=D RUYA=NINE [nicrnational Journal of Soft Computing 4 (1): 16-24, 2009

ISSN: 1816-9503
PUBLISHING © Medwell Journals, 2009

A Novel Neural Learning Algorithm for Separation of Blind Signals

'D. Malathi and °N. Gunasekaran
'School of Computer Science and Engineering, S.R.M Engineering College,
S.R.M University, Tamil Nadu, India
*School of Electronics and Communication Engineering, Anna University, Chennai-600 025, India

Abstract: This study proposes, a new learning algorithm for extracting the independent source signals from
an artificially mixed signal. An adaptive self-normalized radial basis function neural network is developed and

trained by the proposed learning algorithm to model the nonlinearity from the latent variables to the

observations. The jomt probability density function and marginal probability density functions are used to
determine the mverse of the nonlinear mixing matrix, which 1s assumed to exist and able to be approximated. The
centers of the ASN-RBF network are initialized with the weights between input and hidden layer to update the
parameters in the generative model. This proposed algorithm 1s well-suited for nonlinear data analysis problems
and theoretically interesting. Minimum 3 signals are considered for simulation. Simulation results show the

feasibility of the proposed algorithm. The performance of the proposed network i1s compared with the
Independent Component Analysis (ICA) algorithm and it is illustrated with computer simulated experiments.

Key words: Stochastic gradient descent optimization algorithm, radial basis function neural network,
independent component analysis, backpropagation neural networlk

INTRODUCTION

In many signal and data analysis situations,
observed data are known to be some mixture of
underlying sources. The mixing process may be linear or
nonlinear and while, the structure of the mixing process
may be known, the mixture parameters (in the linear case,
the mixmg matrix) will be unknown. Blind Source
Separation (B33) is a technique, which allows separating
a number of source signals from observed mixtures of
those sources without a previous knowledge of the
mixing process (Cichocki and Amari, 2002). For example,
if there are many speakers in a room, then each
microphone receives a different mixture of the speaker
signals. The task is then to separate the original (unmixed)
speaker signals from the mixtures received at the
microphones. A numerous attention has been aroused in
these techniques in recent years with an increasing
number of existing approaches. So, far several authors
studied the difficult problem of the nonlinear blind source
separation and proposed a few efficient demixing
algorithms (Burel, 1992; Deco and Brauer, 1995; Pajunen,
1998; Hyvarmen and Pajunern, 1999). Model-free methods,
which used Kohonen’s Self-Organizing Map (SOM) have

been proposed to extract independent sources from
nonlinear mixture, but suffers from the exponential growth
of networle complexity and interpolation error in
recovering continuous sources (Herrmann and Yang,
1996; Pajunen et al., 1996; Lin and Grier, 1997). A
nonlinear blind source separation algorithm has been
proposed using two-layer perceptrons by the gradient
descent method to minimize the mutual information (Burel,
1992). Subsequently, backpropagation algorithm has been
developed for Burel’s model by natural gradient method
(Yang et al., 1997). In their model cross nonlinearities are
included. An entropy-based direct algorithm has been
proposed for blind source separation in post nonlinear
mixtures (Taleb et al., 1995). In addition, the extension of
related linear ICA theories to the context of nonlinear
mixtures has resulted in the development of nonlnear ICA
(Pajunen et al., 1996). The so-called nonlinear ICA is to
employ a nonlinear function to transform the nonlinear
mixture such that the outputs become statistically
independent after the transformation. However, this
transform 1s not unique without some specific constraints
on the function of nonlinear mixing. If x and y are 2
independent random variables, then f{x) and g(y) are also
statistically independent regardless of the nonlinear
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functions f and g. Although, there exists many difficulties
for this problem, algorithms

have been proposed and developed (Pajunen et al.,

several nonlinear ICA

1996; Lee et al, 1997). The existence and uniqueness
of ICA  are discussed in  detail
(Herrmann and Yang, 1996; Pajunen et al, 1996,
Pajunen, 1996, 1999; Lin et al., 1997, Pajunen, 1998) and
pointed out that the solution of nonlinear TCA always

nonlinear

exists (Hyvarmen and Pajunen, 1999). It can become
unigue up to a rotation provided that the mixing function
1s constrained to a conformal mapping for a 2-dimensional
problem together with some other assumptions such as
bounded support of the probability density function
(pdf) (Herault and Jutten, 1986,1991; L1 and Sejnowski,
1995; Makeig and Bell, 1996; Papadias and Paulraj, 1997,
Van der Veen ef al, 1997, Linde ef al., 1980). Several
authors have introduced a class of adaptive algorithms for
source separation (Cardoso and Laheld, 1996). A contrast
function, which ceonsists of the mutual mformation and
partial moments of the outputs of the separation
system 1s defined to
(Ying et al., 2001).

