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Abstract: In this digital world, it has become very important to save a digital product from illegal copy or
reproduction. The technique, which has evolved for this, is known as Digital Watermarking. Several techniques
based on spatial and frequency domain have been developed. However, none of them are full proof and exhibit
all the desirable properties of watermarking to a satisfactory level. There 1s a gradual reduction 1n the fidelity
of the cover 1mage with the mcrease in embedded information content. This study discusses a special method
based on Backpropagation Neural Networl, which takes a cover image at the input of a Backpropagation Neural
Netowrk and the network is trained to produce the desired watermark image. The cover image is taken in the
original form and is not fragmented. After traming, a random number 13 embedded 1n the higher precision bit
of the cover image pixel and supplied with the trained network weights for the extraction of watermark. This
guarantees authentication also. During the extraction stage, the watermarked image is supplied to the input of
the trained network and output watermark image is produced. As the image processing operations do not affect
the weights of the Neural Network, so the watermark image 1s resistant to various image processing operations

enhancing robustness of watermarking.
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INTRODUCTION

Digital watermarking should provide the qualities like
imperceptibility, robustness, security of cover image. A
large number of techmques have been developed based
on manipulating the bit plane of Least Sigmificant Bit
(LSB) (Van et al., 1994), hnear addition of watermark to
cover image (Van et al., 1994), using mid band coefficients
of DCT transformed blocks to mde watermark (Ahmidi and
Safabaksh, 2004), maximizing strength of watermark using.

Discrete Wavelet Transform (DWT) techniques
(Davis and Najarian, 2001), Using radial
function (RBF) neural network to achieve maximum
strength watermark (Zhang et al., 2003), transforming
color space of cover image and embedding watermark
into saturation channel (Ren et al, 2002), Embedding
watermark m the DC components of transformed

basis

blocks (Fengsen and Bingxi, 2003) etec. Principles of
neurocomputing and their usage in science and
technology is well explained in Fredric and Kostanic
(2001). Cox et al. (1996) ponted that, m order for a
watermark to be robust to attack, it must be placed in
perceptually significant areas of the image. Schyndel et al.
(1994) generated a watermark using a m-sequence

generator. Sehyndel et al (1994) mtroduced a
watermarking scheme using fractal codes. Bartolini et al.
(1998) utilized the properties of human visual system and
generated watermark from DCT coefficients. Kundur and
Hatzinakos (1997) embedded the watermark in the
wavelet domain where the strength of watermark was
decided by the contrast sensitivity of the original image.
Delaigle et al. (1998) generated binary m-sequences and
then modulated on a random carrier. A method for casting
digital watermarks on immages and analyzing its
effectiveness was given by Pitas (1996) and immunity to
subsampling was examined Cox and Kilan (1996)
presented a secure algorithm for watermarking images
using spread-spectrum techniques. Craver and Memon
(1998) proposed digital watermarks to resolve the
copyright ownership. However, these techniques suffer
from the problems of unsatisfactory value of
imperceptibility and robustness to various attacks as
discussed in this study. These techniques also have the
problems related to security.

The wuse of Neural Network for
watermarking was effectively done in Chun (2005), where
Full Counterpropagation Network (FCNN) was used to

insert the watermark into synapses of FCNN rather than

successful
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wonderful technique of embedding the watermarks into
synapses of FCNN rather than cover image. This helped
to increase robustness and reduce imperceptibility
problems to a great extent. This study 1s an attempt to
adopt backpropagation neural network for the purpose of
watermarking. The inputs to be provided to the mnput layer
are taken from a cover image. This shall help to maintain
robustness, fidelity and authenticity of the watermark as
depicted in later sections. Hiding a random number in the
higher precision bit of the pixel value helps in the
authentication of the watermarked image.

APPROACH FOR USING BACKPROPAGATION
WITH COVER IMAGE AND GIVEN TARGET
WATERMARK IMAGE

The approach followed for the proposed work i1s
described as follows:

Embedding:

¢+ The target watermark image is taken to serve as
output to a Backpropagation Neural Networl.

