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Abstract: This study presents the design of Adaptive Neuro-Fuzzy Observer based sensor fault detection in
a three-tank interacting level process. Three pairs of observers estimate the three system states. These
Observers are designed with Multiple Adaptive Neuro-Fuzzy Inference System (MANFIS) that uses a neural
network to fix optimal shape and parameters for the membership functions and effective rule base for the fuzzy
system. Fault detection is performed by estimating the states of the level process and comparing them with
measured values. A fault 13 signaled when the difference between the estimated and measured values crosses
a threshold value. Decision functions are built from estimation errors to detect the fault. If any failure is
identified, the control law 1s modified accordingly using the estimated value replacing the failed sensor output.
In this research, MANFIS observer based fault detection is designed and simulated. Since, the threshold value
can be different for different set point, a Neural Network (NN) based threshold generator is designed to give
best threshold values for fault detection. The individual failures of three level sensors are considered for
various set points and the results are discussed. The results show that the system is able to detect any sensor
failure for any set point and to control the level in interacting tanks perfectly under failure situations.
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INTRODUCTION

Many systems are relied upon to provide safe and
reliable operation for long periods of time. Unfortunately,
all these system components are subject to manufacturing
defects, wear and tear and other causes of performance
degradations. In systems like a 3 tank interacting level
process in which the level is to be maintained at the
desired level in the tank, the system may become unstable
under sensor failures. Therefore, it 13 important for the
control system to be able to detect and compensate for
fault conditions online and in real time. Fault Detection
and Tdentification (FDT) aims at malking the system stable
and retain acceptable performance under the system
faults. The purpose of FDI 1s to detect, identify and
reconfigure for any type of failures that may occur at any
tine.

The sensor failure detection and identification has
been considered as an important 1ssue, particularly when
measurements from sensors are used in the feedback loop
of a control law. Since the control law uses the sensor
feedback to establish the current states of the process,
the control with failed sensors can lead to an imperfect
control or closed loop mstability. Model based fault
detection techniques are based on observers (Clark ef af.,
1975), state estimating filters (Alan, 1976) or Parameter
Estimators (Isermann, 1984).

In a multivariable process, failure of any one of the
measuring elements can make a total failure of the control
system. If the state feedback with state space model of the
process is used, the control system will become very
simpler and safe. Observers can be designed to estimate
the states if some state variables of the system cannot be
measured for feedback, in some cases. This feature of
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observer leads to the concept of fault detection by which
the measurements from the perfect sensors can estimate
the state of failed sensor. The estimation error that is the
between the output and the
state given by the observer,

difference sensor

corresponding gives
mformation regarding the failed sensor. A dedicated
observer scheme (Clark, 1978) can be mtroduced in which
each sensor of interest drives an observer to perform a
complete state estimation. In an alternative version,
generalized observer scheme (Frank, 1990), an estimator
dedicated to a certain sensor 1s driven by all outputs
except that of the respective one. In both cases, if the
actual system 1s non-linear, it 1s a matter of degree of non-
linearity that determines if this method will be successful
in the detection of a failure.

With the development of neural networks and fuzzy
systems, observers are designed using these techniques
since they do not need any mathematical model and can
accommodate non-linearities (Napolitano et al., 1995).
Observers can be modeled using fuzzy system. A
straightforward approach (Xiao-Jun Ma and Zeng-Q1i Sun,
1998) is to assume a certain shape for the membership
functions. The effectiveness of the fuzzy models
representing relationships
depends on the fuzzy partition of the input-output spaces.
Optimal fuzzy observer (Mohanlal and Kaimal, 2004) can

be developed based on Takagi-Sugeno fuzzy model

nonlinear  input-output

Therefore, the tuning of membership functions becomes
an important issue in fuzzy modeling. Since this tuning
task can be viewed as an optimization problem, neural
networks can be used to solve this problem. The shape of
the membership functions that depends on different
parameters and a specification of the rules including a
preliminary definition of the corresponding membership
functions can be learned by a neural network with a set of
training data in the form of correct input-output
relationships. The Adaptive neuro-fuzzy system, which is
a neural network, fixes the optimal shape and parameters
for the membership functions and effective rule base for
the fuzzy system for observer modeling.

