M International Journal of Soft Computing 3 (6): 451-460, 2008
We]l

ISSN: 1816-9503

Online

© Medwell Journals, 2008

ROBDD’s Parameter Estimation for Simplified Boolean Functions

Mohamed Raseen and K. Thanushkodi
Coimbatore Institute of Engineering and Information Technology,
Vellimalaipattinam, Narasipuram (Post), Coimbatore, 641109, India

Abstract: For decades, the storage of Boolean functions using Binary Decision Diagrams (BDD) has been
popular. Efficiency of representing a Boolean function by BDD depends upon the size of the BDD (Number of
nodes). Evaluating time on Boolean function using BDD depends upon the path lengths of the BDD. The
efficiency of manipulating Boolean function depends upon the BDD parameters such as TL.ongest Path Length
(LPL), Average Path Length (APL) and Shortest Path Length (SPL). Lesser the value of the parameters, lesser
will be the computational time. This study describes a new mathematical model for the estimation of the
complexity of Binary Decision Diagrams (BDDs) for simplified Boolean functions. This study provides a
mathematical model for estimation of Number of Nodes, APL, LPL and SPL for a given set of values such as
number of nodes/number of product terms. The mathematical model precisely matches the experimental values
obtammed from CUDD (Colorado university decision diagram package). This mathematical model works for any
type of variable ordering method The model enables the system to find the number of BDD nodes and path
lengths (APL, I.PL, SPL) without building the BDD. Hence, a great reduction in time complexity for VLST and
CAD designs can be achieved. It can also offer very useful clues to tackle BDD optimization problems in the
design of digital circuits.

Key words: Binary decision diagrams, design complexity, mathematical models, boolean functions

representations, simplified boolean functions

INTRODUCTION

For the last 2 decades Binary Decision Diagrams
(BDD) has gained great popularity as a method for
representing discrete functions. BDD m general 15 a direct
acyclic graph representation of a Boolean function
proposed by Akers (1978) and Bryant (1986). The success
of this techmique has attracted many researchers mn the
area of synthesis and verification of digital VLSI circuits.
Since, BDD allow efficient representation of many
practical functions (Priyank, 1997, Ingo, 1987), BDDs have
become very popular data structures. The efficiency of
BDDs depends mainly on the size of their graph
representations.

The size of the BDD dramatically depends on the
chosen order of variables (Prasad and Singh, 2003
Rudell, 1993, Ebendt, 2003). Finding a better variable order
15 often worth spending considerable computational effort
(Aloul et al., 2000). Some functions, such as adders, lead
to BDD sizes that are exponential to the number of input
variables. But some other variable orderings lead to linear

complexity for BDD sizes. Determining an optiunal variable
ordering is an NP-hard problem (Harlow and Brglez, 2001).
Another parameter critical during the construction of
BDDs 1s the maximal memory requirement, which 1s
directly proportional to the number of nodes. A good
ordering can lead to a smaller BDD and faster runtime,
whereas a bad ordering can lead to an exponential growth
in the size of BDD and hence, can exceed the available
memory (Aloul et al., 2004). Accordingly, much attention
has been devoted to techniques for finding a good
variable ordering. All these variable ordering techniques
fall into 2 categories: Static Variable Ordering (SVO)
algorithms (Fujita et al, 1988; Malik et af,, 1988) and
Dynamic Variable Ordering (DVO) algorithms
(Rudell, 1993; Somenzi, 2001).

The evaluation time 18 also another important
parameter, when BDDs are used to evaluate logic
functions. The evaluation time is proportional to the path
length in the BDD. Therefore, minimization of the path
length can mnprove the performance of the circui,
which will eventually increase the quality of the final

Corresponding Author: Mohamed Raseen, Coimbatore Institute of Engineering and Information Technology, Vellimalaipattinam,
Narasipuram (Post), Coimbatore, India 641109