+ A Backpropagation Neural Network is chosen with 1
input, 1 hidden and 1 output layer.

¢+ The cover image is supplied as input to the input
layer of the network and weights are adjusted to
produce the corresponding target watermark 1mage at
the output layer using Backpropagation algorithm.

* The trained weight matrix are stored m files. A
random number 1s embedded in the higher precision
bit of the cover image pixel and also m a file for the
authenticity purpose.

Extraction:

¢+ The cover image is taken and random number is
extracted from the higher precision bit of the pixel
intensity value.

* This random number 15 used to determme the
authenticity of the watermarked image.

* The weights are extracted from the files and the
traned neural network 1s reconstructed.

*  The watermarked image 1s supplied at the mput layer
neurons and the final output watermark image 1s
produced at the output layer.

¢ The output watermark image is correlated with the
target output watermark to determined PSNR of the
obtained watermark image.

Algorithm: The following conventions apply to the
embedding algorithm as well as extraction algorithms
glvern

¢« M = rand (m, c) generates a random matrix M
containing m rows and n colummns.

¢+ M = zeros (m, ¢) generates a matrix of m rows and ¢
columns contaimng all zeros.
MG, =0forl<=i<=m, l<=j<=c.

» M = bmsig (M) generates a matrix containing binary
sigmoid values of each value of the matrix M.

s M =hinsigl (M) generates.
binsig (M) (1-bmnsig (M)).

¢+ min_threshold error puts a lower bar on the

acceptable value of error generated.

Embedding
Step 1: Let the target watermark image be given as:

timage = [t tp. ... &, ... ... [—
for l<=i<=mec, 1<=j<=nc (1
where,
mec = Number of rows n the target inage.
nc = Number of columns in the target image.

The cover image used to produce the target
watermark image be given as:

cimage = [¢,, G, ....Cy, ... ... Conovnc)
forl1<=1<=mec, 1<=j<=nc (2)
where,
mc = Number of rows in the cover mmage.
nc = Number of columns in the cover image.

Step 2: Now, timage 1s reshaped as a row vector
containing mexne number of columns.

timage[ (i-1) *nctj] = t[i, j] for 1< =1i<<=mg,
1<= j< =nc (3)

This produces a row vector timage [t, t,, ... toee]-

Step 3: Now, cimage is reshaped as a row vector
containing me*nc number of columns.

cimagel[ (1-1)*ncH] = ¢f1, 3] for 1< = 1< = me,
1<=j<=ne (4)

This produces a row vector cimage[c,, €, ... .Cpunl-

Step 4: A Backpropagation algorithm based on a neural
network with 1 input layer, 1 hidden layer and 1 output
layer is wused. The configuration of the
backpropagation network 1s chosen.

initial
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Let,

n = Number of input layer neurons.
m = Number of output layer neurons.
h = Number of hidden layer neurons.

The weight matrix representing the weights
connecting from input layer to hidden layer is represented
by:

v=rand (n, h) - 0.5 (5

The weight matrix representing the weights
connecting the ludden layer neuwrons to the output layer
is represented by:

w =rand (h, m) - 0.5 (6)
The initial bias of hidden layer neurons is set as:

bl =rand [1, h] - 0.5 (7)
The initial bias of output layer neurons is set as:

b2 =rand [1, m]- 0.5 (8)

Let, v1 and wl are the matrices containing all zeros.

v1 and w1 shall be used to record previous values of
v and w matrix to calculate the momentum factor to speed
up the learming process.

@)

v1 = zeros (n, h)

w1 = zeros (h, m) (10)
The learning rate is represented by alpha and the
momentum factor 1s represented by mf.
The controlling variable for the trainming of the unage
fragment con is initially set to 1.
con=1 (11)
The total number of epochs to be used in training
shall be stored m epoch and set to an iitial value of 0.
epoch=0 (12
Now, the following section starts the traming of the
Baclkpropagation Neural Network.