In this research, the levels in the three tanks of
interacting level process are measured as states and
used to control the level in the third tank through
state feedback. Three pairs of Adaptive neuro-fuzzy
observers are designed with sensor outputs as inputs.
Using these three designed pairs of observers, it is
possible to estimate all the states of the process
and they can be fedback for control. The fault
detection and 1solation decision logic detects any fault
that occurs and identifies the failed sensor. Tlus fault
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detection and identification is followed by reconfiguration
of the control law that performs the fault tolerant control.
Since, the residual and the decision function may
change with the changing control inputs under various
process conditions, Adaptive threshold can be fixed
analytically which varies dependently on the control
mput (Clark, 1989). A robust threshold selector
(Emani-Naeini et al., 1988) was also suggested in which
the control activity and the system operation states
influence the variable threshold. Fixing threshold values
are very important since the inevitable time delay in fault
detection, can cause stability problems. Higher values of
the threshold for decision functions may delay the fault
detection and cause stability problem whereas low values
of threshold may miss the fault. In this research, the
threshold values are fixed for the values of decision
functions mn such a way that their values are greater than
the values of respective decision functions under no
failure conditton and they are less than the values of
respective decision functions under failure conditions.

MATHEMATICAL MODEL
The three-tank interacting level process is shown in

Fig. 1. The non-linear equations describing the open loop
dynamics of this process are given by:

dh
% ) Bi“ 220,(0-h, (1) B”;‘BJZgalz ®—hy(®)
Mf_ﬁzs% _ _BSO(S &
& A J2e,(O—hy(1)) x ngh3<t>+A3uz
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Fig. 1: Three tank interacting level process
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where, b is the level in tank i (cm), 1 is the control input
to the control valves CV, (%), A, 1s the cross section area
of tank i (em?), &, is the cross section area of the pipe
connecting tank 1 and tank j (cm?), «, is the cross section
area of outlet of tank 3 (em?), P, is the valve ratic between
tank i and tank j, p;is the valve ratio of outlet of tank 3, k,
is the gain of valve CV,(cm’/%s) and g is the gravity
(cm sec ™).

This process 1s linearised about an operating point
and the linear state space model can be represented by:

X =AX+BU (2
Y=CX
with state vector X and control mput U as:
X'=[h h, hy (3)
U'=[u u 1]

The matrix C 15 3%3 identity matnix whereas matrices A and
B in (2) are given by:

_ 1 1 _
- — 0
T, T,
Aol L _[ng 1 o
T]Z TlZ TZE’ TZE’
0o L _[L+L]
L Ty T, T i
,k _
Kl 0 7%(1{1 Hz)
1 12
1 1 1 1
B= 0 0 —— 1[ J+H3 (5
T T, T T,
k 1 1 1
0 == —H, [ jHE
| Ay Ty Ty 3
Where:
T. = Al /z(HliHZ) T' _ Az ’2@1 7H2)
12 = B >+t 12 B >
12312 g 12a12 g
T. = Az 2(H2 _Hz) T' _ A3 Z(Hz _Hs)
23 T 2 23 T
B,52,; U g B8, d g
A, 2H,

=

and H,, H, and H; are levels in tank 1, tank 2 and tank 3,
respectively at the operating point.
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Table 1: Parameters of the process

Ay, Az, Ay Oz, Claz, O3 ki, ky
(cm?) (cm?) B B [ (cm*%.5)
615.7522 1.2272 0.9 0.8 0.3 8
Table 2: Operating point of the process

0 (emy 1, (cm) Hs (cmy) u (%) u; (%9
55.66 50.6 44.45 80 10

The parameters and the operating peoint of the
process are given in Table 1 and 2, respectively.

The control system is designed based on this model
using the state feedbaclk with the objective to control the
level h, in tank 3 at the desired value. Thus the control
systemn will require information from all the three sensors
directly while they are normal and through fault detection
while they fail

STATE FEEDBACK

In control system design by pole placement
technique, the states are used for feedback to achieve
desired closed loop poles. The advantage n this system
15 that the closed loop poles may be placed at any desired
locations by means of state feedback through an
appropriate state feed back gain matrix K to achieve a
perfect and smooth control. The control 15 done by
controlling u, only with a fixed u, in this research.