Int. J. Soft Comput., 3 (6): 451-460, 2008

implementation. In general, the minimum path length in
Decision Diagrams (DD) is important in databases, pattern
recognition, logic simulation and software synthesis
(Nagayama et al., 2003). The minimization of Average Path
Length (APL) proposed in (Nagayama et al., 2003;
Ebendt er al., 2004; Liu et al., 2001) reduces the average
evaluation time of logic functions. The minimization of the
APL leads to circuits with a smaller depth on the paths
from Root to Terminal nodes. By this, the circuit is
optimized for speed and the number of very long paths is
reduced (Fey ef al., 2004). The APL minimization is very
much effective in Real time operating system applications
(Nagayama and Sasao, 2004a;, Balarin er al., 1999;
Lindgren et al., 2000). The minimization of Longest Path
Length (LPL) of BDD can reduce the longest evaluation
time which is more important for Pass Transistor Logic
(PTL) (Nagayama and Sasao, 2004b; Shelar and
Sapatnekar, 2001; Bertacco ez al., 1997). One of the main
problems with the pass transistor network is the presence
of long paths: the delay of a chain of n pass transistors is
proportional to n® (Prasad et al., 2005). The path length
can be reduced by inserting buffers, but this increases the
circuit area. The minimization of longest evaluation time
will improve the performance of the circuit (Nagayama and
Sasao, 2004b; Bertacco et al., 1997). An algorithm for
finding the optimal variable ordering for the minimization
of BDD path length was investigated by the authors
(Prasad et al., 2005). The resulted initial variable order will
produce the BDD with minimum possible APL and
consequently reducing the number of nodes to an
affordable size.

3004

2504

2001

1504

Number of nodes

100 1

50

The size of the BDD is very vital Since, it is directly
proportional to the memory needed for storing the BDD.
The sizes of the BDDs for un-simplified Boolean function
1s given by Raseen et al. (2006, 2005a). Figure 1 shows the
variation of BDD sizes for un-simplified Boolean functions
with 9 variables.

From Raseen et al. (2006, 2005a) it can be inferred that
the size of the BDD for un-simplified Boolean function is
an exponential decay. The sizes of BDDs for XOR/XNOR
functions are given in (Raseen et al., 2005b). The variation
of the sizes of BDD for XOR/XNOR functions
(Raseen et al., 2005b) is given in Fig. 2.

From Raseen et al. (2005b) the sizes of the BDD for
XOR/XNOR functions vary in a semi-circular pattern. This
study describes the sizes of BDDs for simplified Boolean
functions which are not XOR/XNOR functions.

PRELIMINARIES

Basic definitions for BDDs are given in Bryant
(1686), Akers (1978), Drechsler and Becker (1998) and
Drechsler and Sieling (2001). In the following we review
some of these definitions.

Definition 1: A BDD is a Directed Acyclic Graph (DAG).
The graph has 2 sink nodes labeled 0 and 1 representing
the Boolean functions 0 and 1. Each non-sink node is
labeled with a Boolean variable v and has 2 out-edges
labeled 1 (if then) and 0 (or else). Each non-sink node
represents the Boolean function corresponding to its 1
edge if v =1, or the Boolean function corresponding to its
0edgeifv=0.

— Experimental
— Equation

0 I 4 L — T T T 1 T T

0 54 108162 216 270 324 378432 48

6 540 594 648 702756 810 864 918 972 1026

Number of product terms

Fig. 1: BDD Size variation for un-simplified Boolean Functions with 9 variables

452

Int. J. Soft Comput., 3 (6): 451-460, 2008

180
160

1404 ~
120 o ‘\’“\

— Experimental

—
(=3
(=}

Number of nodes
i

/r \'
| "
0 T T T T T T T T T T T T 1
1 38 75 112 149 186 223 280 297 334 371 408 445 482
Number of XOR/XNOR minterms

4 £ [=2) o
=} (=] (=]
1

Fig. 2: BDD Size variation for XOR/XNOR minterms

Definition 2: An Ordered BDD (OBDD) is a BDD in which
each variable is encountered no more than once in any
path. The order of variables is same along each path.

Definition 3: A Reduced OBDD (ROBDD) is an OBDD
that is reduced by 2 reduction rules: deletion rule and
merging rule. These Reduction rules remove redundancies
from the OBDD.