Step 5: Repeat the steps from 6-12 while, con=1
Step 6: The error e is is used to find difference between

the target output and the output obtained and imtialized
to a value of 0.
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e=0 (13
Step 7: Now to pick up each row of cimage for training,
repeat the steps from 8-10 for each value of T from 1 to me.
(representing mc rows of the image section each with ne
elements).

Now, the output of the hidden layer and output layer
neurons are calculated in the following steps.

Step 8: Let Zin represents the net input to hidden layer
neurons.
Zin is initialized with bias bl.

Zin(G)=bl () forl<=j<=h (14
The net input Zin is calculated as:
Zin (j) = Zin (j) + cimage (I, 1) xv (i, j) for
l<=j<=h,1<=i<=n (15)

The output of the hidden layer neurons is calculated
by finding the binary sigmoid function of Zin.
7 (j) = binsig (Zin (i) (16)

Let, Yin represents the net input to the output layer.
Yinis initialized with a bias b2.

Yin (k) =b2 (k) for l<<=k<t=m (17
The net input Yin is calculated as:
Yin (k) =Yin (k) + Z (j) x w (J, k) for
l<=j<=h1<=k<=m (18)

The output Y from the output layer neurons 1s given
by:

Y (k) =binsig (Yin (k) forl<=k<=m  (19)
This output 1s stored in a matrix ty.
ty (LK) =Y (k) forl<=k<=m (20)

Step 9: Now, the backpropagation of error is done.
The delta values at the output layer 1s given by:

delk (k) = (tumage (I, k) — Y (k)) x binsigl
(Yin(k)) forl<=k<=m,

where,
timage (I, k)-Y (k) = The error at the kth neuron in the

output layer.

The weights at the output layer are adjusted by:
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delw (j, k) = alphaxdelk (k =z (§) + mfx (w (j, k)-wl (j, k))
for l<<=k<=m, l<=j<=h 2

The modifications in the bias of the output layer 1s
calculated as:
delb2 (k) = alphaxdelk (k), for 1<=k<<=m (22)

To calculate the delta values at the hidden layer, first,
delinj is calculated and initialized to a value of 0.

deliy j)=Ofor 1<=j=<=h (23)
delinj is modified with the help of dellc.
delinj (33 = delinj (7) + delk (k) x w (3, k)
for l<<=k<=m, l<=j<=h 24

Now, delta value at the ludden layer neurons is
calculated using delin;.

delj () = delinj [j] * binsigl (zin [j]),

for1<=j<=h (25)

(This is used to calculate the modifications in the
weight matrix v).

The modifications in the weight matrix v 1s given by:

delv [1, j] = alphaxdelj [j] = X [I, i] + mf = (v [1, j]-v1 [4, j]),
forl<=i<=n,1<=j<=h (26)

The modifications m the biases of the mput layer
neurons is given by:
delbl[j] = alphaxdelj[j], for 1<=j<=h  (27)

Now, initial weights w and v are stored in wl and v1,
respectively. This is necessary to find the momentum
factor during later stages to speed up training process.

wl [i,j]=w[i,j]forl<=i<=n,1<=j<=m

and
vi[yj]=v[y ] forl<=1<=n,1<=j<=h (28)
Now, weight matrix w is updated.
w [1, 1] = w [1, j]+delw [1, 7],
forl<=1<=h,1<=j<=m (29)

The weight matrix v is updated.

v[1, 3] = v[L, 7] + delv[y, j1,
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for l<=i<=m,l<=j<=h (30)
The bias at the output layer 1s updated.
b2[k] = b2[k]+ delb2[k], for 1<=k<=m  (31)
The bias at the input layer 1s updated.
bl[j] =bl[j] + delbl[j], for I<=j<=h (32)

The emror e between the deswed output and the
output obtained 15 calculated by repeating equation 33 for
each value of k from 1 tom.

e=e+ (L k]-Y[k]2for1<==k<=m (33)
Step 10:
I=T+1, goto step 7 if I<mc (34
Step 11: Modify the value of the controlling variable
depending on total cumulative error e for the current
image section.