Using State feedback,

u =KX (6)
Then

g:(AfBK)X )
dt

The characteristic polynomial of the system with state
feedbaclk is given by:
[SI-(A-BK)] (8)
with
K=[K; K; K] 9
The Coefficient of the pelynomial in Eq. (9) 1s a
function of K,, K, and K,. The desired characteristic
polynomial 18 found by choosing desired closed loop
poles for best control. By equating the coefficients of
polynomial and the
characteristic polynomial, the state feedback gain K is
determined (Stefani et al., 2002). For this process, the
state feedback gain K is determined and the values of K,
K, and K, are 3.7707, 3.5659 and 3.1659, respectively.

actual characteristic desired
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Fig. 2: State feedback with Integral control

An integral control in the path in series with the
process 1s provided to achieve zero steady state error for
given reference mput h, . The gamn K, for integral control
18 0.2. The block diagram of state feedback with integral
control is shown in Fig. 2.

ADAPTIVE NEURO-FUZZY INFERENCE
SYSTEM

A neuro-fuzzy system 1s a combination of an Artificial
Neural Network (ANN) and a Fuzzy Inference System
(FIS) m such a way that neural network leaming
algorithms are used to determine the parameters of FIS. A
FIS can utilize human expertise for storing its essential
components in a rule base and a database and perform
fuzzy reasoning to mfer the overall output value. For
building a fuzzy inference system, the fuzzy sets, fuzzy
operations and the knowledge base should be specified.
For building an Artificial Neural Network (ANN), it is
necessary to specify the learmng algorithm and the
architecture. The learning mechanism of the ANN does
not rely on human expertise. Due to the homogeneous
structure of the ANN, it 1s difficult to extract structured
knowledge from the weights of the ANN. Hence,
encoding a priori knowledge into the ANN becomes a
difficult task. Neuro-fuzzy system is a hybrid system that
combines the learning capability of FIS and the formation
of fuzzy if-then rules by ANN. ANN learmuing algorithms
are used to determine the parameters of the FTS.

Adaptive Neuro-Fuzzy Inference System (ANFIS)
(Tang et al., 1997) implements a Takagi-Sugeno FIS and
has a 5 layered architecture as shown in Fig. 3. The first
hidden layer is for fuzzification of the input variables and
T-norm operators are deployed in the second ldden layer
to compute the rule antecedent part. The third hidden
layer normalizes the rule strengths followed by the fourth
hidden layer where the consequent parameters of the rule
are determined. Output layer computes the overall mput
as the summation of all incoming signals. ANFIS uses
back-propagation learming to determine premise
parameters to learn the parameters related to membership
functions and least mean squares estimation to determine
the consequent parameters. The learning procedure is
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Fig. 3: Archutecture of an adaptive neuro-fuzzy inference
system

executed in 2 parts. Tn the first part, the input patterns are
propagated and the optimal consequent parameters are
estimated by an iterative least mean squares procedure
whereas the premise parameters are assumed to be fixed
for the current cycle through the traming set In the
second part the patterns are propagated again and in this
epoch, back-propagation 1s used to modify the premise
parameters, whereas the consequent parameters remain
fixed. This procedure 1s then iterated.

Every node 1 n layer 1 1s an adaptive node with a
node function whose output is equal to the membership
grade of the particular mput given by:

fori=1,20r
fori=3,4

O = Mo (%)
O = priz () (10)
where, x (or y) 15 the mput to node 1 and A;{or B,) 1s a
linguistic label associated with this node. Here, the
membership function used is a Gaussian function given

by:

OS(X—Cl)Z

b, () = exp(— an

)

1

where ¢, and o, is the mean and variance of the Gaussian
membership function, respectively.