Variable ordering: The size of a BDD is largely affected
(and varies from linear to exponential) by the choice of
the variable ordering (Prasad et al., 2006). Figure 3
illustrates the effect of the variable ordering on the size
of BDDs (Bryant, 1986) for the following Boolean
function (1):

fle'X2+X1'X_2'X3‘X4+X_1'X3'X4 1)

Definition 4: In a BDD, a sequence of edge and nodes
leading from the root node to a terminal node is a Path.
The number of non-terminal nodes on the path is the Path
Length.

Definition 5: The APL is equal to the sum of the node
traversing probabilities of the non-terminal nodes
(Nagayama er al., 2003; Nagayama and Sasao, 2004),
which give the following Eq. (2):

APL = Ni P(v,) 2

where, N denotes the number of non-terminal nodes.

Definition 6: The edge traversing probability, denoted by
P (e,) (or P (e,)), is the fraction of all 2" assignments of
values to the variables whose path includes e, (ore;),

(a') X1X2X3X4 (b) xlXZX3X4

Fig. 3: Effect of variable ordering on the size of BDDs

Fig. 4: Node traversing probability in a BDD

where, ¢, (or e¢;) denotes the 0-edge (or the 1-edge)
directed from away node V (Nagayama et al., 2003). Since,
all paths include the root node, this node is traversed with
probability 1.00. Since, all assignments to values of
variables are equally likely, we can use the following
Eq. (3) to calculate the P (V)) for the rest of the nodes:

2D b, =P, ©)

Definition 7: The Longest Path Length (LPL) of a BDD
denoted by LPL (BDD), is the Length of the Longest Path
from the root to terminal node.

Example 1: Consider the BDD graph given in Fig. 4, we
will calculate the APL in following order:

The root node P (V) is always equal to 1.00. Then we
calculate the P (V,) =P (ey) = 0.50 and P (V,) =P (e,y) =
0.50. In a similar manner we calculate:

P (V,) =P (ey) = 0.25.
e P(V)=P(e,)=025.
P (V) =P (e,) =P (e,)) = 0.125+0.25 = 0.375.

Int. J. Soft Comput., 3 (6): 451-460, 2008

So

£

5
APL = "P(V,)=2.875

I=0
LPL =Longest Path=x, —x, »x, »x, =4

Definition 8: Tn a Decision Diagram (DD) for logic
function f, the memory size of the DD, denoted by Mem
(DD), 18 the number of words needed to represent the DD
i memory (Nagayama and Sasao, 2004).

In a memory, each non-terminal node requires an
index and pointers to the succeeding nodes. Since, each
non-terminal node in a BDD has 2 pointers, the memory
size needed to represent a BDD i1s:

Mem (BDD = (2+1) % nodes (BDD) (Ingo, 1987)
PROPOSED MATHEMATICAL MODEL

The complexity of the BDD depends on the number
of nodes 1 the BDD and the corresponding path lengths.
The number of nodes and path lengths for a BDD
depends upon Boolean function represented by the BDD.
An experiment was conducted to find the actual relation
between the number of nodes, APL, LPL and SPL in the
BDD and number of product terms (in the simplified
function). The CUDD (Colorado University Decision
Diagram) (Somenzi, 2003), was used to conduct the
experiment. The experiment included the followmng steps:

Step 1: The number of variables is read from the user.

Step 2: The variable ordering is fixed (for example genetic
algorithm).

Step 3: The number of product terms (n) is set to 1.

Step 4: A random Boolean function with n non repeating
product term is generated.

Step 5: Sumplify the generated function using Quine Mc-
Cluskey method.

Step 6: Run the CUDD to build the BDD for the simplified
function.

Step 7: Reorder the BDD using the method selected in
step 2.

Step 8: Record the number of nodes, APL, LPL and SPL
in BDD.

454

Step 9: Repeat steps 4-7 for n=1 to n= (number of inputs)*

Step 10: Record the number of nodes, APL, LPL and SPL
for all variables and all product terms.

Step 11: Using the collected data the mathematical models
are obtained.

Mathematical model for number of nodes: Figure 5
illustrates the relation between the number of product
terms and number of BDD nodes for & variables using
genetic algorithm reduction technique.

