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Abstract: This study proposes a new versatile optimization algorithm called modified particle swarm
optimization algorithm (MPSO) for solving economic dispatch problems (ED) with non smooth objective
functions. In this algorithm, particles not only studies from itself and the best one but also from other
individuals. By this enhanced study behavior, the opportunity to find the global optimum is increased and the
influence of the initial position of the particles is decreased. To show its efficiency and effectiveness, the MPSO
1s applied to sample ED problems with smooth cost function as well as non-smooth cost functions. The results
of the MPSO are compared with those of the conventional numerical method, evolutionary programming
approach and the classical PSO approach.
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INTRODUCTION

To supply reliable and economic electric energy to
consumers, electric utilities face many economic and
technical problems in the operation, plamming and control
of power systems. Most of power system optimization
problems including economic dispatch (ED) have complex
and nonlinear characteristics with heavy equality and
mequality constraints (Lee and Sharkawi, 2002).

The primary objective of the ED problem 1s to
determine the optimal combination of power outputs of all
generating units so as to meet the required load demand
at mimimum operating cost while satisfying system
equality and inequality constraints. In the traditional ED
problem, the cost function for each generator has been
approximately represented by a single quadratic function
and 18 solved using mathematical programming based on
the optimization techniques such as lambda-iteration
method (Wood and Wollenberg, 1984), gradient method
(Wood and Wollenberg, 1984) and dynamic programming
method (Liang and Glover, 1992), etc. These methods
require incremental fuel cost curves which should be
monotonically increasing to find global optimum solution.
Unfortunately, the mput-output characteristics of
generating umts are inherently highly nonlinear because
of valve point loadings, multiple effects, etc. Thus, the

practical ED problem with valve point and multi-fuel
effects 1s represented as a non-smooth optimization
problem with equality and inequality constramnts and this
makes the problem of finding the global optimum difficult.
Over the past few years, in order to solve this problem,
many salient methods have been developed such as
hierarchical numerical (Lin and Viviam, 1984), genetic
algorithm (Walters and Sheble, 1993), evolutionary
programming ( Yang et al., 1996; Sinha et af., 2003; Park
et al., 1998), Tabu search (Lin et al., 2002), neural network
approaches (Lee et al, 1998) and particle swarm
optimization (Park et al., 2005).

Recently, Eberhart and Kemmedy suggested a particle
swarm optimization (PSO) based an analogy of swarm of
bird and school of fish (Victoire and Jeyakumar, 2004).
The PSO mimics the behaviors of ndividuals m a swarm
to maximize the survival of the species. In PSO, each
individual decides his decision using his own experience
as well as best individual experience. It can be used to
solve many complex optimization problems, which are
nonlmear, non-differentiable and multi-moedal. The most
prominent merit of PSO 1s its fast convergence speed. In
addition, P3O algorithm can be realized simply for less
parameters need adjusting. Now it was applied
successfully m various fields of power system
optimization such as power system stabilizer design,
reactive power and voltage control.
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Like other optimization algorithms, PSO also has the
disadvantage of premature convergence. For single-modal
problem, PSO can find out the global optimal solution
accurately and rapidly. But for complex multi-modal
optimization problems, PSO is easy to be trapped by local
optimum. Besides, the initial value of the particles, in some
degree, decides whether 1t could find the global optimal
solution. Moreover, in the basic PSO, particle adjusts its
velocity only according to its best experiences and that of
the best one in the population, without considering other
particle’s information. Based on the analysis above, this
study proposes a modified particle swarm optimization
(MPSO) algorithm (Kennedy and Eberhart, 2001). In
MPSO, the particle not only studies from itself and the
best one but also simulate other individuals.

In this study, we propose a novel approach for
solving the ED problems with non-smooth cost functions
using an modified PSO (MPSO). The feasibility of the
MPSO for ELD problems with quadratic and piecewise
quadratic cost functions 15 demonstrated and compared
with existing approaches.

FORMULATION OF ECONOMIC DISPATCH

Basic economic dispatch formulation: Economic dispatch
is one of the most important problems to be solved in the
operation and planning of a power system. The objective
of the economic dispatch problem 1s to mimimize the total
fuel cost of thermal power plants subjected to the
operating constraints of a power system. In general, it can
be formulated mathematically with an objective function
and two constraints (Wood and Wollenberg, 1984).

N
E =>E(R) (M
1=1
E(P)=a +bP +cP’ (2)
where,
F; Total generation cost.
F, Cost function of generator 1.
a b, c Cost coefficients of generator 1.
P, Power of generator 1.
N Number of generators.