Every node in layer 2 is a fixed node and represents
the firing strength of a rule. The output of each node 15 a
product of all the incoming signals as given by:

O =W, = Py (X).pg (y), 171,2 (12)

Every node n layer 3 1s a fixed node and calculates
the ratio of firing strength of a rule to the sum of all rules
firing strengths. The outputs of thus layer are normalized
firing strengths given by:
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Fig. 4 Architecture of an Adaptive Neuro-Fuzzy
Inference System
_ W, .
0, =w,=—— i=12 (13)
| W, + W,

Each node layer 4 is an adaptive node with a node
function given by:
O, =W f =W (px+qy+r), a4

where, {p, g, ;} 18 the parameter set of this node.
The single fixed node in layer 5 computes the overall

output as the summation of all incoming signals as given
by:

Z‘“wl.f1

lei

Multiple Neuro-Fuzzy Inference System (MANFIS)
can produce multiple outputs. It 1s a parallel structure with
two ANFIS sharing same inputs to produce multiple
outputs. The MANFIS architecture is shown in Fig. 4. The
function of each layer of MANFIS 1s the same as that of
ANFIS.

O, =Yw.f = (15)

STATE ESTIMATION BY MANFIS OBSERVERS

State estimations are carried out m Dedicated
Observer Scheme on the assumption that only one state
variable is measurable and the other two states are
immeasurable. MANFIS structure 1s constructed as a
dedicated observer. Three observers are constructed with
each sensor, forming dedicated observer scheme to
estimate other two states. Hach observer is applied with
one sensor output m addition to the control input u; to
estimate other two states.
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Fig. 5. Architecture of MANFIS observer

The neural networks are tramed with the known open
loop input-output relationships of level process in all
possible ranges. The optimal shape and parameters for the
membership functions of fuzzy inference systems with
effective rule base are fixed by neural network. The
membership functions are Gaussian for inputs and linear
for outputs. Thirteen thousands six hundred and
ninety six sets of data are used for training. The
architecture of one such Adaptive Neuro-Fuzzy Inference
System as state x, observer is shown in Fig. 5. The
optimal number of both nput and output membership
functions of all the three observers is 7.

FAULT DETECTION AND IDENTIFICATION

The residuals are generated as error functions f by
comparing the process outputs with the estimated states
of the process. These residuals are further processed to
form decision fimction 1. As the decision function
exceeds the threshold value when fault occurs, the fault
alarms can be generated.

The states of the process are the outputs of perfect
sensors as given by:

¥, =h,
XZZhZ (16)
X, =h,

The dedicated observers with h, and h, sensor
outputs as inputs respectively give the estimated states
for state x, as x,, and x,,, respectively. The residuals that
are generated from the three values of state x,, one from h,
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sensor output and 2 from estimated values of state x,.
From the three values of state x,, the estimation errors that
are the difference between the three values of state x, are
calculated and these error functions are given by:

f,

n A
1n= ‘XIB Rt

(17)

t, = ‘XIB 7X1‘

n
£ = ‘Xu _Xl‘

The decision functions 1;,, 1, and m; are formed as:

My =t
Mgy =1ply (18)
Moy = Tl

The values of the decision functions will be zero if no
sensor fails. If any sensor fails, the decision function
formed from the product of respective estimation errors
will show great deviation. This deviation is used to
identify the failure of that particular level sensor. If the h,
level sensor fails, the functions f,, and f, will grow
quickly as they are the difference between the estimates
and the failed sensor output and so m,; alone will grow
much faster. This deviation beyond the threshold value is
used to identify the failure of h, level sensor and to make
the fault alarm. Similarly, the deviations of 1),;, and n,, will
identify faults in h, and h, sensors, respectively. Similar
decisions functions Mg, Mas Mse M M and 15 can be
made with other state estimates also.

SELECTION OF THRESHOLD VALUES

The values of the decision functions should be zero
under no failure condition. If any sensor fails, one of the
decision functions will show great deviation. This
deviation 1s used to identify the respective sensor failure.
If the normal value of these decision functions are fixed at
zero, even a slight deviation, which is not necessarily
because of sensor failure, can also make fault alarm. This
false fault alarm 1s avoided by fixing threshold values for
the decision functions instead of zero.

The residual and the decision function may change
with the changing control inputs under various process
conditions. Fixing threshold values are very important
since the mevitable time delay in fault detection can cause
stability problems. Higher values of the threshold for
decision functions may delay the fault detection and
cause stability problem whereas low values of threshold
may miss the fault. In this work, the threshold values for
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Set point
oy

Fig. 6: Multilayer Perceptron Neuwral Network for

threshold generation

decision functions are fixed in such a way that their
values are greater than the values of respective decision
functions under no failure condition and they are less
than the values of respective decision functions under
failure conditions.