In thus study, we propose a novel learmng algorithm
to extract independent components from the mixture
signal. The ASN-RBF neural network is developed by
MATLAB and trained by the proposed algorithm to
minimize the objective function, which is the difference
between the joint probability density function (pdf) and
the product of marginal pdfs of the output vectors. The

separate nonlinear mixture

training continues until a stable value of weight vector 1s
obtained.

FORMULATION OF THE PROBLEM

Blind Source Separation (BSS) 15 a technique, which
allows separating a number of source signals from
observed mixtures of those sources without a previous
knowledge of the mixing process (Comon ef al., 1991,
Lin et al., 1997). Suppose that the two audio signals are
generated by two sources simultaneously. Assume that
the two signal generators are placed at 2 different
locations and the 2 signal observers (e.g., microphones)
recelve the nonlinear mixture of these 2 signals. Each of
these observed signals is a weighted sum of the 2 source
signals generated by 2 sources. We denote them as m,
and m,, respectively. Now, the 2 observed signals can be
represented as:

(1)

0, =wym +w,,m,

17

(2

0, = Wy;m, +w,;,m,

where, w,,, W,,, W;, W,, are the parameters whose value
depends on the locations of the 2 sources. These values
can be represented as a linear mixing matrix, say W as
given in Eq. 3.
The observed signal can be represented m the form
of avector as given in Eq. 4:
W—{WH le} (3)
W
O=WM

W21

(h

where, M = [m, m,]"

Now, the blind source separation problem can be
defined as an estimation of the two original source signals
m,; and m, by receiving only the observed signals O, and
O,. This problem 1s also called as cocktail party problem
as already been mentioned by many researches.

Actually, if we knew the mixing matrix W, then we can
easily separate the two source signals by finding the
inverse of the mixing matrix, i.e. W', which can also be
called as demixing matrix.

Therefore, M= W' O (5)

But, the problem is considerably more difficult since
we do not know the mixing matrix W a prioni. Blind means
that we know very little if anything on the mixing matrix
and make little assumptions on the source signals.

The block diagram of mixing and non-mixing matrix s
shown in Fig. 1. The three signals M,, M, and M, (which
are assumed to be independent) are mixed by the random
mixing network and they are observed as inputs to the
microphenes. The output from the microphone 1s given as
inputs to ASN-RBF neural networle. The weights are
updated by the Stochastic Gradient descent Algorithm
and the traimng continues until there 1s no change n the
weight values in the consecutive iterations.

This problem can be solved by the classical method,
Independent component Analysis (ICA), which assumes
that the 2 sources are statistically independent of each
other and non-Gaussian. ICA was originally developed to
deal with problems that are closely related to cock-tail
party problem. Since, the recent increase of mterest in
ICA, it has become clear that this principle has a lot of
other interesting applications as well
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Mixing mairix {A)
o |— 0,
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Del cutput SN-RRBF neural netwotk  L—3 0, 0 cionale
@w) —» 0,
lol vo_ yo
Stochastic gradient descent algorithm

Fig. 1: Thus figure shows the block diagram of mixing and
non-mixing matrix

Formulate an
appropriate objective
function that guarantees
the correct separation

Design a suitable
neural network model ’
for the inverse problem

Apply an optimization procedure
to derive an unsupervised
leamning algorithm

Fig. 2: This block diagram shows the design method to
solve BSS problem

Without loss of generality, we can assume that both
the mixture variables and the independent components
have zero mean. If this is not true, then the observed
variables can always be centered by subtracting the
sample mean, which makes the model zero-mean
(Hyvirinen, 1999).

The TICA can solve BSS problem under the following
assumptions (Comon, 1994).

¢ The sources m, are statistically independent.
*  The sources must have non-Gaussian distributions.

But, by using ICA, the variances and the order of the
independent sources can not be determmned.