Active power balance equation: For power balance, an
equality constramnt should be satisfied The total
generated power should be the same as total demand plus
the total line loss:

N
Z P1 = PD + PLoss (3)
i=1

327

sfenew

e

Fuel 1

_/

Min

Incremental

P
-
-

Power [MW]
Max >

Pl P2

Fig. 1: Piecewise quadratic and Incremental cost function
of a generator

where, Py, 15 the total system demand and P, 15 the total
line loss. However, the transmission loss 18 not
considered in this paper for simplicity (i.e., Pr,,, = 0).

Minimum and maximum power limits: Generatior output
of each generator should be laid between maximum and
minimum limits. The corresponding inequality constraints
for each generator are

4

where, P, and P, . are the mimmum and maximum
output of generator 1, respectively.

1,max

Non-smooth cost functions with multi-fuels: Since, the
dispatching units are practically supplied with multi-fuel
sources, each unit should be represented with several
plecewise quadratic functions reflecting the effects of fuel
type changes. In general, a piecewise quadratic function
is used to represent the input-output curve of a generator
with multiple fuels (Lin and Viviani, 1984) and described
as (5).

d, +bllR +C11P12 if lem SR <P
E®)= i +:blZPi +Ci2Pi2 it F, éPl <P,

alm +b1mP1 + C1.mP12 lf P]Hl—l = Pl < leax

(3

where, a, . by, ¢; Cost coefficients of generator 1 for the
7-th power level (Fig. 1).

OPTIMIZATION METHODOLOGIES
FOR ED PROBLEMS

Overview of the PSO: Kennedy and Eberhart (2004)
developed a particle swarm optumization (P30) algorithm
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based on the behavior of individuals (ie., particles or
agents) of a swarm. Its roots are in zoologist's
modeling of the movement of individuals (1.e., fishes, birds
and insects) within a group. It has been noticed that
members of the group seem to share information among
them, a fact that leads to increased efficiency of the
group. The P3O algorithm searches m parallel using a
group of individuals similar to other Al-based heuristic
optimization techniques. Each individual corresponds to
a candidate solution to the problem. Individuals in a
swarm approach to the optimum through its present
velocity, previous experience and the experience of its
neighbors.

In a physical n-dimensional search space, the
position and wvelocity of individual i are represented
as the vectors X, = (x,, ..., x ) and V, = (v, ..., v,,) in the
PSO algorithm. Let Pbest, = (x™*, .., x,"" and
Gbest, = (™ ., x 9 be the best position of
individual i and its neighbors' best position so far,
respectively. Using the information, the updated velocity
of mdividual 1 13 modified under the following equation in
the PSO algorithm:

VM =@VF + ¢ rand, x (Pbest}{ —-XF )
(6)
+c,rand, x (G—bestk - X}( )

where,

Vi : Velocity of individual i at iteration k.

w . Weight parameter.

¢, C; : Weight factors.

rand,, rand, : Random numbers between O and 1.

¥E . Position of individual i at iteration k.
Phest* . Best position of individual i until iteration

k.

Ghbest* . Best position of the group until iteration k.

In this velocity updating process, the values of

parameters such as w, ¢, and ¢, should be determined in

advance. In general, the weight © 1s set according to the
following Eq. 1 and 11:

W, —O
©=0,, — S Tter (M)
Iter .

where,
Wy Wein, © Initial, final weights,

Iter, ..

roa>

Maximuin iteration number,
Iter . Current iteration number.
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Fig. 2: The searching mechanism of the particle swarm
optimization

Each individual moves from the current position to
the next one by the modified velocity m (6) using the
following equation:

X11(+1 :X,k + vVvlkH (8)

Figure 2 shows the concept of the searching
mechanism of PSO using the modified velocity and
position of individual i based on (6) and (8) if the values
of w, ¢, ¢, rand,, rand, are 1.

Modified particle swarm optimization: In basic PSO,
particle updates its flying wvelocity and position only
according to its own best position and the best of the
groups. During the searching process, most particles
contract quickly to a certain specific position. If it 15 a
local optimum, then it is not easy for the particles to
escape from it. Research shows that in the initial stage the
particles convergence very quickly, however, with the
iterations goes on, particles become very similar and
almost have no ability to explore new area. The reasons
for this phenomenon are that in the basic PSO, the particle
does not consider the mformation of other particles except
its own and the best one. The algorithm only can search
the area nearby the best one in detail, but cannot explore
other areas adequately. In addition, the performance of
basic PSO 1s greatly affected by the mitial position of the
particles, if the imitial population is far away from the real
optimal solution and then the algorithm is very hard to
success. In the reality, the individual not only studies
from itself and the best one but also simulate other
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individual’s behavior frequently. The proverb that three

heads are better than one 1s just this pomt. Especially in
the mmitial stage, this simulation behavior should dominate
the study behavior of particle Based on the above
recognition, the MPSO algorithm is proposed.

