The PSO model used in the Adaptive
Life Cycle model is similar to the traditional PSO model
described in Kennedy and Eberhart (1995). The model
consists of a number of particles moving around in the
search space, where the positon of each particle
represents a candidate solution to a numerical problem.
Each particle has a position vector x, a velocity vector v,
and the position of the best candidate solution
encountered by the particle p. The PSO also stores the
overall best found point p, The memorized positions are
used to attract particles to search space areas with known
good solutions. In each iteration the velocity of each
particle 1s updated m the following way (Eq. 2).

v, = 1wy, + @, (p, —X )+ ¢y (pg -x)) 2

where, ¥ 1s known as the constriction coefficient
described in Clerc (1999) and w is the inertia weight
described in Shi and Eberhart (1998). @, and ®, are
random values, which are different for each particle and
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for each dimension. The velocity v; of each particle is
limited by an upper threshold v, The position of each
particle 1s updated in each iteration by adding the velocity
vector to the position vector, such that (Eq. 3),

X =%tV

1 1 1 (3)
The particles have no neighborhood restrictions, meaning
that each particle can affect all other particles. This
neighborhood is fully connected (star), which has been
shown to be a good topology (Kennedy, 1999).

The MA model: A memetic algorithm consists of a
population of individuals refining their candidate
solutions through interaction and adaptation. Each
individual represents a candidate solution to the given
problem. While searching the search space, the tabu
search algorithms avoids the searching from trapping in
to local maxima. The MA enters a loop, in which the
population 1s evaluated, a new population is selected and
this new population is altered (Michalewicz and Fogel,
2000) after the initialization. MA used in this adaptive
model uses Roulette wheel selection (Michalewicz, 1992)
to generate a new population and elitism to ensure the
survival of the individual with the best fitness. As in GA,
the MA alters the population by crossover and mutation.
The crossover operator used m the MA is the single point
crossover. This operator replaces 2 parent individuals
selected for crossover with 2 child individuals as follows
(Eq. 4 and 5):

W (4

X X

parent]

childl = + (1 -W ) *XparsntZ

Hy (5)

X parent 2

_ _ H
child2 W +(1 W) Xparenﬂ

where, w 1s a random value between zero and one. The
crossover probability PC determines the probability of an
individual to be selected for crossover. For each
dimension the probability of mutation PM determines
whether or not to mutate. The mutation scheme used in
this MA model is the non-uniform mutation described in
Michalewicz and Fogel (2000).

AX.{+(Max—xj)(l—r(l—t/T)b) 6
D= g—Min) (1 - 11—t/ T

with a 50% chance each. Max 15 the search space
maximum, Min is the minimum, r 18 a random number in
[0, 1], t is the current iteration, T is the total number
of iterations and b is a parameter determining the
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degree of iteration number dependency. Hence, the effect
of mutation decreases over the course of the iterations
with this scheme.

Experimental settings: In the experiments, we compared
the performance of the standard PSSO, the standard GA
and the life cycle model on four benchmark datasets
(Table 2). The mitial population of MAs and PSOs 1s
usually umformly distributed over the entire search space.
Tn all experiments the population of the novel adaptive life
cycle model was fixed at 10 individuals. These are all
mitialized as PSO particles at the beginning.

Settings for the PSO: In the PSO model the upper limits
for @, and @, were set to 2. The inertia weight 1 was
linearly decreased from 0.8 to 0.5 and the constriction
coefticient was set to 1. The maximum velocity v, ., of each
particle was set to half the length of the search space for
each dimension (v,,.. = 100). Previous research by Shi and
Eberhart (1998) regarding scalability of the standard PSO
showed that the performance of the standard PSO 1s not
sensitive to the population size (Lovbjerg ef al, 2001;
Krink et al., 2002). Inall PSO experiments, the population
size 1s fixed as 10 particles.

Settings for the MA: For the MA, the crossover and
mutation probabilities and other tabu parameters are
shown in Table 1.

Data sets used in the experiments: The experiments are
carried out with four public domain data sets: Breast
Cancer, Wisconsin Breast Cancer, Tic-Tac-Toe and
Hepatitis. These data sets were obtained from the UCI-
Machime Learning Repository (Murphy and Aha, 1994).
The main characteristics of each of these data sets are
described in Table 2. The data sources used were also
obtamned from the Department of Computer Science,
University of Waikato, Hamilton, New Zealand and
Information and Computer Science, University of
California.

RESULTS

All experiments are performed for 200 evaluations.
The results obtained for the four benchmark databases are
tabulated in Table 3-6. The performance of the novel
adaptive life cycle model compared to the standard PSO
and the standard GA algorithms. Also the proposed
algorithm which 15 based on the relay hybnd runs twice
by just changing the order of the participant algorithms,
ie PSO and MA. The order of MA preceded the PSO
performs better than the vice versa because of the

Table 1: Memetic algorithns parameter settings

Parameter Setting
Population size 10
Maximum number of generations 300
Crossover probability 0.8
Mutation probability 0.05
Length of tabu list 7
Table 2: Data sets

Data Categorical Continuous

set Cases attributes attributes  Classes
Ljubljana breast cancer 282 9 - 2
Wisconsin breast cancer 683 - 9

Tictac-toe 958 9 - 2
Hepatitis 155 13 [ 2

Table 3: Results for breast cancer data set

Algorithm Accuracy (%) Size of the rile set
GA 90 8
PSO 89 7
PSO+MA relay Hybrid 87 7
MA+PSO relay Hybrid 94 7

Table 4: Results for wisconsin breast cancer data set

Algorithm Accuracy (%) Size of the rule set
GA 90 8
PRO 89 7
PSO+MA relay Hybrid 89 7
MA+PSO relay Hybrid 92 7

Table 5: Results for Tic- Tac- Toe data set

Algorithm Accuracy (%) Size of the rule set
GA 90 6
PSO 89 8
PSO+MA relay Hybrid 88 4]
MA+PSO relay Hybrid 89 6

Table 6: Results for Hepatitis data set

Algorithm Accuracy (%) Size of the rule set
GA 90 5
PRO 89 4
PSO+MA relay Hybrid 85 4
MA+PSO relay Hybrid 89 4

contribution of MA by avoiding the search trapped in to
local maxima. Even though both Novel Adaptive Life
Cycle and MA models converged slower than P3O,
proposed Novel Adaptive Life Cycle Model clearly
outperformed by the standard GA and the PSO models in
terms of predictive accuracy.

With miner modifications in the algorithm designed
for relay hybrid, experimentation with a teamwork hybrid
version could also been performed.

DISCUSSION

The proposed approach of combining two standard
adaptive optimization algorithms into one self-adaptive
hybrid approach tumed out to be an inprovement over
the individual algorithms. The results showed that the
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novel adaptive life cycle heuristic has better performance
on all benchmark datasets that we used in this study in
contrast to the other adaptive algorithms, which have a
highly problem dependent performance. By the
observation of the experimental results it is evident that
the Novel Adaptive Life Cycle Model helps the standard
models to achieve the rules with high accuracy.

Based on the Talbi’s taxonomy for the hybnid
algorithms, combinations other than the high level relay
could also be used for further research in this direction.
Optimization of different parameters used in both PSO and
MA would be another mteresting way to pursue the
further research.
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