If e<min_threshold error, con=0 (35)
Increment the current no. of epochs.
epochs = epochs+1 (36)

Step 12: If con = 1 then goto step 35, else follow step 13.

Step 13: Now, the trained weight matrices are stored in
files.

The files wfile, vfile, blfile, b2file are opened in write
mode.

The weight matrix w 1s stored mn wiile.
The weight matrix v is stored in vfile.
The bias matrix bl is stored in blfile.
The bias matrix b2 1s stored in b2file

Now, all the files are closed.

A random mumber is stored in the higher precision bit
of the pixel value of the cover unage.

Now, this watermarked image 1s supplied with the
trained weight matrix files for the watermark extraction
algorithm.

Extraction

Step 1: The hidden random number is extracted from the
higher precision bit of the watermarked image pixel and
also from the supplied file and a match 1s seen. If the 2 are
same then the authenticity of the watermark 1s preserved.
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Step 2: Open all the files wfile, vfile, bl file, b2file in read
mode read the tramed weight matrices of
backpropagation network corresponding to each image
fragment, respectively.

to

Step 3: Read from the trained weight files and populate
the corresponding weight matrices. (corresponding to the
successive image sections.. one by one.)

w is populated from wfile.
v is populated from vfile.
bl is populated from bl file.
b2 1s populated from b2file.

Step 4: For each value of I from 1 to me, perform the steps
from 5-12.

Step 5: Imitialize Zim with the bias bl.

Zn(Gy=>bl (), forl<=jx<=h (37)
Step 6: Find the input 7Zin to hidden layer neurons.
Zin (j) =Zin (j) + cimage (I, T) x v (I, j),
forl<=i<=n,1<=j<=h (3%)

Step 7: The output of the hidden layer neuron is
calculated as:

Z (3) = binsig (Zm (), for 1<<=j<=h (39)
Step 8: Tnitialise Yin with the bias b2.
Ym[k] = b2[k] for 1< =k<=m (40)

Step 9: Now, the net input to the output layer neuron Yin
is calculated as:

Yinlk] = Yin[k] +Z[3] = wlj, kI,

for1<=j<=h,1<=k<=m (41
Step 10: The output from the output layer neuron is
calculated as:

Y[k] = binsig (Yin[k]), for 1<=k<=m (42)
Step 11: This output is stored in ty.
ty[l, k] =Y[k], for l<=k<=m (43)

Open a file tyfile in “write” mode to store ty matrix.
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Step 12: T=1+1
If T<mc goto step 4 else goto step 13.

Step 13:

Close all files.

Now, open the tyfile in read mode.
Read tyfile into ty matrix.

Step 14: Now ty is reshaped into a row vector of
dimension (1 x (mcxnc)).

ty[ (1-1) x 4+5] =t[1, 7] for 1< =1
<=me, l<=j<=nc (44

This provides a row vector ty = [tvl, ty2, ... ¥, 0]

Step 15: Now display the image represented by ty

EXPERIMENTS CONDUCTED
WITH AND THE RESULTS

In the first experiment, the variation of PSNR values
with respect to cheange mn threshold value 1s clearly
visible. The threshold is varied from 0.4- 0.0001 as shown
in Table 1. With the reduction in the threshold value, the
PSNR goes on increasing. There is also an increment seen
in training time and number of epochs required for
traiming. The values of & 18 kept at 4 and the value of mf
is also kept constant at 0.8. The PSNR varies from 16.11-
41.64. The best PSNR value is obtained at threshold value
of 0.0001 with a traiming time of 2567.98 sec. Figure 1-4,
show the extracted watermark image corresponding to
threshold values of 0.1, 001, 0.001 and 0.0001,
respectively. The Fig. 5 shows the varation of PSNR
values with respect to threshold values in a graphical
way.