In the MPSO, the particle also adjusts its velocity
according to two extremes. One 1s the best position of its
own and the other is not always the best one of the
group, but selected randomly from the group. In each
generation, the particle studies randomly from the group
at the beginnming with bigger probability and tends to the
best one of the populations in the later. A selection policy
1s given as follows:

In the i-th generation, r 18 a randomly number
between 0 and 1 evenly. R, is calculated according to the
formula (9), if r > R, choose a particle randomly except
itself and the best one, use its position, record as X, ,
K= X, , X, ,..., X,) instead of Gbest in the equation
and update particle’s velocity, that is to say, Eq. (6) 1s
changed to (10), shown as follows, or else update as

Eq. .
—_t 9
R, = A/[ax(}en ©
Vi =@V + ¢ rand, x (Pbesti{ .4 )
(10)

+¢,rand, x (dek .4 )

Where, t 13 the number of current generation, MaxGen
is the maximum number of generation.

Implementation of MPSO for ELD problems: In this
study, we will describe the approach to implement the
MPSO algorithm in selving the ELD problems. Tts
implementation consists of following steps.

Step 1: The particles are randomly generated between the
maximum and minimum operating limits of the generators.
Tt is very important to create a group of individuals
satisfymg the equality comstramnt (3) and inequality
constraints (4) . That is, summation of all elements of
individual

1{le Z RJ)
=1
should be equal to the total system demand Py, and the
created element j of individual i at random (i.e., P;) should

be located within its boundary.

Step 2: The particle velocities are randomly generated.

329

Step 3: Objective function values of the particles are
evaluated. Penalties are given for violation of inequality
constraints (4). These values are set as the Pbest value of
the particles.

Step 4: The best value among all the Pbhest values (Ghest)
15 identified.

Step 5: New velocities are calculated using Eq. (10).

Step 6: The positions of each particles are updated using
Eq. 8. If any element of an individual violates its mequality
constramnt due to over/under speed, then the position of
the individual is fixed to its maximum/minimwm operating
point.

Step 7: New objective function values are calculated for
the new positions of the particles. If the new value is
better than previous Pbest, the new value 1is set to Pbest.
The best value among new Pbest (Gbest) 1s identified.

Step 8: The proposed MPSO is terminated if the iteration
approaches to the predefined maximum iteration.

CASE STUDIES

To access the efficiency and effectiveness of the
proposed MPSO, 1t has been applied to ELD problems
where the cost functions used are the quadratic and
piecewise quadratic cost functions. The results obtained
for the test systems are compared with those of the
numerical lambda-iteration method (Wood and
Wollenberg, 1984), the hierarchical numerical method
(HM) (Lin and Viviam, 1984), the improved evolutionary
programming (IEP) (Park et al., 1998) and the classical PSO
approach (Park et al., 2005).

The proposed MPSO is applied to the ELD problem
with 3 generators where the cost functions used are the
quadratic cost functions. Table 1 shows the cost
functions and the related mimmum/maximum operating
points of 3 generators. Here, the system demand is 850
MW. Table 2 shows the comparison of results from
MPSO, NM (the lambda-iteration method), IEP and PSO.

Figure 3 illustrates the convergence characteristics of
the proposed MPSO where faster convergence is
achieved As seen in Table 2, the proposed MSPO has
also provided the global solution, while satisfying the
equality and inequality constraints.

The proposed MPSO has been applied to the EL.D
problem with piecewise quadratic functions and 10
generators. The piecewise cost coefficients and the
related constraints of generators are given in Lee ef al.
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(1998). In this case, the load system demand is 2400 MW.
The results from proposed MPSO are compared with
those of hierarchical method (HM) (Lin and Viviani, 1984),

Table 1: Cost coefficients of test system with 3 generators

Unit a by [ Pion Pi

1 561.0 7.92 0.001562 150.0 600.0
2 310.0 7.85 0.00194 100.0 400.0
3 78.0 7.97 0.00482 50.0 200.0
Table 2: Comparison of results of each method

Unit NM IEP PSO MPSO

1 393,170 393.17009 30316983 392.3614
2 334.604 334.60337 334.60375 334.9850
3 122.26 122.22654 122.22642 122.6537
TP 850.000 850.000 850.0000 850.0000
TC 8194.35612 8194.35614 8194.35612 S194.4000

*TP: total power [MW], TC : total generation cost [$]