As shown in Fig. 2, it is necessary to design a
suitable neural network for the blind source separation
problem. In our research, we have developed ASN-RBF
neural network since it exhibits fast training, simplicity
and good generalization. To extract independent
components from mixture signal, an appropriate objective

function is chosen and it is minimized by the

unsupervised learning algorithm.

STOCHASTIC GRADIENT DESCENT
ALGORITHM (SGDA)

To separate independent components from the
observed signal, we require an objective function. The
objective function is chosen such that it should give
original signals when it 13 minimized (Yogesh and Rai,
2002). In signal processing, when the components of
the output vector become mdependent, its joint
probability function factorizes to marginal pdfs, which is
given in Eq. &

f{m) =Hfi(mi) (6)

where, m, is the i® component of the output signal. The
pdf of m parameterized by W can be written as given in
Eq. 7 (Papoulis, 1991):

£, (0)

™
iy

f(m W)=

where, |J] 15 determimnant of the Jacobian matrix I. It can be

defined as:

om,  dm, om,
E E a
om, Jm, om,
J=|do, do, o, (8)
dm, dm, om,
do, do,  do,

From Eq. 4, each element in Eq. 8 can be represented
in terms of w as:

L =w 9

Wll WlZ Wlk
W w W

W= |V 22 2k (10)
Wy Wi Wik
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Now Eq. 7 can be written as:

£.(0)

£ (m, W) =21/ an

To extract independent components from the
observed signal, the difference between the jomnt pdf and
product of marginal pdfs has to be determined. When the
components become independent, the difference becomes
zero. This can be represented as:

—ﬁfl(m
i=1

(12)

Since, logarithm provides computational simplicity,
taking logarithm on both sides of Eq. 12, we get

0 (13)

log(f mW) Elog( )

Substituting the value of f(m,W) from Eq. 11
Eq 13, we get

log{ |

Because, the pdf of the mput vector 1s independent
of the parameter vector W, the objective function for
optimization becomes

J zlog( Jj=0 U4

DW) g) U4

—10g(|WD —lzk;log (fi (m

Now, the Edgeworth series has been used to expand
the second term in Eq. 15. The first three terms of this
expansion 1s

P (o) N

6vn
.cfy

AP (o) 2 1}!(6)
24
Here, the random variables O; have mean u, variance
0 and higher cumulants k= o'A. ¥¥ (i) is the j* derivative
of W(m) with respect to m. Cumulants can also be
expressed mn terms of moments. The rth order cumulants
are expressed in terms of moments as follows:

F(o)-
(16)

19

(17)
(18)

= m1,4

After simplification, the Gradient descent of Eq. 15
now becomes

(19)

The Stochastic gradient descent algorithm for weight
updation can now be written as:

(20)

0D(w)
ow

w(t+1)=w(t)-1n

Substituting the gradient of the cost from Eq. 19, the
weilght update rule can now be written as:

w(t)+ 1’](1;)|:W_T f‘{’(m (t))} o’ (1)
(21)

w(t+1)=

The advantage of Edgeworth series is that the error
1s controlled, so that it 1s a true asymptotic expansion.

Algorithm description
Step 1: Initialize the parameter.

+  Assign weights between input and hidden layer.
»  Assign weights between hidden and output layer.
*  Setn =0.99 0=0.09.
Step 2: Apply the mput.
Step 3: Compute the output.
Step 4: Update weights between hidden and output layer
dl = inv(det(hou old));
for k = 1:output_neurons
3 s 33 7
d,(k)=3xy (k) 4xy(k) + Exy(k)

41 7
—5><y(1<1)9 + Exy(k)11 —gxy(k)

13

+—><y(k)15

end
deloutput=d1-(d2*mixtures'),
w (t+ 1) =w(t) + Irp* deloutput (k) + 0.05;

Step 5: Evaluate O(t)=W(t)*x(t).
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Inputs <

Fig. 3: This figure 13 the architecture of adaptive self-
normalized radial basis function neural
architecture

Step 6: Repeat steps 2-5 until a stable value of w (t) 1s
obtained.

ASN-RBF To choose an
arclitecture for a given problem, the generalization error
has to be minimum and to get quantitative measures for it,
we have to consider the characteristics of the network
such as number of layers, number of nodes in hidden
layer and connectivity: A priori mformation about the
problem may be included here. The radial basis function
neural network 1s proposed for BSS problem smce the
network exhibits rapid training, simplicity and generality.
In recent years, there has been an increasing interest in
using Radial Basis Function Neural Networks for many
problems. Like Backpropagation and Counter propagation
neural networks, it is a feedforward neural network that 1s
capable of performing nonlinear relationship between the
input and output vector spaces. The network consists of
three layers: an input layer, a single layer of nonlinear
processing lidden neurons and an output layer.