In this experiment, the of the
watermarking scheme is shown. The cover image of Lena

robustness

shown in Fig. 6 contains only the random number
embedded in the higher precision bits of the mtensity
value of the first pixel of the image. As the information
was embedded in the weights of the neural network
derived from the files, there was no visual deterioration of

Table 1: Variation of PSNR with threshold (z =4, mf=10.8)

Trainining
o mf Threshold PSNR. time (sec)
4 0.8 0.4 1611 321.90
4 0.8 0.3 17.98 352.48
4 0.8 0.2 19.92 415.98
4 0.8 0.1 23.78 554.45
4 0.8 0.01 32.66 698.87
4 0.8 0.001 38.83 1254.56
4 0.8 0.0001 41.64 2567.98
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the watermatk image obtained. The warious attacks used

were blurting, cropping, shatpening, rotation, scaling and
JFEG compression. In each case, PEME walue of the
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Fig &: Orginal Lena’s image
watermatk immage was obtained for the threshold values

varying from 0.1-0.0001, respectively. The Table 2 shows
the obtained walues of FEME. for each of these attacks. It
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is seen that these values are exactly same as shown in
Table 1. This is possitle only because the watenmnarlked
image of Lena doesnot contain theactual information In
fact, the actual information is derived from the weights of
the newal networke already saved in files during the
training step. Only, the random number was embedded in
the cover image of Lena and it was also saved with the
files. This number is also embedded in the cover image
mainly for the puposze of authentication as discuszed in
later experiments.

Robusiness test: In this expeniment, the test of
imperceptibility iz done.

The cover image talkten wasLena’s image. & mndom
munber was hidden in the higher precision of first pizxel
value. Figwe 6 chows the original Lera’s image and
Fig. 7 shows the same image with embedded mndom
tnbet.

Let the cover image(Lera’s image) be given as:

T = [T, Fas -

The first pizzel value ¥ (1, 13 = 134 iz changed to

s Ymrn:]

T (1, 1)=136.0010.

Thelast 2 bits represent the hidden mndom omamber.

Tdk 2. FEHE valies of the waterrmark image

Threshold valies

01 Qo1 0.1 0.0001
Attaclk [FSHE) (FSHE] [FSHE] (FS HE)
Bhued 3.7 3286 3283 41.54
Cropped 378 3288 3283 41.64
Shatpen 378 3288 3283 41.64
Fotation 378 J2.68 3283 41.64
Sealing 3.7 3286 3283 41.54
JFE EN J2.68 3883 41.64

-
5]

0 I 0 M 5N s A

0 50

Fig 7: Lena’s irrage with embedded random key
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Thiz walue iz extracted and used for testing
authenticity of the watermarked image.

The PENE. value of the watenmarled image of Lena
after the inzertion of the mndom munber, with respect to
the ofiginal picture of Lena iz calewlated as 1484350,

Thiz high walue of PEME. indicates, that, there iz a
very little deterioration in the gquality of cover image
by insertion of the random mumber Thos, the
propetty of imperceptibility is highly preserved under
thiz scheme.

Authenticity test: The hidden random norrber is derived
from the high precision bits ofthe first pixel of the cover
image of Lera and then compared with the value of
randorm nurrber stored in the file during the algorithem. If
the 2 walues match, authenticity is preserwed, otherwise,
the authenticity is suspected. Thus, authenticity feature
iz alzo well preserved in this scherme.

CONCLUSION

In thiz study, Baclgpropagation Mewral Metworle has
bheen used to tmap a cover image into corresponding
output target watermark image 4 mndom msmber
embedded into the cover image bas helped to preserve the
autherticity requiremerts of the watermarking scheme. As
seen from the results, robustness iz also preserved, as the
itnage processing operations do not affect the trained
neural network weights in this scheme However, there 12
a limitation due to a very large training time recquired in
this scheme. Thus, B ackpropagation Neural Metwork may
also be emploved to provide a successful watenmarking
scherne.
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