For 8 variables the number of nodes increases as the
number of product terms increase. The number of nodes
increases up to a certamn limit beyond which the numbers
of nodes reduce to 0.

This variation is due to the fact that beyond a certain
limit the input Boolean function simplifies and reduces to
0 nodes. The Fig. 6 shows the number of nodes for 9
variables. From Fig. 6 it can be mferred that the variation
of number of nodes follows a specific pattern of
rising and falling. This pattern can be modeled using an

70=

‘Number of nodes

T L] T T L) T L] T L] T T L) T T 1
8 12 16 20 24 23 32 36 40 44 48 52 56 60 64
‘Number of product terms

T
4

Fig. 5: Number of nodes for 8 variables
126+

100

LA S W S S S R SR S s — ——
7 14 21 28 35 42 49 56 63 70 77 B4 91 98 1
Number of produet terma

Fig. 6: Number of nodes for 9 variables

Int. J. Soft Comput., 3 (6): 451-460, 2008

120+

5
Number of varisbles

Fig. 7: Cut off values (experimental)

1204

100

Number of varisbles

Fig. 8: Cut off values (experimental and equation)

equation. From the experimental results it can be inferred
that the number of nodes starts from O and rises to a
particular limit and falls to zero beyond the limit. The
relation between the number of variables and the number
of product terms (for which the nodes reduces to 0) 1s
shown in Fig. 7.

The curve in Fig. 7 can be represented using the
Eq. (4) shown:

COP = 0.6378%e 055911 (4
where,
COP : Cutoff pomt.
NV Number of variables.

Figure 8 shows the experimental value of the cutoff
points and the estimation using the equation. From Fig. 8
it can be inferred that the equation matches the
experimental values precisely.

The variation of number of nodes in Fig. 6 (for 9
variables) can be modeled using the following Eq. (2):

455

140+ <~ Equation
= Experimental
1204 -
100+
-g B0+
L]
2
-g 60
=
40
20
u T T T T T T T 1 1 1 1
0 9 18 27 36 45 54 63 72 81 9% 99
‘Number of product terma

Fig. 9: Number of nodes (experimental and equation)

Table 1: Values pf parameters a, b, c and d

Number of
variables a b c d
3 3.867 0.02509 -3.867 -27.94
4 4.716 0.05466 -4.716 -40.63
5 8.79 0.02206 -8.38 -1.203
6 -0.3187 0.2131 7.875 0.0771
7 -65.710 0.09625 75.02 0.09281
8 51.530 0.05834 -38.62 0.06276
9 323.500 0.002399 -319.00 0.008221
NN=0 for NPT <=0
=0 for NPT > COP (5)

=323 5*6(—0 0023994 NFT) 3] 9*6(70 008221%NFT)

where, COP is Eq. (4). The Fig. 9 shows the number of
nodes from experiment and from Eq. (5). From Fig. 9 it can
be inferred that the equation is a good representation of
the system.

The Eq. (5) can be generalized for any number of
variables as follows:

NN =0 for NPT<=10
=0 for NPT>COP

=ate® + pike?

(6)

The values of the parameters a, b, ¢ and d from
experiment are shown in Table 1.

From the Table 1, using curve fitting techniques the
equations of the variables a, b, ¢ and d are determned as:

0.0001624%e! #"M7V-. () 61 420 570
0.0213%" 7. 0.000002493 %' 77
0.0000002389%e* V11 267 *e2 4=
1.211%e? 4] 24% 1Y

oo oo

where, NV 1s the number of variables. Thus when the
number of variables (NV) and the number of simplified

Int. J. Soft Comput., 3 (6): 451-460, 2008

SOP terms (NPT) is given the number of nodes in the BDD
can be found using the equations. This experiment was
conducted using Genetic algorithm as the variable
ordering method. In order to find the nodes for other
methods the Eq. (6) has to be modified with an
amplification factor derived from (Raseen et al., 2006). The
new equation supporting all variable ordering method 1s
given by Eq. (7):

NN=0 for NPT<=10
=0 for NFT>COF

= AF. (a*e®"FD 4oke ™Dy

(7

where, A F. 13 the amplification factor given by a table in
Raseen et al. (2006). Hence, Eq. (7) can be used to find the
number of nodes for all the existing variable reordering
methods.