Table 3: Comparison of optimization methods {(demand = 2400[MWT)
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Fig. 3: Convergence characteristics of MPSO for smooth

cost functions

HM IEP PSO MPSO
u F GEN F GEN F GEN F GEN
1 1 193.2 1 190.9 1 189.7 1 188.6838
2 1 204.1 1 202.3 1 2023 1 208.2526
3 1 259.1 1 253.9 1 253.0 1 270.0613
4 3 234.3 3 2339 3 233.0 3 2348858
5 1 249.0 1 2438 1 241.8 1 229.1797
6 1 195.5 3 2350 3 233.0 3 242.9074
7 1 260.1 1 2532 1 2533 1 241.9124
8 3 234.3 3 2328 3 233.0 3 2304737
9 1 3253 1 317.2 1 3204 1 332.6084
10 1 246.3 1 237.0 1 2394 1 221.0348
TP 2401.2 2400.0 2400.0 2400.000
TC 488.500 481.700 481.723 480.8062
Table 4: Comparison of optimization methods {(demand = 2500[MWT)

HM IEP PSO MPSO
U F GEN F GEN F GEN F GEN
1 2 206.6 2 203.1 2 206.5 2 204.4
2 1 206.5 1 207.2 1 206.5 1 211.8
3 1 265.9 1 266.9 1 265.7 1 253.9
4 3 236.0 3 2346 3 236.0 3 2293
5 1 2582 1 259.9 1 258.0 1 2539
6 3 236.0 3 236.8 3 236.0 3 2274
7 1 269.0 1 270.8 1 268.9 1 2821
8 3 236.0 3 2344 3 235.9 3 241.0
9 1 3316 1 3314 1 331.5 1 355.7
10 1 255.2 1 254.9 1 255.1 1 240.0
TP 2501.1 2500.0 2400.0 2500.000
TC 526.700 526.304 526.304 525.7859
Table 5: Comparison of optimization methods {(demand = 2600[MWT)

HM IEP PSO MPSO
u F GEN F GEN F GEN F GEN
1 2 216.4 2 213.0 2 216.5 2 210.9
2 1 210.9 1 211.3 1 210.9 1 215.7
3 1 2785 1 2831 1 278.5 1 273.0
4 3 2391 3 239.2 3 239.1 3 2389
5 1 275.4 1 279.3 1 275.5 1 267.4
6 3 2391 3 2305 3 239.1 3 243.1
7 1 285.6 1 2831 1 2857 1 279.1
8 3 2391 3 239.2 3 239.1 3 253.8
9 1 3433 1 340.5 1 3435 1 3397
10 1 271.9 1 271.9 1 272.0 1 277.8
TP 2600.0 2600.0 2600.0 2600.000
TC 574.030 574.473 574.381 573.15
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Table 6: Comparison of optimization methods (demand = 2700[MW])

Hn IEP PSSO MPSO
u F GEN F GEN F GEN F GEN
1 2 2184 2 219.5 2 2183 2 2167
2 1 211.8 1 211.4 1 211.7 1 214.0
3 1 281.0 1 279.7 1 280.7 1 274.6
4 3 2397 3 240.3 3 239.6 3 2482
5 1 279.0 1 276.5 1 238.5 1 287.1
6 3 2397 3 2399 3 239.6 3 240.5
7 1 289.0 1 289.0 1 288.6 1 260.0
8 3 239.7 3 241.3 3 239.6 3 2380
9 3 429.2 3 425.1 3 428.5 3 435.5
10 1 275.2 1 277.2 1 274.9 1 284.9
TP 2700.0 2700.0 2700.0 2700.000
TC 625.180 623.851 623.809 622476
TEP (Park et al., 1998) and PSO (Park ef al., 2005) in Table REFERENCES
3. Unlike in the case of smooth cost functions, it is
impossible to find the global solution with the numerical Lee, KY. and M.A. El-Sharkawi, 2002. Modern

approach for the ELD problems with non-smooth cost
functions.

As shown in Table 3-6, the MPSO has provided
better solutions HM, IEP and PSO. Moreover, it has
provided solutions’ satisfying the equality and inequality
constraints, while HM does not satisfy the equality
constraints. When compared with P3O, it gives better
solution. However, the generation configurations are not
similar between PSO and MPSO.

As shown in Table 3-6, the MPSO has provided
better solutions HM, IEP and PSO. Moreover, it has
provided solutions’ satisfying the equality and inequality
constraints, while HM does not satisfy the equality
constraints. When compared with PSO, it gives better
solution. However, the generation configurations are not
similar between PSO and MPSO.

CONCLUSION

This study presents a new approach for solving
non-smooth ED problems with valve-poimnt and multi-
fuel effects based on the modified PSO (MPSO)
algorithm. The suggested method includes new velocity
equation, equality and inequality constraints treatment
methods and creation of imtial position. The application
of new velocity calculation n a PSO 13 a powerful
strategy to improve the global searching ability and
escape from local mimma. Also, the equality and
inequality constraints treatment methods have always
provided the solutions satisfying the constraints without
disturbing the optimum process of the PSO. The proposed
MPSO outperforms other state-of-the-art algorithms in
solving economic dispatch problems with valve-pomnt and
multi-fuel effects.
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