The responses of the state feed back control of three
tanks interacting level process are studied for various set
points under normal and process perturbation conditions.
The maximum values of all decision functions are
observed. Various sensor failures are tentionally
mtroduced at various instants of time and the responses
of the interacting level process are studied for various set
points under these failure conditions. The maximum
values of all decision functions under these conditions
are also observed.

A newral network based threshold selector
proposed in which the threshold values for the decision
functions are generated based on the set pomt of the
process. Since the values of the maximum deviations are
found higher for higher set points, the threshold values
for decision functions can be fixed based on the set
points instead of generating adaptive threshold based on
control inputs. A simple Multilayer Perceptron Neural
Network (MLP NN) is constructed with one node in input
layer, five nodes in one hidden layer and nine nodes in
output layer. The mput node 1s for set point and the mne
nodes represent the nme decision functions. The
architecture is shown in Fig. 6. For generating training
data for NN to generate threshold values, the threshold
values for some set pomts are fixed and a data set 1s
formed.

The network is trained with the well-known back
propagation algorithm and prepared to generate threshold
values for any set pomt. The threshold value for a
decision function 13 fixed for a set point by considering

is
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Fig. 7: Fault detection and identification scheme

the maximum value of the decision function under no
failure condition and the minimum value of that decision
function under the concerned sensor failure condition for

the set pomnt. Thus the thresholds are fixed such that:

max (ay, by) <1y > € (19)
where, a, is the value of decision function 1 ; under no
failure condition, ¢; 1s the value of decision function m,
under ith sensor failure condition, by is the value of
decision function m; under sensor failures other than ith
one, I'; 1s the threshold for the decision function n, and
M 1s the decision function formed for ith sensor from the
observer of state j.

The procedure of fixing threshoeld values of decision
functions for a set point is explained here. The values are
fixed for the set pomt of 10 cm. The decision functions
My My and 1,5 are the decision functions for identifying
h, sensor failure condition. The maximum values of these
decision functions under any process condition without
any sensor failure are observed as 0.88, 0.66 and 0.69,
respectively. Tt is observed that the values of these
decision functions under h; sensor failure condition are
131, 120 and 101, respectively. The maximum values are
5.9, 4.9and 4.1, respectively considering the values under
other sensor failures. As the decision functions grow
faster when any sensor fails, the threshold values for m,,,
1, and 1, can be fixed as 50, 25 and 25, respectively for
early detection of failure. The threshold values are thus
formed for these decision functions for all set points.
Such data are formed for many set points and the neural
network 1s tramed with these data to generate threshold
values for any set pomt The threshold values for
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decision functions 1), 7);; and 7); generated using this
procedure are found to be 50, 30 and 40 for a set point of
10 cm and 140, 100 and 120 for a set point of 20 cm. The
proposed fault detection and identification scheme is
shown in Fig. 7.

RECONFIGURATION OF CONTROL LAW

If any sensor failure is identified by the fault
detection and identification logic, the estimated state,
which is the same as output in this case, will come into
action and gives the value of the state of the system for
state feedback. Hence, perfect and smooth control 1s
possible even under sensor failure conditions.

The system under no failure condition will worle with
the basic control law given by:

u, =K, %, -Kyx, -Ky %, -Ky thy e -%5) (20)

If any failure 13 detected in h, level sensor by the fault
detection logic, the control law will be modified and the
alternative control law is:

~

u1:'K1 Xl'Kz Xz'Kz X;_KIN (h3,ref 'Xs) (21)

For h, sensor failure and h, sensor failure, the
alternative control laws for perfect control are given in
Eq. (22) and (23), respectively.

W :'Kl X?'Kz Xz'Kz Xz'K]N (hz,ref 'Xz) (22)

u, =K, x,-K, X;'Kz X3-Kmy (hmf -X3) (23)
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Estimated states x.x; ad x; are used as redundant
states in alternative control laws which are available as
outputs in dedicated observers.

RESULTS AND DISCUSSION

No failure condition: The Fault Detection and
Identification scheme is implemented in three tanks
interacting level process under normal condition. The set
point is fixed at 10 cm and the state feed back control is
applied for maintaining thig level. No sensor failure is
introduced and the wvarious trends on levels, state
estimates and the control inputs are shown in Fig. 8.
Estimation error functions and decision functions under
no failure condition are shown in Fig. 9. All decision
functions are found within their respective threshold
values and hence no fault alarms are generated.