Mathematical Model for APL: Figure 10 illustrates the
relation between the number of product terms and APT, of
BDD for 8 variables using genetic algorithm reduction
technique.

For 8 variables the number of nodes increases as the
number of product terms increase. The number of nodes
increases up to a certain limit beyond which the APL
reduces to 0.

Thus variation 1s due to the fact that beyond a certain
limit the input Boolean function simplifies and reduces to
O nodes. The Fig. 11 shows the APL for 9 variables. From
Fig. 11 it can be inferred that the variation of number of
nodes follows a specific pattern of rising and falling. This
pattern can be modeled using an equation.

From the experimental results it can be inferred that
the number of nodes starts from 0 and rises to a particular
limit and falls to zero beyond the limit. The relation
between the number of variables and the number of
product terms (for which the nodes reduces to zero) is
shown in Fig. 12.

The curve n Fig. 12 can be represented using the

Eq. (8):

COP = 0.569] *¢ 0777 (8)
where, COP is cutoff point and NV is the number of
variables.

Figure 13 shows the experimental value of the cutoff
pomnts and the estimation using the equation. From
Fig. 13 it can be inferred that the equation matches the
experimental values precisely.

The variation of munber of nodes m Fig. 11 (for 9
variables) can be modeled using the following Eq. (6):

456

T T T F T T] T L) T L] L)) T) 1 T 1 1

4 710 13 1619 22 2528 31 3437 40 43 464952 55 58 61
Number of product terms

Fig. 10: APL for 8 variables

Qo

AN S N S SN N S S S S A S S —
B 15 22 20 36 43 50 57 64 71 78 8BS 92 99 106
Number of product terms

Fig. 11: APL for 9 variables

1201

100+
%so— —— Experimental
B
869-

4+

20+

3 T L} L] T T L) T T 1

0 1 2 3 4 5 & 171 & 9
Number of varisble

Fig. 12: Cut off values (experinental)

APL=0 for NPT<=0

=0 for NPT>COP
= 8598 *e(—o 00000491+ NPT) _ 7081 *e(—0.02893*N'PT)

©)

where, COP is Eq. (8). The Fig. 14 shows the APL from
experiment and from Eq. (9). From Fig. 14 1t can be mferred
that the equation 18 a good representation of the system.

Int. J. Soft Comput., 3 (6): 451-460, 2008

‘Number of product variahlea

Fig. 13: Cut off values (experimental and equation)

7 === Equation
8_—th:uerimcnml
74
6
5°
4-
3=
2
1
0 T T T T T T T T T T 1
6 9 18 27 36 45 34 63 72 81 %0

Number of product terms

Fig. 14: APL (experimental and equation)
70~
60+
50-

40+

SPL

304

20+

T T T T T T T T T T T T T 1
1 5§ 9 13 17 21 25 29 33 37 41 45 49 53 57 61
Number of product terms

Fig. 15: SPL for 8 variables

The Eq. (9) can be generalized for any number of variables
as follows:

APL=0for NPT<=0
=0 for NPT>COP (10

b d
=a%e’ + ¢¥e

Table 2: Values of parameters a, b, ¢ and d for APL

Number of

variables a b c d

3 1.579 0.09313 -1.579 -28.45

4 1.613 0.1238 -1.613 -38.27

5 3.089 0.02641 -3.086 -0.9286
& -0.1995 0.1783 2.289 -0.07951
7 17.28 0.07927 -15.1 0.08261
8 17.48 -0.00805 -16.43 -0.02548
9 8.589 -4.91e-06 -7.081 0.02893

The values of the parameters a, b, ¢ and d from
experiment are shown in Table 2.