The ASN-RBF neural network architecture 1s shown
m Fig. (3). The 1000 samples from mnput signals are given
as inputs to input layer. The input layer behaves as fan-in,
fan-out since it does not perform any computation (i.e.,)
1t does not process the inputs. The outputs from the 1nput
layer are given as mputs to hidden layer.

The output of the ASN-RBF neural network is
obtained by the Eq. 22.

neural architecture:

y, =fi(x)= Zwikq)k(xv c,)

=S {fx-cl)

(22)

for1=123, ....... s
where, x € R™' is an input vector and @.,(.) is a radial basis
function, which is given by e™/(20Y

m

20

where, I = (X - W7 (X - W), 0 is the spread factor,
which controls the width of the Radial Basis Function, wy,
are the weights m the output layer, N 1s the number of
neurons in the hidden layer and ¢, € R™are the RBF
centers in the mput vector space. For each neuron in the
hidden layer, the Euclidean distance between its
assoclated center and the nput to the network is
computed (Haykin, 1994). The output of the neuron in a
hidden layer is a nonlinear function of the distance.
Finally, the output of the network is computed as a
weighted sum of the hidden laver outputs given by
Output_of outputn(b) = (input_to_outputn(b)/it), where,
o 1s the scaling parameter, which determines the
conwvergence of the learmng algorithm. During training, if
1t 1s very low, the total error becomes Nal. It 13 increased
gradually, so that for a particular value, the network
converges and the error was reduced to acceptance value.

The centers ¢, are defined points that are assumed to
perform an adequate sampling of the input vector space.
They are usually chosen as subset of the input data.

The weight vector W,, determines the value of X,
which produces the maximum output from the neuron. The
response at other values of X drops quickly as X
deviates from W, becoming negligible in value when X
15 far from W.

PERFORMANCE MEASURES AND
EXPERIMENTAL RESULTS

To analyze the performance of an algorithm, we must
know the followimng.

¢ When has something been learned?
»  When is the network good?
»  How long does learming take?

Learning means fitting a model to a set of training
data, such that for a given set of mput patterns, the
desired output patterns are reproduced (Poggio and
Girosi, 1989). Learming criterion: When we have binary
output units, we can define that an example has been
learned if the correct output has been produced by the
network. In general, we need a global error measure (E)
and we define a critical error E_. The condition is that not
only should the global error at every output node exceed
a certain value; all patterns should have been learned
to a certain extent If the output units are contimuous
valued, e.g. within the interval [0,1], then we might
define anything <0.4 as 0 and anything >0.6 as 1;
whatever lies between 0.4-0.6 1s considered as incorrect.
In this way, a certain tolerance is possible. We also have
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to distinguish between performance on the training and
test set. So, we need a quantitative measure of
generalization ability.

The performance of the proposed algorithm can be
analyzed by the parameters given below.

Convergence: It mimmizes the objective function
Minimizing the objective function can be visualized using
error surfaces. The metaphor used 1s that the system
moves on the error surface to a local minimum. The error
surface or landscape 1s typically visualized by plotting the
error as a function of two weights. Hrror surfaces
represent a visualization of some parts of the search
space. 1.e., the space, in which the weights are optimized.
Weight spaces are typically high-dimensional, so what is
visualized 1s the error corresponding to just two weights.
The error function depends not only on the data to be
learned but also on the activations.

Convergence rates with stochastic gradient algorithm
are typically faster than backpropagation algorithm. There
15 a lot of literature about mmprovements. In order to
increase the convergence rate, the learning rate parameter
1) can also be changed over time:

+c it AE<O
An =4—dn AE >0  for several steps (23)
0 Otherwise

where, ¢ and d are parameters whose values are chosen
between 0 and 1. There are various ways, in which the
learning rtate can be adapted Newton, Steepest
descent, Conjugate gradient and Quasi-Newton are all
alternatives.