Tank 1 level sensor failure condition: The set point is
fixed at 10 cm and the state feed back control is applied for
maintaining this level. A failure is introduced in h, level
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failure condition
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gengor at 150 sec. The trends on levels and error
functions are shown in Fig. 10. Since, the state x; which is
h, sensor output, deviate more and the error functions
relating this state grow faster at 130 sec.

Figure 11 shows the decision functions. The decision
function m,, goes beyvond its respective threshold value
generated by NN based threshold generator for a set
point of 10 em and a fault alarm is generated for h; sensor
failure at 130 sec. All other decision functions are
found within their respective threshold values and
hence no false alarms are reported. The level is maintained
at the desired level even under this sensor failure
condition since the control law is reconfigured as given in
Eg. (22).

The error functions and decision functions under h,
gsensor failure for a set point of 20 cm are shown in
Fig. 12 and 13, respectively. The sensor failure is
correctly identified as the decision function n,, grows
beyondits threshold value generated for a set point of
20 em.
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Tank 2 level sensor failure condition: A similar failure is
introduced in h, level sensor at 150 s with a set point of
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Fig. 15: Trends of decision functions under h, sensor
failure condition with set point set at 10 cm
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Fig. 16: Trends of State estimates and Error functions
under h, sensor failure condition with set point
getat 20 cm

10 c¢cm and the trends of states and error functions are
shown in Fig. 14. Since, the state estimate x°, is the
output of MANFIS observer driven by h, sensor output,
it shows greater deviations in the estimation whereas the
states x, and x°,; show no significant estimation error. This
large deviation of X', results in large value of error
functions |x, - X°| and [X;;- X°12|. As the result, the value of
1), grows larger exceeding its threshold value as shown in
Fig. 15 making a fault alarm for the failure of h, sensor at
150 s whereas 1y and 1, are within their threshold
values.

The control law takes the value of estimated state x%,
instead of h, as in Eq. (23). The level h; in tank 3 is
controlled at the desired value, h, . perfectly even under
this failure condition. Similar results are obtained on
introducing failure in h,level sensor at 150 sec with a set
point of 20 cm. The trends of error functions and decision
functions are shown in Fig. 16 and 17, respectively.
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Fig 17: Trends of decision functions wnder h, sensor
failure condition with set point et at 20 cm
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Tank 2 level sensor failure condition: & falwe in b,
gengor i introduced at 150 2 and the trends are shown in
Fig 12 The estimated statesx®; and %%, alone, which are
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Fig 21: Trends of decision functions under b, sensor
failure condition with setpoint set at 20 cm

outpnd of observer deiven by by sensor, experience large
estithation etrors. Other estimated states x5, and x°, are
not distrbed by this faibwre and show only negligible
errors. The large deviation in x5 resdtsinlarge walue of
error firctons x, - x5 and|x® ;- x5, Thizin tuen results
i very large wvalue of 1); as shown in Fig 19, The h,
serizor fanlt iz detected at 150 5 exaclly at the time of
failure =since the decision function vy exceeds its
threshold walue at 130 s whereas 1)), and ry, are within
their threshol d limits, Thismakes a fault alarm for b, level
senizor. The output of the failed sensor by isthen replaced
by its estimated value x%, for state feedback asin (210 and
by is contralled at the set point petfectly even wader this
failure condition The fault detection works well for by,
sengot failure for a set point of 20 om also. The various
tretuds are shown in Fig 20 and 21,
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CONCLUSION

Three paws of Multiple Adaptive Neuro-Fuzzy
observers are designed by fixing the optimal shape and
parameters of the membership functions and effective rule
base by neural networks to estimate the levels in three-
tank mteracting level process. All level sensor failure
conditions are simulated for two different set points. From
the study performed it has been noticed that the system
has detected failures successfully at the time of failure
itself in any sensor if it occurs. The sensor that has failed
15 correctly identified. The control law 1s modified
accordingly and the level in tank 3 is maintained at the
desired value even under the failure conditions.
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