From the Table 2, using curve fitting techniques the
equations of the variables a, b, ¢ and d are determined as

= _]1.215e-7*e!TNY 1 ())QEDR* o) 56NV
= (0.100%eMMEEY_q 090] 234%) TNV
= 1.3676_9*62.663*NV_0.05769*eu_7325*NV

= .1 386e0%e 2V 4] SaQ*e 1Y

oo on

where, NV 1s the number of variables. Thus when the
number of variables (NV) and the number of simplified
SOP terms (NPT) 13 given the APL of the BDD can
be found using the equations. This experiment was
conducted using Genetic algorithin as the variable
ordering method In order to find the APL for other
methods the Eq. (10) has to be modified with an
amplification factor derived from Raseen et al. (2006). The
new equation supporting all variable ordering method 1s
given by Eq. (11):

APL = 0 for NPT <=0
= 0 for NPT > COP (11)

= AT (a%e®""P 4ore Py

where, A F. is the amplification factor given by a table in
Raseen et al. (2006). Hence, Eq. (11) can be used to find
the mumber of nodes for all the existing vanable reordering

methods.

Mathematical Model for SPL: Figure 15 illustrates the
relation between the number of product terms and SPL of
BDD for 8 variables using genetic algorithm reduction
technique.

For 8 variables the number of nodes increases as the
number of product terms increase. The number of nodes
increases up to a certain limit beyond which the APL
reduces to 0.

This variation is due to the fact that beyond a certain
limit the input Boolean function simplifies and reduces to
0 nodes. The Fig. 16 shows the SPL for 9 variables. From
Fig. 16 it can be inferred that the variation of SPL follows
a specific pattemn of rising and falling. This pattern can be
modeled using an equation.

Int. J. Soft Comput., 3 (6): 451-460, 2008

SPL

T T T T T T T T T T T
17 25 33 41 49 57 65 73 81 89 97 105

Number of product terms

L
1 9

Fig. 16: SPL for 9 variables

24 32 40 48 56 64 72 B0 BB 96
Number of product terms

T
16

Fig. 17: SPL (experimental and equation)

The cutoff points for LPL (beyond which the LPL
goes to 0) is same as the cutoff points for APL and is
given by Eq. (8). The variation of number of nodes in
Fig. 16 (for 9 variables) can be modeled using the
following Eq. (12):

SPL =0 for NPT <=0
=0 for NPT > COP

= 19 25k O0MRATT) | @ 5 (000T4TNET)

(12)

where, COP is Eq. (4). The Fig. 17 shows the SPL from
experiment and from Eq. (12). From Fig. 17 it can be
inferred that the equation is a good representation of the
system. The Eq. (9) can be generalized for any number of
variables as follows:

SPL=0for NPT <=0
=0 for NPT>COF

= a%e® + c¥e!

(13)

458

Table 3: Values of parameters a, b, ¢ and d for SPL

Number of

variables a b c d

3 1.911 -0.02311 -1.917 -0.8247
4 0.624 0.2471 -0.624 -31.96

5 6.463 0.2142 -5.45 0.2258
& -0.01412 0.2704 1.191 0.08485
7 -0.00568 0.2157 -1.062 0.06953
8 13.22 -0.00204 -12.8 -0.01299
9 19.25 -0.00242 -18.5 -0.00741

The values of the parameters a, b, ¢ and d from
experiment are shown in Table 3.

From the Table 3, using curve fitting techniques the
equations of the variables a, b, ¢ and d are determined
as:

0.01681 %t B M7 11 3% 04206V
1,171 *e P IHINV_2g 4 5% 213NV
000052 %D TTNV_] 3 | ka0 0558V
-1.201 e&*e 312NV 499e8*e P HNY

Ao oo

where, NV is the number of variables. The new equation
supporting all variable ordering method 1s given by
Eq. (14):

SPL = 0 for NPT<=0
=0 for NPT>COP

= AT (a%e®™"+ oxe ™)

(14)

where, A.F. is the amplification factor given by a table in
Raseen et al. (2006). Hence, Eq. (14) can be used to find
the mumber of nodes for all the existing vanable reordering
methods.

Mathematical Model for LPL: The variation of Longest
Path Length 1s very simple and is equal to the number of
variables. Experimental results indicate that the LPL is
equal to the mumber of variables for any number of
product terms. Thus

LPL = Number of variables.