Local minima: One of the problems with all gradient
descent algorithms 1s that they may get stuck with m local
minima. There are various ways, in which they can be
escaped. Noise can be introduced by shaking the weights.
Shaking the weights means that a random variable 1s
added to the weights. Alternatively, the algorithm can
be run again using a different mitialization of the
weights. Tt has been argued that because the space

Table 1: SNR of separated signals using ICA

is 80 high dimensional, there is always a ‘ridge” where an
escape from a local mimmum 1s possible (Lappalainen and
Giannakopoulos, 1999; Lee et al., 1997). Because error
functions are normally only visualized with very few
dimensions, one gets the impression that a
backpropagation algorithm 1s very likely to get in a local
minimum. This seems not to be the case with large
dimensions. Since the proposed algorithm is stochastic,
1t does not up with local mimma.

Performance index: After the separating matrix W has
been computed by the stochastic gradient descent
algorithm, the separation quality can be measured by
the measure, so called performance mndex, (PI)
(Cichocki and Amari, 2002) as:

)= 513

M= | = max,

K (24)

2
A% 2‘1

mT S ‘
] 1 l’nan SqJ

where, s; denotes the i"™ row and j* column of P,
(P=AW)

20 1
18 4
161
14 4

210:

—a— ICA
24 —e— PSGA

0 T T T T T 1
0 200 400 600 800 1000 1200
Sample size

Fig. 4: Compansion of SNR for ICA and SGDA algorithm

Sample size (X) 100 200 300 400 500 600 700 800 900 1000
SNR 5.7 7.2 9.0 11.4 11.0 13.1 14.0 16.0 17.8 16.0
Table 2: SNR of separated signals using SGDA

Sample size (X) 100 200 300 400 500 600 700 800 900 1000
SNR 4.6 6.5 8.0 10.1 10.0 11.2 13.2 13.0 16.0 12.3

21
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Signal to neise ratie: Another messure of separation
uality wsed was the 3ignal to Noise Ratio (SHNE) of the
separated outputs, given by the Eq. (25 (Guwllermo ef o,

2003).
M (25)

> [nt) ]

whete, mit) isthe desited sighal and 0(f) = of)-mt) is the
noise indicating the undesired signal. off) iz the estimated
sot ce signals,

From Quarntitative analwsis of Table 1 and 2, it has
been observed that the Signal to Moise (GHE) of the
separated sighds by the Proposed Stochastic Gradient
Descert Algorithum is much lower than that of ICA
algorither and its comparizon for 1000 sampled data is
showninFig 4

aME. =1010g,,

EXPERIMENTAL RESULTS

The three audio signsls, which are given helow in
Table 3 are noedinear]ymixed by the miving matriz A gven
in Eqg. 26, which iz generated by the matlab function
rand]).

0.9501 04860 04565
A=|02311 05913 00185 (46)
06065 077621 08214

The learring rate param eter was iritially chosen as
0.99 and it iz vatied by the Eg 23 during traivdng The
spread factor for radial basis fnction is set at 0.09. The
cerdre of the basis fwictions are initially set to the weight
matrix between gt and kdden lawer. The origina,

i
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Fig. 5c: Recovered sowyce signal

Tabk 3: Three cource cisnale nce dfor simnlation

Soxce 1 Sorce 2 Sorce 3
Paratneter [ st 3aranr) (s oh T vranr) [zeotE ] saranr)
Bi rite 64 Ehpe 43 Ehps 176 Ehps
Sanplk cime &-hit et &-hit et &-hit et
Sarvple rate & Ehz 6 Ehz 22 Eha
Ho.of samples 1000 1000 1000

mixtie atd separated outpnd signals are shown inFig 5.
Figare Ja shows the signals, which are generated
artificially and the Fig. 5b shows the mixture signal after
the three source signals o e mix ed bey the miving mateiy 47
and the Fig Sc represents the recovered signal from
A3N-EBF neural network.

COMCLUSION

Thiz study proposes a novel newal learning
algorittun for extracting independert sources from an
artificidly mixed signa. An adaptive selfinormalized
R adial B asi s Functi on newral network has been devel oped
atud trained by the proposed stochastic gradient descent
optimization agorittem with fixed centers to update the
patatmeters in the generative model Maty different
approaches have been attempted by toumerous researches
uaing newal networks, each claming various degrees of
But, the separation of signals in res
etvrotunerts iz stll to be improved. The performance of
the proposed network is comparedwith the ICA o gorithem
atud it iz illustrated with computer simulated experiments.

SUCCESS.
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