CONCLUSION

In this research, we address the problem of finding
the number of nodes, APL, LPL and SPL in a BDD for
simplified Boolean functions without actually building the
BDD. We introduce a mathematical model for the
estimation of the BDD sizes. We also introduce a
mathematical model for the estimation of path lengths. We
have shown that the mathematical model accurately
represents the experimental results. The model will help
the VLSI/CAD mmplementations to exactly estimate the
ROBDD nodes and path lengths without actually building

Int. J. Soft Comput., 3 (6): 451-460, 2008

the ROBDD. The introduced method will decrease the time
complexity for systems that use BDD for representing
Boolean functions. The method also provides the user
with an estimate of the maximum complexity (cut off pomt)
for a given number of variables. By finding the maximum
complexity the user can determine the limit of the memory
needed for BDD manipulations. The experimental and the
equation graphs match very well thereby demonstrating
the efficiency of the proposed method. Future works
and developments will be the application of the
proposed method for the universal Benchmark circuits
(Yang, 1991; Hansen et al, 1999) and to validate the
proposed method.

REFERENCES

Alkers, S.B., 1978. Binary decision diagram. TEEE. Trans.
Comput., 27: 509-516.

Aloul, F., I. Markov and K. Sakallah, 2004. MINCE: A
static global variable-ordering heuristic for SAT
Search and BDD Manipulation. J. Univ. Comput. Sci.
(JUCS), 10 (4): 1-6.

Aloul, FA., IL. Markov and KA. Sakallah, 2000.
Improving the Efficiency of Circuit-to-BDD
Conversion by Gate and Input Ordering 20th. Int.
Conf. Comput. Design (ICCD 2002), pp: 64-69.

Balarin, F., M. Chiedo, P. Giusto, H. Hsieh, A. Turecska,
L. Lavagno, A.S. Vincentell, EM. Sentovich and
K. Suzuiki, 1999. Synthesis of software programs for
embedded control applications. TEEE. Trans. CAD,
18 (6): 834-849.

Bertacco, V., S. Minato, P. Verplaetse, L. Berum and G. De
Micheli, 1997. Decision Diagrams and Pass Transistor
Logic Synthesis. July 18, 2008 Stanford Umversity
CSL Technical Report, No. CSL-TR-57-748.

Bryant, R.E., 1986. Graph-based algorithm for boolean
function manipulation. TEEE. Trans. Comput.,
35: 677-691.

Drechsler, R. and D. Sieling, 2001. Binary Decision
Diagrams in Theory and Practice. Springer-Verlag
Trans., pp: 112-136.

Drechsler, R. and B. Becker, 1998. Binary decision
diagrams theory and implementation.
Academic Publishers.

Ebendt, R., 2003. Reducing the number of variable
movements in exact BDD minimization. In: Proc. 2003
Int. Symp. Circuits Syst., pp: 605-608.

Ebendt, R., S. Hoehne, W. Guenther and R. Drechsler,
2004. Minimization of the expected path length in
BDDs based on local changes. In: Proc. Asia South
Pacific Design Automation Conference (ASP-DAC),
Yokohama, Japan, pp: 866-871.

Kluwer

459

Fey, G., I. Shi and R. Drechsler, 2004, BDD circuit
optimization for path delay fault-testability. In:
Proceeding of the EUROMICRO Symposium Digital
System Design, pp: 168-172.

Fujita, M., H. Fujisawa and N. Kawato, 1988. Evaluation
and improvements of boolean comparison method
based on binary decision diagrams. TN: Proc. Int.
Conf. Comput. Aided Design (ICCAD), pp: 2-5.

Hansen, M., H. Yalcm and I.P. Hayes, 1999. Unveiling the
ISCAS-85 Benchmarks: A case study in reverse
engineering. IEEE. Int. J. Design Test, 16 (3): 72-80.

Harlow, I.E. and F. Brglez, 2001. Design of Experiments
and evaluation of BDD ordering Heuristics. Int. T.
Software Tools Technol. Trans., 3 (2): 193-206.

Ingo, W., 1987. Complexity of Boolean Function. John
Wiley and Sons Ltd and Teubner, B.G. Stuttgart.

Lindgren, M., H. Hansson and H. Thane, 2000. Using
measurements to derive the worst-case execution
time. In: Proc. 7th Int. Conf. Real-Time Syst. Applic.
(RTCSA), pp: 15-22.

L, Y., KH Wang, T.T. Hwang and C.L. Liu, 2001. Binary
decision Diagrams with mimmum expected path
length. In: Proc. DATE, pp: 708-712.

Malik, S.A., Wang, R. Brayton and A. Sangiovanni-
Vincentelli, 1988. Logic verification using binary
decision diagrams m a logic synthesis environment.
In: Proc. Int. Conf. Comput. Aided Design (ICCAD),
pPp: 6-9.

Nagayama, S. and T. Sasao, 2004. On the minimization of
longest path length for decision diagrams.
International Workshop on Logic and Synthesis
(IWLS3), Temecula, Califormia, U.S.A., pp: 28-35.

Nagayama, S. and T. Sasao, 2004. On the mimmization of
longest path length for decision diagrams.
International Workshop on Logic and Synthesis
(IWLS), pp: 28-35.

Nagayama, S.A., Mishchenko, T. Sasac and I.T. Butler,
2003. Minimization of average path length in BDDs
by variable reordering. International Workshop on
Logic and Synthesis, Laguna Beach, California,
U.S.A, ppr 207-213.

Prasad, P.W.C. and A K. Singh, 2003.An efficient method
for minimization of binary decision diagrams. In: Proc.
3rd Int. Conf. Advances Strategic Technologies,
pp: 683-688.

Prasad, PW.C., A. Assi, A. Harb and V.C. Prasad, 2006.
Binary decision diagrams: An improved variable
ordering using graph representation of boolean
functions. Int. J. Comput. Sci., 1 (1): 1-7.

Prasad, P.W.C., M. Raseen and S. Sasikumaran, 2005.
Delay Minimization in Pass Transistor Logic use of
Binary Decision Diagram. 2nd International
Conference on Information Technology (ICTT),
Tordan, pp: 66-70.

Int. J. Soft Comput., 3 (6): 451-460, 2008

Prasad, PW.C., M. Raseen, A. Assi and SMNA.
Senanayake, 2005. BDD Path Length Minimization
based on Imtial Variable Ordering. J. Comput. Sci.
Publications, USA_ 1 (4): 521-529.

Priyank, K., 1997. VL3I Logic Test, Validation and
Verification, Properties and Applications of Binary
Decision Diagrams, Lecture Notes, Department of
Electrical and Computer Engineering University of
Utah, Salt Lake City, UT 84112,

Raseen, M. P.W.C. Prasad and SM.N.A. Senanayake,
2005, XOR/XNOR functional behavior on ROBDD
Representation. 14th TASTED Int. Conf. Applied
Simulation Modeling, Spain, pp: 115-119.

Raseen, M., A. Assi, P.W.C. Prasad and A. Harb, 2005.
An efficient mathematical estimation of the BDDs
complexity. 16th TASTED Int. Conf Modeling
Simulation, Mexico, pp: 381-386.

Raseen, M., P.W.C. Prasad and A. Assi, 2006. An efficient
estimation of the ROBDD's complexity. Integra. VST
I. Elsevier Publications, UK, 39 (3) 211-228.

Rudell, R., 1993. Dynamic variable ordering for ordered
binary decision diagrams. In: Proe. Int. Conf
Comput. Aided Design (ICCAD), pp: 42-47.

Somenzi, F., 2003. CUDD: Colorado University Decision
Diagram Package. ftp://vlsi.colorado.edu/ puby.

Somenzi, F., 2001. Efficient manipulation of decision
diagrams. Int. J. Software Tools Teclnol. Trans.
(STTT), 3(2). 171-181.

Shelar, R.S. and S.3. Sapatnekar, 2001. Recursive
Bipartitioning of BDD's for Performance Driven
Synthesis of Pass Transistor Logic. In: Proc.
TEEE/ACM ICCAD, pp: 449-452.

Yang, S. 1991. Logic synthesis and optimization
benchmarks user guide version 3.0. Technical report,
Microelectronic Centre of North Caroline. Research
Triangle Parlk, NC.

460

